
MicroLab: A Web-based Multi-user
Remote Microcontroller Laboratory for
Engineering Education*

A. KUTLU
Department of Technical Education, University of Suleyman Demirel, 32260 Isparta, Turkey.
E-mail: akutlu@tef.sdu.edu.tr

This paper discusses the implementation of a Web-based multi-user remote microcontroller
laboratory designed for electric-electronic engineering education. The MicroLab has been devel-
oped to provide programming and monitoring microcontroller modules through the Internet for
undergraduate students. Students can access the MicroLab individually and simultaneously. The
MicroLab consists of a server with web cams and microcontroller modules which have 8051 core
architecture, and are equipped with a CAN (Control Area Network) as its peripheral architecture.

INTRODUCTION

EIGHT-BIT MICROCONTROLLERS are
usually preferred for teaching-learning in the elec-
tric-electronic engineering laboratories, due to
their simplicity and low cost. Using simulation
techniques to understand the nature of microcon-
trollers are preferable [1]. Nevertheless, it is neces-
sary to have `real' circuits and experiments to make
sure programs on the microcontrollers are working
efficiently. As discussed in the study of Alhalabi et
al., simulation techniques can never replace the
need for a real laboratory [2]. In order to conduct
the required experiments, the students must be
present in the laboratory during the experiment.
Building experiments on experimental modules
are sometimes time consuming. Because of time
consideration, it is preferable to conduct the
experiments over the Internet at any time and
from any location without spending too much
time.

Remote laboratories have already been used in
control engineering, [3±5] robotics, [6±8] and
chemical engineering [9]. In this project, the main
expectation from a remote laboratory is not only
to supply the students with one experimental
module but also to provide each student their
own experimental module simultaneously. In
order to achieve multi-user facility, a remote
laboratory should build up an integrated environ-
ment for users as controlling the real devices from
the client side and conducting the actual experi-
ments in the remote laboratory through a real-time
network.

This paper introduces MicroLab remote labora-
tory which meets the requirements of multi-user
and web connection. The user interface run on a

student's computer is an application program
called MicroClient. MicroClient provides connec-
tion with an experimental module through a server
application program called MicroServer. When-
ever the connection is established to an experi-
mental module, the student can upload the
software written for the microcontroller and can
give instructions required by uploaded software.
Students can also monitor their results on the
screen either by using simulation workplace or
web camera. Once the students enter the session
using their ID and password, they can access the
experimental module they need. On the other
hand, the experimental module can be conducted
by only one student. The system allows guest
users to enter the experiment process only as an
observer.

THE USER INTERFACE AND SESSION
MANAGEMENT

Microcontroller experimental modules consist
mainly of port controls. In the MicroLab, four
different experimental modules are implemented.
Therefore, the user interfaces are designed along
with the existing experimental modules. As an
example, the user interface of Robotic arm experi-
ment is shown in the Fig. 1. MicroClient and
MicroServer are designed by using C# program-
ming language.

When the MicroClient program is run, the user
student is asked to provide username and pass-
word for authentication. If the user doesn't have
an account, it is still possible to access the session
as a guest user. When the student enters the session
as a guest, he/she will be given an automated
sequential guest number to distinguish the new
guest user from the other guest users.* Accepted 21 February 2004.

879

Int. J. Engng Ed. Vol. 20, No. 5, pp. 879±885, 2004 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2004 TEMPUS Publications.



After authentication, the student is lounged to
the main entrance called lobby which lists the
available experimental modules. The lobby also
provides web links to the information for experi-
mental modules. At this stage, the user is asked to
choose one of the experimental modules by click-
ing joint buttons next to the experiment names.
After clicking one of the joint buttons, students
enter the experimental module interface. First
connected student is selected as the operator of
the experimental module by the MicroClient. The
operator is the only one who can program and
conduct the experimental module. Other present
users are only able to see the results of the
experiment and discuss it through using chat
tool. As shown in the Fig. 1, the user interface is
designed to allow students to chat with each other.
Operator session-time is limited to 10 min, and can
be adjusted by the MicroLab server operator.
Remaining time is shown on the user interface in
minutes and seconds. When the time is up, the next
available student who connected the experimental
module after the first student becomes the new
operator. Another way of passing control of an
experimental module is to choose a student from
the user list and give control to the chosen student
by clicking on the pass button. The operator is the
only user who can use the buttons. For the other
users, unless they obtain the control of the experi-
mental module, the buttons are inactivated.

