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A material is exposed that appears to be appropriate for the future strength of materials textbooks.
The described solution is simpler than the classical solution by Euler derived over 250 years ago.
The material, although elementary in mathematical terms, represents a simple example of a semi-
inverse design problem and leads to the closed-form solution. The material can be covered within 2
lecture hours of 50 minutes duration each.

INTRODUCTION

ABOUT 250 YEARS AGO, Leonhard Euler
solved the first buckling problems [1, 2]. Namely,
in 1744 he first solved a nonlinear buckling
problem whereas in the later publication he tackled
the column’s buckling under a concentrated
compressive loads, in the linear setting. (For the
exposition of Euler’s original papers one can
consult with the paper by van der Broek [3].) The
solution for the buckling load and the associated
buckling mode for the uniform column that is
simply supported at both ends is an invariable
element for any textbook on the strength of
materials and the mechanics of solids. Let us
recapitulate this solution. The governing differen-
tial equation reads:

dzy
El—+P.,y=0
dx? t ey

(1)

where E=modulus of elasticity, /=moment of
inertia of the cross section, y(x) = buckling mode,
x =axial coordinate, P = axial compression whose
critical value is being sought. The boundary condi-

tions read:
x=0,x=1L (2)

where L =length of the column. Since EI=const
we divide both sides of Equation (1) by it, and get:

3)

y=0 at

y// 4 ka _ 0
where

k* = P, JEI (4)
Equation (3) represents the ordinary differential
equation with a constant coefficient. Its solution
reads:

y = Dysinkx + D;coskx (5)
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Due to the condition y(0) = 0, we get D, = 0, and
are left with:

y = Dysinkx (6)
in the expression for the buckling mode.
Satisfying the condition y(L) = 0, we obtain:
DysinkL =0 (7)

Here we have two possibilities. The first one is
associated with the requirement D; =0. This
would mean, by virtue of Equation (6), that
w(x) = 0, i.e. the column remains straight through-
out its deformation. This contradicts the condition
that y(x) does not vanish automatically, for we are
looking for the buckling situation. Thus:

Dy #0 (8)
We are left with the condition:
sinkL =0 9)
which yields:
kL=m (10)

as a first nontrivial solution for non-zero k. Thus,
recalling the definition (Equation 4) of k, we get
the value of P, that corresponds to the displace-
ment y(x) that is not zero everywhere:

P, =mEI/L? (11)
This is a famous formula of Euler, and is uniformly
known to the students and engineers, over the past
two centuries. Its active use was witnessed in the
past century with the advent of the technological
revolution that is demanded for design of light-
weight structures.

A natural question arises: Is there any simpler
problem on buckling of elastic columns? At the
first glance one cannot imagine a simpler buckling
problem. Still, it turned out that this inquiry is not
trivial. According to Einstein, a mere formulation
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often may constitute a more important step than
the solution. Here, we present a different formula-
tion and solution of the buckling problem. It
constitutes a semi-inverse problem, namely, the
buckling mode is postulated, and an inhomo-
geneous column is constructed that possesses the
pre-selected buckling mode.

SEMI-INVERSE BUCKLING PROBLEM

The above problem associated with uniform
Euler column can be classified as a direct one,
implying that the flexural rigidity:

D=EI (12)

is known and one has to find the critical value P,.,
of the load as well as the associated buckling mode
y(x). In most cases the determination of the
buckling mode is a difficult task and may lead to
solution in trascendental functions like Bessel
functions [4] and Lommel functions [5].

Elishakoff [6] posed and solved several semi-
inverse problems. In our context such a problem
reads: Construct a nonhomogenoeus column, with
variable flexural rigidity:

D(x) = E()I(x), (13)
so that the buckling mode is a preselected function
f(x), ie.

y(x) =f(x) (14)

The governing differential equation for the non-
uniform column reads:

D(x)f" + Pof =0 (15)

since we postulated the knowledge of the buckling
mode f(x) in Equation (14), we get directly the
buckling load from Equation (15):

Py = —=D(x)f"(x)/f (16)

The natural question arises: Which function f(x)
must be preselected? Naturally it is the best to look
for simplest possible candidate functions f(x).
Note that Equation (16) is also a focal point of
the ‘method of assuming the exact solution’ by
Zyczkowski [7, 8].

