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This paper shows how Planck's blackbody equation and the resulting formula for the blackbody
fraction can be used as a `real world' example to motivate undergraduate engineers in their study of
mathematics. A spreadsheet can be used to give students familiarity with some of the properties of
Planck's spectral distribution. The problem of calculating the blackbody fraction can be solved
relatively easily using a spreadsheet provided some simple mathematical analysis is carried out
first. The mathematical techniques which are required include change of variable, infinite binomial
series, integration by parts and sums of geometric progressions.

INTRODUCTION

ALL ENGINEERS should be fluent in a range of
mathematical techniques. However, there is often a
motivation problem when teaching mathematics to
engineering undergraduates as they fail to appreci-
ate the value of the material they are being taught.
One way to address this is through the use of `real
world' applications of the mathematics. Planck's
equation for the spectral distribution of the emis-
sive power of a blackbody [1] is an excellent
example of a piece of `real world' mathematics
that can illustrate the usefulness of many different
mathematical techniques [2]. In this paper we will
concentrate on two key aspects:

1. How a simple mathematical transformation can
reduce the complexity of a problem.

2. The usefulness of infinite series in allowing
evaluation of an otherwise intractable integral.

Planck's equation is not enormously complicated,
but it is complex enough that students will gain
little knowledge of the nature of the function
simply by looking at its formula. They need to
spend some time gaining familiarity with the
nature of the function before proceeding to some
analysis. This familiarity could be gained by using
a computer algebra system such as Maple or
Mathematica but there are considerable advan-
tages in using a spreadsheet to give students this
basic familiarity. In particular, the overwhelming
majority of engineering undergraduates are at ease
with using a spreadsheet to perform a variety of
calculations in other contexts. There is much less
widespread fluency with specific mathematical
software. Furthermore students are more accept-
ing of results they gain from spreadsheets as they
usually have a reasonable grasp of the processes
the spreadsheet is implementing. When using a

computer algebra package they often feel unsure
about the routines the software has used to achieve
the results it presents and therefore feel more
insecure about the status of these results.

In what follows we will discuss the basic theory
of Planck's equation, the tasks students can under-
take to gain familiarity with it and `discover' for
themselves some of its key properties. Then we will
progress to a more detailed analysis of the black-
body fraction function and demonstrate how a
change of variable (suggested by findings from
the earlier stages of investigation) can transform
the apparently intractable integral into one that
can be evaluated by using infinite series. At this
point it is sensible to use a spreadsheet to evaluate
truncated versions of this infinite series. Further
mathematics related to the sums of infinite series
can also be used to determine error bounds for
truncating the series after a finite number of terms.

BASIC FAMILIARITY WITH PLANCK'S
EQUATION

Planck's equation for the spectral distribution of
the emissive power of a blackbody is given by:

eb���;T � � 2�C1

�5�exp�C2=�T � ÿ 1� �1�

In this equation � is the wavelength, the constants
C1 and C2 are given by:

C1 � hc2 � 0:59552197 � 108 W�m4 mÿ2 srÿ1

and
C2 � hc=k � 14387:69�m K

where h is Planck's constant, 6.6260755� 10ÿ34 J s;
k is Boltzmann's constant, 1.380658� 10ÿ23 J Kÿ1

and c is the speed of light in a vacuum
2.97792458� 108 m sÿ1.* Accepted 14 July 2004.
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A first step towards gaining familiarity with
Planck's function is to plot its graph for a
number of different temperatures, for example
1000K, 2000K and 4000K. This is easily done in
a spreadsheet as shown in Fig. 1.

It is a simple matter to produce a figure showing
the graph of the blackbody function for a number
of temperatures. Figure 2 shows such a figure for
the temperatures 4000K (the curve with the highest
peak), 3500K, 3000K and 2500K (the curve with
the lowest peak).

The curves drawn all have the same basic shape:
they start from zero, rise to a peak and then decay
back to zero as the wavelength increases. As the
temperature increases the position of the peak
moves to the left. It is interesting to note the
location of the peak. By looking at the data
points used to draw the graphs, a good estimate
of the peak wavelength can be obtained. The
findings from a selection of temperatures are
given in Table 1.

The data points used to plot the graphs are
spaced at intervals of 0.05�m. For the cases of

1000K and 2000K the points indicated in Table 1
are clearly higher than their neighbours on either
side whereas at 4000K the values at 0.7 and
0.75�m are almost identical.

