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This paper describes how the Solver tool in Microsoft Excel can be used to solve nonlinear systems
of equations resulting from finite difference discretization of the governing equations for fluid
dynamics and heat transfer. Students learning computational fluid dynamics and heat transfer for
the first time typically spend an inordinate amount of time struggling with algorithm development
and programming issues. The use of the visual presentation and automated solution capabilities of
Excel can help bolster the student’s understanding of basic discretization issues unencumbered by
programming details. Cell formatting can be used to visualize the geometry and how the grid
variables interact with one another, a feature that is particularly helpful when dealing with irregular
geometries or staggered grids. Results can be easily shown on contour or x-y plots. Although the
number of grid points and thus accuracy is limited by the number of equations that the Solver tool
can handle, a spreadsheet model is nevertheless valuable for giving students an intuitive feel for
discretization before going on to write code. Two applications are described. The first is a two-
dimensional conduction problem that is introduced to show how Solver can be used to solve systems
of finite difference equations. The second demonstrates the solution of the incompressible Navier-
Stokes equations using the staggered grid formulation. The conduction problem is one that is easily
incorporated into an undergraduate heat transfer class, while the flow problem is appropriate for a

graduate level course.

INTRODUCTION

THE USE OF spreadsheets for solving the finite
difference equations resulting from discretization
of the governing differential equations for heat
conduction is well documented. Mokheimer and
Antar [1, 2] describe how the iteration capability of
spreadsheets can be used to solve multidimensional
steady and transient conduction problems. They
also discuss how the contour plot feature can be
used to easily visualize results (contour plots in
Excel are, however, limited to plotting results in
relatively simple geometries). Schumack [3]
describes how the Solver tool in Excel can be
used to solve two-dimensional steady conduction
problems. Solver uses the Generalized Reduced
Gradient (GRG2) algorithm, which is designed
to solve nonlinear optimization problems. It
works by changing values of specified cells until
constraints set by the user are satisfied. Two
regions are set up in the spreadsheet: a region
containing the initial guesses and ultimately the
solution, and a region containing the discretized
equations. For heat transfer and fluids problems,
the regions can be shaped like the physical geome-
try, facilitating conceptualization of how the nodal
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values interact with one another and visualization
of results.

Kumar and Al-Shantaf [4] describe how spread-
sheets can be used to solve simple fluid statics
problems and the modified Bernoulli equation.
Wiggins [5] describes a spreadsheet solution of
the unsteady Couette flow problem using Gaussian
elimination. Morishita [6] solves the incompressi-
ble Navier-Stokes equations and the energy equa-
tion for a two-dimensional channel flow using the
vorticity-stream function formulation along with
the circular reference (sometimes referred to as the
‘iteration’) feature of the spreadsheet package. The
vorticity-stream function formulation requires
post-processing to obtain velocities—a procedure
that can be automated in the spreadsheet—and
solution of a Poisson equation for pressure.
Morishita et al. [7] show how various aeronautical
problems can be solved using the matrix inversion
and circular reference solution functions.

Although the numbers of changing cells and
constraints are limited by Solver, its use provides
a straightforward way to solve the discretized heat
transfer and fluid flow equations. In this paper we
show how Solver can be used to solve a relatively
simple but nonlinear heat conduction problem and
the incompressible Navier-Stokes equations in
primitive variable form on a staggered grid. An
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advantage of Solver over the circular reference
approach is that use of Solver does not require
manipulation of the discretized equations to solve
for the nodal variables.

SOLUTION OF THE HEAT
CONDUCTION EQUATION

In order to demonstrate how the Solver function
in Excel is used to solve systems of equations,
consider the following conduction problem, given
to students in an undergraduate heat transfer
class. The problem is to calculate the temperature
distribution in a bracket for an automotive wiring
harness as seen in Fig. 1. The bracket is made of
3-mm thick AISI 1010 carbon steel with a thermal
conductivity of 15.1W/mK. The bracket is
connected to the engine block, which is at 523 K.
The temperature of the surrounding air is 343 K
with an associated convection coefficient of
25W/m?K, and the surrounding surfaces are at
373 K. The emissivity of the bracket surface is 0.9.
The wiring harness rests in the notch. The upper
safe operating limit for the wiring harness is
383 K. Students were asked to calculate the
temperature distribution in the bracket and
conclude whether the temperature on the notch
boundary exceeded the safe operating limit for the
harness. The temperature is assumed invariant in
the bracket thickness.