When the student finishes his work on an
experimental module, he/she can still attend
another experiment. The only step students need
to take for another experiment is to go to the lobby
by clicking lobby button and to choose another
experiment.

To start working on an experimental module,
the student needs to upload his/her source hex file
written for the 8051 microcontroller. In order to
upload the file, the students must use the file
button to locate the source file. Only Intel hex
format is acceptable. Any other file formats will be
rejected by the MicroClient. Client program auto-
matically uploads the hex file to the experimental
module via the MicroServer program. If the
student logs off or passes control to another
student, his/her program is automatically deleted
from the experimental module.

The switches and LEDs are designed to visually
monitor the experiments. As the operator turns
the input switch on/off, all the users connected to
the experimental module receive the same status
of the input switch. The same procedure is applied
to the outputs as well. Whatever the operator's
8051 program running on the experimental module
is, the same result appears on the output LEDs on
all MicroClient software. Since the robotic arm
and LCD experiment need visual inspection, user
interface(s) on these modules are designed to
receive the live video of the experiments.

MICROLAB HARDWARE ARCHITECTURE

As Fig. 2 shows, the designed MicroLab is
composed of two main parts. The first part is the
substructure by which students are connected to
the server. The second part is the substructure that
connects server to the experimental modules. The
first part consists of a server equipped with an
Ethernet card that uses IEEE 802.3 standard and
campus network which provides connection to the

Fig. 1. User interface for an experiment.

A. Kutlu880



Internet through ULAKNET, a backbone
network for the universities in Turkey [10].

In the second part, PCICAN-D card, created by
KVASER Company, is used in the server for
connecting the server to the experimental modules.
This PCI card provides a real-time communication
protocol called CAN (Control Area Network)
between experimental modules and the server.

Experimental modules consist of two CAN
nodes as shown in Fig. 3. One of the two CAN
nodes, User Application CAN Node, is for down-
loading and running the student's source code. The
second node, Circuit Monitoring CAN Node, is
for monitoring the circuit and executing the user's
input parameters. In order to communicate experi-
mental modules to the server, each node must use
the same communication protocol as PCICAN-D
card uses.

The device used in the experimental module
must also provide remote programming to allow
students to send source codes to the experimental
modules. Both CAN nodes use 89C51CC01
Microcontroller. The 89C51CC01 is the first
member of the ATMEL's CANary TM family of
8-bit microcontrollers support CAN network
applications and it provides remote programming
via the CAN bus or the UART [11]. Flexible In-
system Programmer (FLIP), a software program,
is provided by Atmel in order to the 89C51CC01
device using UART or CAN bus. Unfortunately,
FLIP software is not capable of programming the

CAN nodes via `PCICAN-D' card. Therefore,
programming software for the CAN nodes is
designed for PCICAN-D card and integrated into
MicroServer. Figure 4 shows the example experi-
mental modules.

CONTROL AREA NETWORK

The Control Area Network (CAN) is a serial
data communication protocol primarily used for
real-time automotive applications. It is based on a
multi-master bus configuration which incorporates
the first two layers of the ISO/OSI model: the
physical layer and the data link layer. The first
silicon CAN chip became available in 1987 after an
improved investigation of the communication
protocol. It has been approved by ISO (ISO
11898) as a high speed in-vehicle network
(>125 KBit/s) [12]. Currently, the CAN protocol
is used in industrial applications as well as in
vehicle applications. Aircraft washing-systems,
robot control, concrete paving systems, and
sensor-based solutions for automation are some
of the examples of CAN applications by industry
[13, 14].

The CAN uses the CSMA/CR (Carrier Sense
Multiple Access with Collision Resolution) access
method with a bit-wise arbitration. The arbitration
guarantees the delivery of the highest priority
frame without delay even in a collision situation.

Fig. 2. Hardware architecture.

Fig. 3. Experimental module architecture.

MicroLab: A Web-based Multi-user Remote Microcontroller Laboratory 881



Each message used in the control area network has
a unique identifier defining the type of data such as
engine speed, temperature, pressure, or any data in
an application. Furthermore, the digital value of
the identifier also automatically implies the
message priority for the bus access [15]. Identifiers
used in this project are shown in Table 2 .