CHOICE OF THE POSSIBLE BUCKLING
MODE

The simplest function that satisfies the boundary
conditions in Equation (2) is a second-order poly-
nomial. We express it as follows:

f(x) = ap+ a1x + arx? (17)

Satisfaction of the boundary condition f(0) =0
yields ap = 0. At x = L, we must have f (L) = 0, i.e.
a; +a, L =0 (18)

or,
a; = —aL (19)

Thus,
f(x) = —ar(xL - x7) (20)

SOLUTION OF THE SEMI-INVERSE
PROBLEM

The second term P..f in Equation (15), once
f(x) is substituted for f(x), is a second-order
polynomial:

Pcrf = a2(PcrxL - PCI‘XZ) (21)

In order for the polynomial mode shape to be
allowable, the first term D(x)y’ = D(x)f’ in
Equation (15) ought to be also a second-order
polynomial. Since f is a constant, we conclude
that D(x) ought to be a second-order polynomial.
We express it as follows:

D(x) = by + byx + byx? (22)
and get
D(x)f" = —ax(bg + b1x + byx?)(-2)
= —ay(—2by — 2b1x — 2b2x2)

Since Equation (15) must hold, we obtain, by
substituting Equation (21) and (22) into it:

—ay(—2by — 2b1x — 2byx> + P xL + P(,,xz) =0
(24)

Since this equation must hold for any x, we get:

2by = 0
—2bi + P,L =0 (25)
—2by — Py =0

These equations result in:

by=0
Po=—2b/L (26)
Pcr - _2b2

For these equations to be compatible, we stipulate:
by = —bL (27)

Inorder thatequations P, = 2b;/Land P, = —2b,
express the buckling load, 5, must be negative. For
the flexural rigidity we get:

D(x) = —byLx + byx* = —by(Lx — x*)  (28)

Since b, is negative, we arrive at a conclusion that
the flexural rigidity is a positive valued function
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except points x = 0 and x = L where it vanishes.
The results may be put in the following form:

Po = 2lb| (29)
D(x) = |by|(xL — x?) (30)

As is seen, we obtained a solution within parameter
|b2| that is arbitrary positive constant. This implies
that the posed problem has an infinite number of
solutions. Specific solutions can be obtained once
one preselects the value of b,. For example, if
by = —1,we get P., = 2and D(x) = xLx?; likewise,
if 2 is taken equal — 5, the critical value of the load is
P, =10, while the appropriate flexural rigidity
equals D(x) = 10(xLx?) and so on.

DESIGN PROBLEM

This above solution permits us to solve some
design problems. The basic design problem is given
as follows. Construct a column that has a buckling
load that is the preselected load value P egrcq,
Equation (29) yields then:

2|b2| = Plesired (31)
Resulting in:
|b2| = Pdesired/z (32)

The appropriate flexural rigidity is obtained by
substituting Equation (32) into Equation (30):

D(x) =1 Pegirea(xL — x?) (33)

COMPARISON WITH THE GALERKIN
METHOD

Since an exact solution has been derived, it can be
used as a benchmark problem. Then the accuracy of
approximate methods can be checked by contrast-
ing them with the above closed-form solution of the
buckling load.

As approximate methods one can use, for
example, the Rayleigh-Ritz method, Boobnov-
Galerkin method, Timoshenko method, finite-
difference, finite element or differential quadrature
methods. Here we choose the Boobnov-Galerkin
method. Using a single-term approximation with
the comparison function sin(wx/L) yields the
approximation:

w243
Pararn = = 1) (34)

or Py = 2.1449|b>| constituting a 7.2% error.
Two term-approximation with the trial function
sin(mx/L) and sin(3wx/L) yields the following
expression:

P, = 2.0458|b,| (35)

with attendant 2.3% error.

DUNCAN’S EXAMPLE AS A PARTICULAR
CASE

To construct a candidate mode shape, consider
a uniform beam with flexural rigidity (EI)q
under linearly distributed load ax. The governing
equation:

d*w
=)

has a straightforward solution:

(EI) = ax (36)

(0%
Y It 10x53 2 5
w(x) 360(ET), (7x Ox’L” +3x%)  (37)

One can pose the following question: Is there an
inhomogeneous column whose buckling mode is
proportional to the expression in parentheses?

y(x) = y(7xL* — 10x*L* + 3x°) (38)

To reply to this question we substitute this expres-

sion into Equation (16) to get:
D(x)60(x* — xL?)