Discretization proceeds from either the govern-
ing two-dimensional differential equation or by
applying an energy balance on the region
surrounding each node (a good description of
these techniques is found in Incropera and
DeWitt [8]). Using the energy balance approach,
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the finite difference discretization of the energy
equation for an interior node becomes:

Ay Ay
kéA—x(Tifl,j = Tij)+ kéA_x(TiH’j —~T;))
Ax Ax
+ k(SA—y(Ti,jH —Tij) +k5A_y(Ti:j*1 —Ti))
+ 2hAXAY(To — T3 )
+2ea AXAY(TS — Ti‘:/) =0 (1)

where k is the bracket thermal conductivity, Ax
and Ay are the distances between nodes in the x-
and y-directions, ¢ is the bracket surface emissivity,
6 is the bracket thickness, and o is the Stephen-
Boltzmann constant.

The equation for the nodal region on a bound-
ary exposed to convection and radiation depends
on whether the node is on an edge or a corner. The
boundary condition for an edge node on the left
side of the bracket, for example, can be written as:

Ay Ax

ké 7 (Timry = Tig) + kém(ﬂ,m —Tij)
Ax
+ k5E (Tijo1 = Tij) + h6Ay(Toe — Tij)
+e08Ay(Ty, — T} ) + hAXAY(Ts — Ti )
+eo AxAp(TE — Ti‘f/-) =0 (2)

If the circular reference solution capability of Excel
is used, the finite difference equations must be
solved explicitly for the nodal temperatures T ;
before entering them as cell formulas. This
extra manipulation is not necessary when using
Solver. In order to use Solver, two regions of the
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Fig. 1. Wiring harness bracket geometry and boundary conditions. The computational grid is superimposed on the geometry. For this
grid, Ax=Ay = 1.25cm.
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Fig. 2. The two regions on the spreadsheet. The first region contains the temperature values Solver iterated on to satisfy the finite
difference equations in the second region.

spreadsheet are identified: one for the values of
temperature (which contains initial guesses) and
one for the finite difference equations. See Fig. 2.
The left-hand sides of the finite difference equa-
tions are entered in the second region in a straight-
forward manner referring to cells containing
guesses in the first region. Note that no manipula-
tion of the finite difference equations is necessary
before entering as cell formulas; the left-hand sides
of Equations (1) and (2) (and similar equations for
other edges and corners) are entered exactly as
shown. Only one equation need be entered for an
internal node; it can subsequently be copied to all
other cells containing equations for internal nodes
with the relative reference mode of Excel automa-
tically taking care of cell reference adjustment.
Similarly, the equation for only one node on an
edge needs to be entered; it can subsequently be
copied to all other nodes on that edge.

Solver is then chosen from the ‘Tools’ menu, and

Lodver Fosamelers

|
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$E440:40d4d4 =0
JE44Z:4Ef44 = 0
FFi0pLpdt =0

parameters are set as shown in Fig. 3. Note that
the ‘Set Target Cell’ box is left empty; all the finite
difference equations are satisfied in the ‘Subject to
the Constraints’ area. When the ‘Solve’ button is
pushed, Solver changes the values in the first
region until the constraints are satisfied, ending
with a ‘Solver found a solution’ message.

The solution is seen in Fig. 2. The temperature
distribution varies only slightly in the y-direction,
demonstrating the validity of the one-dimensional
assumption for extended surface problems. The
solution also indicates that the notch temperatures
are within the operating limit of the harness.