The data in Table 1 indicates that as the
temperature is doubled so the peak wavelength is
halved. In other words �pT is a constant (where �p

is the wavelength at which the peak on the eb�

curve occurs). This is known as Wein's law [3]. The
fact that the location of the peak on the eb� curve
does not depend on � and T independently but
only the combination �T suggests that it might be
interesting to plot these curves against �T rather
than against �. A spreadsheet which allows two of

Fig. 1. Spreadsheet to plot Planck's blackbody function for a selected temperature.

Fig. 2. The blackbody function for 4000K (highest curve), 3500K, 3000K and 2500K (lowest curve).

Table 1. Wavelength at which the peak value of eb� occurs

Temperature (K) Peak wavelength (�m)

1000 2.9
2000 1.45
4000 0.7±0.75
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these curves (for different values of T) to be plotted
in shown in Fig. 3.

In the spreadsheet shown in Fig. 3, values for the
two temperatures are entered in cells C6 and E6.
The values in column A are fixed values of �T. The
values of � in column B are calculated from
column A by dividing by the value of T1. Then
the values of eb� in column C are calculated from
Planck's Equation (1) using the values of � in
column B and the value of T1. Columns D and E
are similar except they use T2. The graphs are
plotted by selecting the data in columns A, C
and E and then producing an XY scatter.

The curves confirm what has already been
observed, namely that the peak occurs at the
same value of �T. Looking at the data used to
plot these graphs it is clear that the peak occurs

somewhere between �T values of 2800�m K and
3000�m K.

The constant location of the peak and the fact
that the curves have the same shape suggest that it
might be possible to find a scaling which will
collapse all the curves onto each other. This is in
fact what we observe if we plot eb�/T

5 against �T.
A spreadsheet to do this is shown in Fig. 4.

This spreadsheet is the same as the one shown in
Fig. 3 except that the values in columns C and E
have been divided by T5

1 and T5
2 respectively. The

graph appears to show only one curve, but that
is because the values in columns C and E are
identical and so the second curve exactly overlays
the first.

The above shows that the function eb�(�,T)/T5 is
not a function of � and T independently but a

Fig. 3. Spreadsheet to plot eb� curves against �T.

Fig. 4. Spreadsheet to plot eb�/T
5 curves against �T.
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function of the product �T. This is seen quite
easily mathematically by working from Planck's
equation (1):

eb���;T�
T5

� 1

T5
� 2�C1

�5�exp�C2=�T � ÿ 1�

� 2�C1

��T �5�exp�C2=�T � ÿ 1� �2�

which shows that we have a function of �T.

THE BLACKBODY FRACTION

The total emissive power is found by integrating
the spectral emissive power over the entire spectrum:

eb�T � �
�1

0

eb���;T �d� � �T 4 �3�

where�� 2�5k4/15c2h3� 5.67051� 10ÿ8 W mÿ2 Kÿ4

is the Stefan-Boltzmann constant.
The emissive power in a band of the spectrum,

say from �1 to �2, is found by integrating Equation
(1) from �� �1 to ���2:

eb;band��1; �2;T � �
��2

�1

eb���;T �d� �4�

It is clear from the above definition that the
emissive power of the band from 0 to �2 is the
sum of the emissive powers of the bands from 0 to
�1 and from �1 to �2. Therefore we have:

eb;band��1; �2;T � � eb;band�0; �2;T �
ÿ eb;band�0; �1;T � �5�

From Equation (5) we see that the emissive power
of a band anywhere in the spectrum can be
calculated if we know the emissive power of each
band starting from zero wavelength.

We define the blackbody fraction, F�0; �;T �, of
the wavelength band from 0 to �, to be the fraction
of blackbody power in the band. From Equations
(1), (3) and (4) this gives:

F�0; �;T � � eb;band�0; �;T �
eb�T �

� 1

�T 4

��
0

2�C1

�5�exp�C2=�T � ÿ 1� d� �6�

There is no obvious closed form for the integral on
the right-hand side of Equation (6) and so some
computational method is needed to evaluate it.
Jain [4] used the numerical integration routines
within Mathematica to calculate some blackbody
fractions, these are shown in Table 2.