3x3 —10x3L2 4+ 7L%x

P, — (39)
Now if D(x) is proportional to the ratio of
3x° —10x°L2 + 7xL* to x3 —xL?, which is
3x> = 7L, such an inhomogeneous column
exists. Now if:

D(x) = & [1 —; (%)2] (40)

Where a®> = D(0), then the buckling load is
obtained as:

P, = 60a’)7 (41)

which coincides with Duncan’s example [9].
Duncan guessed the buckling mode, and appro-
priate distribution of the flexural rigidity (42),
whereas here the expressions have been derived
by a general procedure.

DISCUSSION

It is important to note that Equation 16 can also
be utilized to correlate with the obtained solution
in equations (29) and (30). Indeed, once the buck-
ling mode shape in Equation 20 is established, it
can be substituted into Equation 16. This leads to:

2D(x)
xL — x2

Py = (42)

since /" = 2a;. We conclude that in order P, to be
a constant, the flexural rigidity D(x) must be
proportional to the denominator:

D(x) = d*(xL — x?) (43)

where a® is the coefficient of proportionality. It
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must be positive due to non-negativity requirement
imposed upon the flexural rigidity. Thus:

Pcr = 2612 (44)

Comparzison with Equation 29 reveals that
|b2| =da".

The solution derived in Equation (29) and (30) is
simpler than Equation (11) due to the Euler’s
method. Moreover, Euler’s formula includes an
irrational number 7, whereas the present solution
in formulated in terms of rational expressions.
Scientists know 7 with the accuracy of over one
billion digits, and the critical load in Equation
11 can be evaluated with arbitrary accuracy. Still,
a rational expression P, = 2|b;| appears to be
superior.

One can pose the following question. In the
derived solution the flexural rigidity vanishes at
the column’s ends. Can one get a column, via the
above semi-inverse method, that does not have a
vanishing flexural rigidity? The reply is affirmative,
if one employs other postulated buckling modes.
For example, if one uses the following mode:

f(x) =xL3 = 2x°L + x* (45)
we get, by substituting into Equation 16:

_12D(x) (x* — xL)
x* —2x3L + xL3

Pcr:

or
P 12D(x)
T L2 4 xL — x?

Thus, if D(x) takes is proportional to the
denominator:

D(x) = a*(L* + xL — x?) (48)

then
P, = 124° (49)
Moreover, D(x) takes on positive values through-
out the interval [0, L]. In this case in order for the

column to buckle at the value P .04 the flexural
rigidity must be chosen as:

Pdexired
D(x) = P

(L* 4+ xL — x?) (50)

The expressions (49) and (50) were obtained by
Elishakoff [6] by alternative means, by using a
fourth-order governing differential equation for
the column at buckling. The use of the second-
order differential equation, adopted in this paper,
is simpler.

Note that the expression (45) is proportional to
the static deflection of the uniform beam under
distributed load. This leads to a remarkable
conclusion: the static deflection of the uniform
column may serve as the buckling mode of the
inhomogeneous column.

In Elishakoff’s study [10], another intriguing
fact was uncovered. Not only the static deflection
of the associated uniform beam, but also its vibra-
tion mode of a uniform column may be utilized as
the postulated buckling mode of an inhomogeneous
column. Thus, the behavior of inhomogeneous
columns is (naturally) much richer than that of
the inhomogeneous ones.
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APPENDIX

We look for the fourth order polynomial:

f(x)=ao+ax+ arx* + a3 + agx* (A-1)
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as a candidate function for the buckling mode to be postulated. The requirement f(0) = 0, leads to ay = 0.
The condition f/(0) = 0 yields a; = 0. Thus we have:

f(x)=ax+ arx? + azx + agx*

The conditions f(L) =0, f/(L) = 0 result in:

a L + a3L3 + a4L4 =0
6a; L + 12a4,L* = 0

From Equation (A-4):

az = —2a4L

From Equation (A-3), in view of (A-5), we get:

Leading to:

ay = a4L3

f(x) = as(xL? — 2x°L + x*)

We fix a4 = 1, since it is an arbitrary constant. Thus the postulated buckling mode reads:

f(x) =xL* = 2x°L +x*
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