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The use of a spreadsheet program, e.g. Microsoft Excel, has been introduced as a platform for
teaching engineering students to solve thermal radiation problems, particularly problems relating to
multi-surface enclosures. The approach developed enables the network equations to be solved using
Excel’s Solver. The problem is formulated in a general way that permits the user to specify the
required number of boundary conditions in the form of any valid combination of temperatures and
heat flows. This includes boundary conditions where the net radiation to a surface matches external
convection loss to a specified ambient temperature. Calculation of shape factors using user-defined
Sfunctions written in VBA makes the method very flexible and permits use of redundant information
to verify the conmsistency of the shape factors. The spreadsheet-based approach to radiation
calculations is a major departure from the methods currently presented in heat transfer textbooks.
The method has been found to be computationally robust and the approach has been well received

by students.

NOMENCLATURE

A; area of surface i

E,; black-body emissive power of surface i

F; shape factor (view factor) between surface i
and surface j

J;  radiosity of surface i

n  number of surfaces

q; external heat flow to surface i (positive if net
flow is into the enclosure)

gy net radiation exchange between surfaces i

and j

resistance of surface i/ defined by equation (2)

resistance between surfaces i and j defined by

equation (3)

temperature of surface i

ambient temperature outside the enclosure

overall heat transfer coefficient for external

heat loss from surface i

emissivity of surface i

Stefan-Boltzmann constant
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INTRODUCTION

THE APPROACH presented in standard heat
transfer textbooks [1-3] to solving the equations
generated in heat transfer calculations has changed
little for over five decades. In the 1960s, numerical
methods were introduced for conduction cal-
culations. Students were encouraged to apply
programming skills in programs such as Fortran
or Basic to solve such problems, or else to use
standard library routines to do the major
computations.
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The last decade has seen a major change in the
way engineering students prefer to perform most
calculations. Now, spreadsheets will be used when-
ever the students believe that this is an appropriate
tool for solving the problem at hand. Unfortu-
nately, there is still little recognition of spread-
sheets in the literature available to students. There
has been some attention, however, to the way of
solving conduction problems using a spreadsheet
[4-5]. One textbook [6] includes approaches to the
spreadsheet solution of two-dimensional steady
state and one-dimensional transient conduction
problems. This appears to be the only comprehen-
sive heat transfer textbook to date to acknowledge
the value of spreadsheets in heat transfer education
and their usefulness in carrying out heat transfer
calculations.

The previous spreadsheet method for thermal
radiation enclosure calculations [7] has been
further developed and an alternative treatment of
the calculation of the radiosity values evaluated.
Over the last six years, the spreadsheet-based
method has significantly improved the level of
understanding reached by students and the
complexity of problems which they can success-
fully solve given the same lecture and assignment
time. This paper aims to show that a spreadsheet
provides a very convenient and flexible means for
solving heat transfer by radiation in multi-surface
enclosures.

The radiation enclosure problem

The problem may be stated as follows: given an
enclosure of n isothermal surfaces, with specified
geometry and surface emissivities, calculate all
unknown surface temperatures, 7; and all
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unknown heat flows from outside the enclosure, ¢;
and between surfaces, g;;

For the problem to be uniquely defined, a
degrees-of-freedom analysis shows that it is neces-
sary to specify n temperatures and/or heat flows.
This is frequently assumed to mean that either 7;
or ¢; must be specified for each surface [1].
Although this is the most convenient problem
specification, it is an unnecessary restriction
imposed by the approach conventionally presented
in textbooks [1-3] to structuring and solving the
resulting equations. In fact, the only true restric-
tions are that at least one temperature must be
specified for a unique solution, and that the quant-
ities specified must be independent. One cannot,
for example, independently specify the tempera-
ture of two blackbody surfaces and the net radia-
tion heat exchange between them.

The example in [7] dealt with a problem in which
the specified conditions were: the temperatures of
surfaces 1 and 2, T;, and T75; the net heat flow
between surfaces 2 and 3, ¢»3; and the external heat
flows into surfaces 2 and 4, ¢, and ¢,. Note that
this specifies two conditions relating to surface 2
and none relating to surface 5, yet the unique
solution is readily found.

In the example in this paper, either the tempera-
ture or external heat flow is specified for each
surface, as is conventional. However the external
flow for one surface is defined in terms of the
external convection loss, as often occurs in prac-
tice, and so depends on the temperature of that
surface. The method is designed to be robust in
reaching the solution, whatever conditions are
specified, while requiring a minimum of problem-
specific setup.

The steps in solving a radiation enclosure prob-
lem can be generalized as:

1. Specify the problem geometry.

2. Select the surfaces to be treated as isothermal
and specify the surface emissivities.

3. Calculate the surface resistances (Equation (2)
below) and the resistances between surfaces
(Equation (3) below).

4. Specify n temperatures or heat flows to satisfy
the n degrees of freedom.

5. Obtain a set of equations to solve for the
remaining temperatures and heat flows. This
will require solution for the radiosities of all
surfaces. The radiosity is the total radiation
leaving a surface, emitted plus reflected, and is
treated as a potential in the same way as the
black body emissive power.