The use of Solver for conduction problems
provides students with an intuitive method for
obtaining finite difference solutions. Its advantages
over the circular reference approach become even
more apparent when the staggered grid formula-
tion for the Navier-Stokes equations is utilitzed, as
described in the next section.
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Fig. 3. The Solver tool menu.
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SOLUTION OF THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS

The steady two-dimensional constant property
Navier-Stokes equations can be written as follows:

814 + @ =0 continuity (3)
Re(udt s )
8]) Pu  u
= —Re 45+ 92 x-momentum  (4)
dv v
R P [
e (u ox +v 6y>
op v v
— _Re oy taat a2 y-momentum  (5)

where all variables are dimensionless. The
Reynolds number is:

pVL
I

Re =

where p is fluid density, V'is a characteristic speed,
L is a characteristic length, and p is fluid viscosity.
Students in a graduate-level course in Computa-
tional Fluid Dynamics & Heat Transfer were
assigned the driven cavity problem. The geometry
is illustrated in Fig. 4.
The boundary conditions are:

u(x, 1) = 1;u(x70) = I/I(O,y) = M(l,y)
=v(x,1) =v(x,0) =v(0,y) =v(l,y) =0

A condition for pressure must also be specified to
result in a determined system; it is sufficient to
specify pressure at a point, for instance. For
iterative solutions of the system of equations
resulting from discretization, the specification of
pressure at a point is implicitly done through initial
guesses for variables at all grid points.

=1

L

(1.1)

Fig. 4. The driven cavity.

A problem arises in the solution of the incom-
pressible Navier-Stokes equations because there is
no equation for pressure. If the equations are
discretized in a conventional manner—using
central differencing, for instance—and each result-
ing discretized equation is applied at every interior
node, the matrix resulting from the system of
equations is singular (in spite of the singularity,
numerical solutions for reasonable velocities can
be obtained, but the pressure exhibits wild oscilla-
tions in a checkerboard pattern; see, for example,
Patankar [9]). Several techniques have been devel-
oped to deal with this problem. One solution is to
recast the governing equations into the vorticity-
stream function formulation [6]. This technique,
however, has the disadvantage of having to post-
process the results to obtain velocities and pres-
sure. Other methods include the artificial compres-
sibility or pressure correction methods [10].

A relatively straightforward solution that avoids
the matrix singularity is the staggered grid [9]. The
staggered grid, shown in Fig. 5, consists of three
sets of grid points. The dependent variables u, v,
and p are defined at different points. The con-
tinuity equation is applied at the p nodes, the
x-momentum equation is applied at the u nodes,
and the y-momentum equation is applied at the v
nodes.

Referring to Fig. 5, the finite difference formula-
tion of the Navier-Stokes equations becomes:

Uir1/2,j — Ui-1)2,j I Vi j+1/2 = Vij—1/2

Ax Ay

=0 (6)

U3/ — Ui-1)2,5
Re (”’“/ 2T 2Ax

Uir1/2,j+1 — Uix1/2,j-1
2Ay

DPit+1,j — Di,j
R el kN it U
+ e( Ax )

3 <”i+3/2tj = 2u 10, + Uis1)2,

+ Vir1)2,)

Ax?

Uip1/2,j41 — 2Uir1)2,j + Uit1)2,j-1 )
4 —0 (7)
Ay?

_ Viel, j+1/2 = Vi-1,j+1/2
Re (ui,j+1/2 Ax

Vij+3/2 — Vi j-1/2
+Vi,j+l/2—l]+ /sz i1/ )

Dij+1 — Di,j
R i A N it N
- e( Ay )

(Vi3 — 2vijy1y2 +Vij-1/2
Ay?

Vieljr1/2 — Vi Vi)
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Fig. 5. The staggered grid.

The average velocities and for the case Ax=
are defined as:

Ay

_ Uiv1/2,; T Uir1/2,j+1 T Uim12,7 + Uim12, 41
Ujj+1/2 = 2

and

Vij+1/2 T Vitl j+1/2 F Vij-172 T Vitl,j- 12
V1+1/21 4

Equations (6) through (8) utilize central differen-
cing for approximating derivatives in the govern-
ing equations, with a corresponding truncation
error of O(AX?).