The number of nodes to be connected physically
in a CAN network depends on the CAN transcei-
ver parameters [16].

SOFTWARE ARCHITECTURE

The software architecture of MicroLab is illus-
trated in Fig. 5. Control of the experimental
modules is implemented by employing both
designed MicroServer control functions and the
experimental module operating system.

For each experimental module, there is a unique
control function on the server that converts user

TCP commands into CAN messages and vice
versa. To conduct experiments, user TCP
commands sent by the MicroClient must be
converted into CAN messages and then the
converted CAN messages must be transferred to
the CAN Bus. The transfer functions have been
accomplished by using KVASER's Canlib SDK
(Software Developer Kit) C# libraries.

As described above, each CAN message has a
unique identifier. The identifiers used in this
project define the CAN message behavior accord-
ing to the designed operating system running on
each experimental module. For example, if the
experimental module operator presses the port
switch icon, MicroClient converts the switch
objects data into TCP command as `IPORT' and
transfers it. After the server receives the `IPORT'
message, it converts the message into CAN ID as
012h. This data can only be obtained as a result of
operating the system on experimental module1.
The other experimental modules receive the
message with ID 012h but immediately discard it

Figure 4. General I/O Experimental Modules

Fig. 5. Software architecture.

A. Kutlu882



Table 1. Client and server commands

TCP command
name Sender Activity

CONN Client Connection request
JOIN Server Connection accept
LIST Server Send User List to connected client
GONE Client Abort connection
CHAT Client Send text message
CHAT Server Transfer text to clients
PRIV Client Send private text message
PRIV Server Transfer private text message to client
PASS Client Pass control of module
PASS Server Pass control of module
IPORT Client Send switches status
SWTC Server Transfer switches status to clients
LEDS Server Transfer experimental module's data to clients
START Client Start Experimental module
RESET Client Reset Experimental module
PROG Client Start programming the experimental module
FILE Client Upload user program to server
OK Server Transfer completed module programmed

Table 2. Identifier MAP of experimental modules

MicroLab: A Web-based Multi-user Remote Microcontroller Laboratory 883



since it doesn't belong to them. Client and server
TCP commands are listed in Table 1.

TheCAN identifier is 11-bits long in CAN 2.0A
and 29-bits long in CAN 2.0B [17]. In this project,
CAN 2.0A is preferred since it has enough identi-
fiers to maintain classes, experimental modules,
and commands.

The two most significant bits are allocated to
define the number of classes in the system. In this
case 4 different classes can be implemented. Five of
the 11 ID are allocated to define experimental
modules. This provides 32 different experimental
modules to implement in a class and also defines
the size of the class according to the maximum
simultaneous connections. Finally, 16 different
commands can be implemented for each experi-
mental module via the use of 4 least significant
bits. Each message ID can have data from 0 to 8
bytes.

In order to see the result of the student's
program running on the User Application CAN
node, Circuit Monitoring CAN node must peri-
odically transfer the status of the experiment to the
client side through the server. This is done by
periodically transferring xx1 ID on each experi-
mental module to the server. To reduce the
message traffic, the message is sent only if the
status of the experiment changes. Sampling rate
of an experiment can be adjusted by MicroServer
through passing parameters to the experimental
module using xx3 ID.

To program the User Application CAN node,
message ID xx0 is used. The ID numbers from 000
to 006 is reserved for programming the
89C51CC01 microcontroller by the ATMEL.

Therefore, these ID numbers can only be used
for programming the chip. The required program-
ming procedure is applied to the MicroServer
according to the Atmel definitions [18].

CONCLUSIONS

This project introduces the multi-user remote
microcontroller laboratory and discusses its
applicability for engineering education purposes.
Based on the methodology utilized in the paper,
client and server side applications are developed.
Client applications offer efficient interaction
between students on the experimental modules. It
enables students to access different experimental
modules any time and from any location. Distrib-
uted architecture of experimental modules provide
real-time simultaneous connections to the experi-
ments. This design architecture can be applied and
extended to conduct other types of experiments.

The experimental modules allow students to
improve their programming knowledge by enga-
ging them in real experiments. Using this approach
also provides a fast learning process since it gives
the opportunity to work with the experimental
modules whenever needed.