Although the use of a sophisticated piece of
mathematical software is appealing it has some
disadvantages. Primarily the computed answers
are not particularly accurate (as will be shown
later). No doubt with suitable choice of options

within the package more accurate values could be
calculated but as there is no indication of the error
in these values it would be difficult to be certain
when an accurate value had been achieved.

The complexity of the integral can be reduced
by making a simple mathematical transforma-
tion. This illustrates the value of carrying out
some mathematical analysis before rushing into
evaluation.

AN ALTERNATIVE APPROACH TO
CALCULATING THE BLACKBODY

FRACTION

We have already seen that in the theory of
spectral radiative emission the combination of
the variables � and T into a single variable �T
sometimes has significance. This gives an indica-
tion of a way to proceed with the integral in
Equation (6). Before we do that we need to restate
Equation (6) in a more mathematical precise
manner. The way it is given in Equation (6) is
how it is presented in many expositions of the
theory, however it is mathematically sloppy. The
symbol � is being used in two distinctly different
ways. Firstly it specifies one of the arguments of
the function F and it is in this capacity that it
appears as the upper limit on the integral. However
it also appears as the integration variable in the
integrand. So, for example, if we wished to calcu-
late the blackbody fraction for the interval from 0
to 0.5�m �F�0; 0:5;T �� we would integrate from 0
to 0.5 but leave all the �'s in the integral
unchanged. To avoid this confusing double use
of the symbol �, we will restate Equation (6) using
� as the integration variable:

F�0; �;T � � eb;band�0; �;T �
eb�T �

� 1

�T 4

��
0

2�C1

�5�exp�C2=�T � ÿ 1� d� �7�

At this point it appears that the blackbody fraction
depends on � (in the upper limit of the integral) and
T(inthedenominatorofthecoefficientoftheintegral
and the denominator of the exponent in the
integrand) completely independently. However,
following the approach of Chang and Rhee [5], we
take the T inside the integral sign to obtain:

F�0; �;T � � 1

�

��
0

2�C1

��T �5�exp�C2=�T � ÿ 1�Td�

�8�

Table 2. Blackbody fractions in selected bands from Jain [4]

Temperature (K) Band 0±0.38 �m Band 0±0.76 �m

2500 0.00017 0.05209
5000 0.05129 0.44295
10 000 0.44342 0.83909
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Changing to an integration variable of �T, we can
write equation (8) as:

F�0; �;T � � 1

�

��T

0

2�C1

��T �5�exp�C2=�T � ÿ 1� d��T �

� 1

�

��T

0

2�C1

x5�exp�C2=x� ÿ 1� dx �9�

Equation (9) shows clearly that F�0; �;T � does not
depend on � and T independently, but only on the
product �T (which only appears in the upper limit
of the integral). In recognition of this, henceforth
we shall refer to F�0; �;T � as F��T �.

Further progress can be made by making a
further change to the integration variable, setting
z�C2/x, this leads to:

F��T � � 2�C1

�C 5
2

�C2=�T

1

z5

�exp�z� ÿ 1�
ÿC2

z2

� �
dz

� 15

�4

�1
C2=�T

z3eÿz

1ÿ eÿz
dz �10�

where the definitions of C1, C2 and � given earlier
have been used to simplify the coefficient of the
integral and the numerator and denominator of
the quotient in the integrand have been multiplied
by ez to enable expansion of the denominator using
the binomial theorem.

The factor �1ÿ eÿz�ÿ1 in the integrand can be
written as an infinite series using the binomial
expansion �1ÿ x�ÿ1 � 1� x� x2 � x3 � . . . which
converges for |x|< 1. Since all values of z in the
range of integration are positive we have |eÿz|< 1
and so the expansion can be used. This leads to:

F��T � � 15

�4

�1
C2=�T

z3eÿz�1� eÿz � eÿ2z � . . . �dz

� 15

�4

X1
n�1

�1
C2=�T

z3eÿnzdz �11�

Each of the integrals on the right hand side of
equation (11) can be integrated using repeated
integration by parts giving:

F��T � � 15

�4

X1
n�1

eÿnz

n
z3 � 3z2

n
� 6z

n2
� 6

n3

� �

� 15

�4

X1
n�1

cn�z�eÿnz �12�

where z�C2/�T.
We can now use a spreadsheet to calculate

approximate values for F��T � by truncating the
infinite series in Equation (12) after a finite number
of terms. Figure 5 shows a possible spreadsheet
implementation of the required calculation.