As seen from observation of Fig. 5, specification
of boundary conditions for u at y=0 and y=1,
and v at x=0 and x=1 presents a problem
because there are no grid points for those variables

Uiy i+

on those boundaries. The problem is solved by
imagining grid points outside the boundaries as
shown in Fig. 6. Setting the average of u; y+; and
u; v equal to the speed of the wall, V., leads to
the boundary condition u; y+1 =2V uir—t; N,
where V,,.; 1s 1 for the top and 0 for every other
boundary. Similar conditions are set for v at the
left and right boundaries.

Although conceptually elegant, the staggered
grid formulation can be an indexing nightmare
for the programmer. This is where the spreadsheet
solution becomes pedagogically useful. Students
can set up the staggered grid in a visibly clear
fashion on the spreadsheet, and use cell formatting
to distinguish between u, v, and p grid points. Once
the finite difference equations have been entered
for one u, v, and p grid point, they can be simply
copied to the remaining interior points.
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Fig. 6. Treatment of boundary velocities.
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Fig. 7. The two spreadsheet regions for the driven cavity problem. Cell formatting has been used to distinguish pressure and velocity
cells. In the region on the left, cells outside the bold borders contain boundary conditions.

Consideration of Equations (6) through (8) will
indicate why the spreadsheet circular reference
function will not work for the discretization
given above. For the circular reference function
to work, an equation for the variable at each node
must exist. If one were to solve Equation (7) for
ui+1/2; and Equation (8) for v; j+1/5, that would
leave Equation (6) for the node corresponding to
pi ;- Equation (6), however, does not contain
pressure! This quandary brings out the essence of
the pressure problem for solution of the incom-
pressible flow equations. Matrix inversion could be
used, but that requires additional manipulation of
the finite difference equations in order to fill the
operator matrix. The Solver function is an excel-
lent tool that allows direct solution for the
unknowns without muddying the waters with
complicated preprocessing.

As with the heat conduction problem, two
spreadsheet regions of identical shape are set up.
Fig. 7 shows a small grid for illustrative purposes.
The region on the left contains the boundary
conditions and initially the guesses; the region on
the right contains the left-hand side of the finite
difference equations. The left side of Equation (6)
is written in the p-cells, the left side of Equation (7)
1s written in the w-cells, and the left side of
Equation (8) is written in the v-cells. Any given
equation in the region on the right refers to
corresponding cells containing values for u, v,
and p in the region on the left. Note that Equations
(6) through (8) need only be typed in once; after-
wards the three equations can simply be copied to
the remaining cells, the relative cell reference
feature in Excel taking care of adjusting the
cell references accordingly. After entering initial
guesses (say, every unknown equal to zero), Solver
is set up to change the cells corresponding to

interior grid points in the left grid subject to the
constraints that the cells containing formulas in the
right grid are equal to zero. When Solver has
completed its iterations, the grid on the left
contains the solution and the grid on the right is
filled with zeroes.

The solution algorithm for Solver is sensitive to
initial guesses, consequently occasionally Solver
cannot find a solution and different initial guesses
must be tried. To obtain a solution for non-zero
Reynolds numbers, for instance, it may be necessary
to use the solution for Re =0 as an initial guess.

Pressure contours are easily plotted by forming
another region of the spreadsheet where each cell
refers back to a corresponding pressure cell, and
adding a row and column to identify the corres-
ponding x- and y-values. Likewise, streamlines
can be plotted by developing another region of
the spreadsheet to incorporate the following
formulation.

Derivatives of the stream function are defined as
follows:

%Y .

Ox T Oy "
Integration of the stream function in the x- and
y-directions thus leads to: 1, — 1 = —VAXx in the
x-direction and ¢, — v¢; = uAy in the y-direction,
where u and v are suitable average quantities. For
current purposes, the stream function is found at
the pressure grid points as follows (refer to Fig. 8):

Yir1,j = Yij — Vig1/2,jAX;
Yijr1 = Vi + Ui jp128y

where u and v were defined earlier.
The version of Excel used for these results
treats the x and y values in the contour plots as
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Fig. 8. Grid showing stream function values at pressure grid points and relevant velocity values.

categories, therefore irregularities in grid spacing
(as happens when values of ¢ on the boundaries
are found by using adjacent interior grid points)
will not be apparent. Since the spreadsheet results
are simply for qualitative analysis, this drawback is
not serious.