The MicroLab is primarily designed for class-
attending students at Suleyman Demirel Univer-
sity and can be accessed at the Web address http://
microlab.sdu.edu.tr.

AcknowledgementÐThis project has received financial support
from the Suleyman Demirel University under the grant of 03-
YL-754.

REFERENCES

1. A. D. Rio, J. J. Rodriguez and A. A. Nogueiras, Learning microcontrollers with a CAI oriented
multi-micro simulation environment, IEEE Trans. Education, 44(2) 2001, pp. 76±86.

2. B. A. Alhalabi, M. K. Hamza and S. Anandapuram, Real Laboratories: an innovative rejoinder to
the complexities of distance learning, The Open Praxis Journal of International Council for Open
and Distance Education, Vol. 2, (1998).

3. C. C. Ko, B. M. Chen, J. Chen, Y. Zhuang and K. C. Tan, Development of a Web-based
laboratory for control experiments on a coupled tank apparatus, IEEE Trans. Education, 44(1)
2001, pp. 76±86.

4. C. C. Ko, B. M. Chen, S. Y. Hu, V. Ramakrishnan, C. D. Cheng, Y. Zhuang and J. Chen, A Web-
based virtual laboratory on a frequency modulation experiment, IEEE Trans. Systems, Man. and
Cybernetics, Part C: Applications and Reviews, 31(3) 2001, pp. 295±303.

5. http://chem.engr.utc.edu/webres/stations/controlslab.html
6. S. You, T. Wang, R. Eagleson, C. Meng and Q. Zhang, Low-cost Internet-based telerobotic system

for access to remote laboratories, Artificial Intelligence in Engineering, 15(3) 2001, pp. 265±279.
7. E. G. Guimares, A. T. Maffeis, R. P. Pinto, C. A. Miglinski, E. Cardozo, M. Bergerman and M. F.

Magalhaes, REALÐa virtual laboratory built from software components, Proc. IEEE, 91(3) 2003,
pp. 440±448.

8. S. H. Chen, R. Chen, V. Ramakrishnan, S. Y. Hu, Y. Zhuang, C. C. Ko and B. M. Chen,
Development of remote laboratory experimentation through Internet, Proc. 1999 IEEE Hong Kong
Symposium on Robotics and Control, Hong Kong (1999) pp. 756±760.

9. R. Moros, F. Luft and H. Papp, Virtual laboratory course in chemical engineering and unit
operations (VIPRATECH) tutorials, simulations and remote process control, Int. Conf. Computers
in Education, 2002, pp. 1447±1448.

10. http://www.ulak.net.tr/?lang=en
11. Enhanced 8-bit MCU with CAN Controller and Flash Memory, Datasheet 89C51CC01, Atmel

(2003).
12. K. W. Young and R. T. Mclaughlin, Low-cost SLIO CAN-based body control system, ICC'94, Int.

CAN Conf. Proc., 1994, Germany, pp. 8-2±8-9.

A. Kutlu884



13. K. D. Rupp and O.Wurst Putzmeister, Implementation of CAN system in truck-based aircraft
washing system, ICC'94, Int. CAN Conf. Proc., Germany, 1994, pp. 4-13±4-21.

14. J. Uphoff, Theories and practical experience with CAL-based industrial control, ICC'94, Int. CAN
Conf. Proc., 1994, Germany, pp. 6-2±6-31.

15. Intel 82527 Serial Communications Controller Architectural Overview, Intel, (1993)
16. H. Eisele and E. JoÈhnk, PCA82C250/251 CAN transceiver, Application Note (AN96116), Philips

Semiconductors, Germany, (1996).
17. J. Randhahn and H. Beikirch, Controlling and monitoring CAN via Web interface, CAN

Newsletter, (2003) pp. 68±69.
18. 89C51CC01 Datasheet, CAN Bootloader, Atmel, (2003).

Akif Kutlu is currently an Assistant Professor of Computer Systems Education, Faculty of
Technical Education at Suleyman Demirel University in Turkey. He is the head of the
department since 1997. He received his Ph.D. degree from Sussex University in 1996. His
interests are industrial computer networks and microcontrollers.

MicroLab: A Web-based Multi-user Remote Microcontroller Laboratory 885