The values of T and � are entered in, respec-
tively, cells B3 and D3. The value of z is then
calculated in cell D5. An explanation of the other
columns is given below:

. the column labelled `N' gives the term number;

. the column labelled `Coeff ' calculates the values
of the coefficients cn(z) from equation (12);

. the column labelled `Term' calculates the Nth
term in the sum (namely cn(z)eÿnz);

. the column labelled `Sum' calculates the sum of
the first N of the terms;

. the column labelled `F(N)' calculates the
approximation to F(�T) obtained by truncating
the sum in equation (12) after N terms (i.e. the
value of `Sum' multiplied by 15/�4).

We can see from Fig. 5 that only three terms are
needed to evaluate the blackbody fraction when
T� 5000K and �� 0.76�m (i.e. F(3800) ) correct
to 6 decimal places.

From Table 2 we see that Jain [4] calculated this
value to be 0.44295. The fact that the sum appears
to have converged (as indicated by the unchanging
values in the column F(N) ) gives us confidence
that the value calculated by the spreadsheet is more
accurate. A further indication of the inaccuracies

Fig. 5. Spreadsheet for calculating the blackbody fraction.
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in Jain's values is the fact that the value quoted
for the case T� 10000K and �� 0.38�m is
0.44342. Since with this combination of values
�T� 3800�m K, the value of the blackbody frac-
tion in these two cases must be the same.

Whilst the above may give us confidence that
values obtained by truncating the infinite series are
more accurate than those obtained by using
numerical integration, it would be better to be
able to state an upper limit in the error. This can
be obtained by using some elementary results about
the convergence of geometric series where the
common ratio is less than 1. We let E(N) denote
the error obtained by truncating the infinite series
in Equation (12) after N terms. Then we have:

E�N � � 15

�4

X1
n�N�1

cn�z�eÿnz <
15

�4
cN�1�z�

X1
n�N�1

eÿnz

�13�
To obtain this inequality we have observed that,
for a given value of z, the sequence of coefficients
cn(z) is strictly monotonic decreasing and so all the
coefficients in the exact expression for E(N) (after
the first one) are less than cN+1(z). The sum that
remains in inequality (13) is simply the sum of a
geometric progression with first term eÿ(N+1)z and
common ration eÿz. Since this value is less than 1
we can calculate the sum to infinity of this
geometric progression to get:

E�N � < 15

�4
cN�1�z� e

ÿ�N�1�z

1ÿ eÿz
�14�

The spreadsheet for calculating the blackbody
fraction is easily extended to include this error
bound, as shown in Fig. 6. The formula used to
calculate the error bound of truncating after N
terms uses the coefficient value from the next row.
It can be seen that the values of the coefficients
decreases gradually and so the error bound, whilst
conservative, is not unduly so.

From the values of T and � used in Table 2 we
can see that there should only be four different
values of the blackbody fraction (for �T� 950,
1900, 3800 and 7600). The values calculated
using the spreadsheet implementation of the infi-
nite sum are given in Table 3.

All the values in Table 3 are accurate to 6
decimal places. In order to obtain this accuracy
in the last case it was necessary to include 6 terms
in the truncated sum. In general, as the value of �T
increases so will the number of terms required to
obtain a given accuracy (since the value of z is
decreased thereby reducing the size of eÿz in the
error bound).

CONCLUSION

We have shown how Planck's equation for the
spectral distribution of the emissive power of a
blackbody can be used as a `real world' application
of a wide range of mathematical techniques includ-
ing change of variable, integration by parts, bino-
mial expansions, sum to infinity of geometric
progressions. Furthermore, we have shown that
some careful applications of these techniques turns
a problem which appears to need sophisticated
mathematical software to solve it into one that
can easily be solved using a spreadsheet.

Fig. 6. Spreadsheet extended to include calculation of the error bound.

Table 3. Blackbody fraction values calculated using the
truncated infinite series

�T (�m K) Possible � and T values F��T �
950 �� 0.38 �m T� 2500 K 0.000174
1900 �� 0.38 �m T� 5000 K or

�� 0.76 �m T� 2500 K
0.052110

3800 �� 0.38 �m T� 10000 K
or
�� 0.76 �m T� 5000 K

0.443376

7600 �� 0.76 �m T� 10000 K 0.839068
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