Because the pressure and stream function
regions refer back to the solution, the contour
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plots are updated automatically as new solutions
are obtained, resulting in the ability to immediately
view the results.

A drawback in the Solver function is a relatively
low limit on the number of constraints and chan-
ging cells. The Solver function in the version of
Excel used to calculate results presented here could
not handle more than 100 unknowns. For the

—— spraadshaal

s raferance [11]

0.5 1

Fig. 9. Comparison of spreadsheet results and results from reference [11] for Re=0. The figure shows u along the cavity vertical
centerline.
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results shown here, the number of grid points for
pressure numbered 6 x 6, for u 5x 6, and for v
6 x 5, for a total of 96 unknowns. This coarse grid
is unsuitable for obtaining accurate results, espe-
cially considering the strong solution singularities
in the upper corners. As mentioned earlier, the
usefulness of the method lies in its visual presenta-
tion and straightforward solution process. The
students, unencumbered by programming details,
can develop a clear conceptual understanding of
how the grid variables relate to one another before
moving on to writing code.

Figure 9 shows how u varies along the cavity
centerline at x=0.5 for Re=0. Note that for
Re=0 a viscous pressure scaling is used so that
Re in front of the pressure gradient terms in
Equations (4) and (5) is replaced by unity. The
figure compares the results using Solver to those
obtained by a highly accurate spectral method as
described in reference [l11]. The agreement is
remarkable considering the coarseness of the
spreadsheet solution. Figure 10 shows the
streamline plot which illustrates the central
vortex and demonstrates the expected symmetry
for Re=0.

Results for Re=100 are compared to those of
Burggraf as reported in Goda [12] in Fig. 11. As
expected with such a coarse grid, the results are not
very close to those from Burggraf’s finer grid, but
are qualitatively reasonable. The streamline plot in
Fig. 12 shows the expected shift of the central
vortex to the right as described, for example, in
Ghia et al. [13].

Ten students in the most recent class offering
(Term I, 2003-04) responded to a questionnaire
regarding the use of Solver to solve the driven
cavity problem. As seen in Fig. 13, students felt the
assignment improved their understanding of both
the staggered grid and the relationship among the
grid points for velocity components and pressure.
Students were asked to generate x-y plots of u vs.
y and v vs. x at the cavity centerlines, and their
responses indicate they felt comfortable visual-
izing these results on the spreadsheet. Due to time
constraints, students were not given an assign-
ment to program a simple Navier-Stokes code, so
the effectiveness of the spreadsheet assignment in
improving the students’ ability to write code
could not be directly measured. Six of the ten
respondents either disagreed with or were neutral
about the statement ‘I am good at programming’.
This result suggests that the relatively low score
for the statement ‘Having performed this assign-
ment, I feel I could program a Navier-Stokes
code using a programming language’ was
due more to an insecurity about programming
abilities than poor understanding of the finite
difference concepts.

CONCLUSIONS

The Solver tool in Excel provides an intuitive
way for students to learn the fundamentals of
computational fluid dynamics and heat transfer.
A spreadsheet solution allows students to

—

Fig. 10. Streamlines for Re=0.
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Fig. 11. Comparison of spreadsheet results and results from reference [12] for Re=100. The figure shows u along the cavity vertical
centerline.

clearly conceptualize the interrelationships code. The spreadsheet links between plots and
among the nodal variables in the discretization cell values allows instant visualization of para-
without the burden of having to write and debug metric changes.

Fig. 12. Streamlines for Re=100.
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Fig. 13. Student assessment of using Solver to solve the driven cavity problem. Possible scores were 5= strongly agree, 4 =agree,

10.
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12.

13.

3 =neutral, 2 =disagree, | =strongly disagree.
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