6. Express the equations in a form suitable for the
solution method to be used.

7. Solve the equations for the radiosities, then the
unknown temperatures and heat flows.

The well-known equations relating to greybody
radiation enclosures are summarized below [1-3].

Black body emissive power, Ej;:
Ey = oT} (1)

Surface resistance, R;:

1-— Ei
= — 2
A (2)
Resistance between surfaces i and j, Ry
1 1
Rj = = 3
g AIE] A] F}i ( )

The net heat flow, ¢,, from the surroundings in
through surface i:

Ep—Ji &
Qi:4R_ :Z%'j (4)
1 ]:1
The net radiation exchange, g;;, between surfaces
i and J:
Ji—J;
s=l g 5
qij R; 4qji (5)

It is usual [3] to use Equation (4), after rearranging
to Equation (6), for each surface i if the surface
temperature 7 is specified, and hence E},; is known.
Otherwise it is used in the form of Equation (7) if
the net heat flow, g; is known. This provides a set
of n equations which can be rearranged to a set of n
linear equations for the unknown radiosities.

Ey —J; " Ji—J;
bi l:Z J (6)
= R
~J,

n Jz'
qi—Z %) (7)
j=1

This formulation of the solution requires that
either T; or ¢; be specified for each surface i. It is,
however, a simple matter to substitute Equation
(5) for (6) or (7) if an inter-surface heat flow g;; is
given instead.

Where the external heat flow is governed by
external heat exchange with the surroundings,
Equation (8) can be used, where the overall heat
transfer coefficient, U, incorporates conduction
resistances in the enclosure wall and the external
convection resistance:

qi = —UiAi(T; — Tw) (8)

The method usually recommended for solving the
linear equations for the radiosities is by a matrix
inversion technique or by an iterative method such
as Gauss-Siedel [1-3]. Little indication of the
accuracy to be expected is given apart from state-
ments such as ‘the method might give a large
truncation error for some ill-conditioned matrices,
but will always give a solution if the matrix is non-
singular’ [1].

Many textbooks now contain computer
programs to allow students to solve problems,
including radiation enclosure problems. Mills [1]
has a shape factor calculation program for a few
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standard situations. These shape factors must then
be transferred to a second program to generate the
solution. The temperature or net heat flow must be
specified for each surface. Holman’s program [2] is
even more restrictive. It solves only for a rec-
tangular cube with all surface temperatures
specified, although it does demonstrate well the
progression through the shape factor and sub-
sequent calculations.

The method of structuring the spreadsheet to
solve for a radiation enclosure calculation is
demonstrated for an example with five surfaces.
This is a recent assignment problem from the
author’s course to Year 3 chemical engineering
students.

EXAMPLE PROBLEM

The enclosure is a cylinder treated as five
isothermal surfaces (Fig. 1). Surface 1 is a disk of
radius 0.2 m, from which 10 kW is radiated into the
enclosure. Surface 2 is the remainder of that end of
the cylinder, being an annular disk with outer
radius 0.3m and inner radius 0.2m. The rate of
heat loss through this surface is governed by
Equation (8), with the overall heat transfer coeffi-
cient being 10 Wm 2K '. Surface 3 is the curved
side wall of the 0.5-m long cylinder, and is assumed
to be perfectly insulated externally. Surface 4, also
perfectly insulated externally, is a 0.15-m radius
disk in the far end of the cylinder. ‘Surface’ 5 is an
annular opening between surface 4 and the end of
surface 3 that permits loss of radiant energy to the
surroundings at 300 K. The surroundings are
assumed to be large, so that ‘surface’ 5 can be
treated as a blackbody, also at 300 K.

The specified conditions are thus temperature
Ts, heat flows ¢;, q3, q4 (explicitly) and ¢, (impli-
citly). The specified emissivity values can be read
from Fig. 2. Because the cylinder ends each contain
two co-planar surfaces, it follows that F;, =0 and
F45 = 0

A3 A3z
ﬂ
A
Ay
=
q,= 10 kW
1 AE

Fig. 1. The cylindrical enclosure with five isothermal surfaces.

Spreadsheet layout
The spreadsheet, shown in Fig. 2, contains the
following major blocks:

1. The Stefan-Boltzmann constant and the geo-
metric variables. These values in C4 and C6:C10
are in named cells with the names in column B.

2. The external overall heat transfer coefficient for
surface 2 is entered in C11. For this method of
specifying the external heat flow, the ambient
temperature is also required, but is available in
this example as T’s.

3. Surface-related values are in rows 16 to 20.
Areas are calculated from the geometry, while
emissivity values must be supplied. Tempera-
tures are entered for all surfaces in D16:D20. If
temperatures are not specified for a particular
surface, an initial estimate is made. Black-body
emissive power is calculated in E16:E20 using
Equation (1). Initial guesses for the surface
radiosity values are entered in F16:F17. All
radiosities will be between the highest and
lowest black-body potentials. Where it is
known that the radiosity and black-body
potential for a surface will be the same, the
radiosity is best set equal to the black body
potential for that surface, and is not included
among the optimization variables (Solver chan-
ging cells). In the example, this is done for
surfaces 3 and 4 (because the external heat
flow is zero) and for surface 5 (which is treated
as a black body).

4. The calculation of the shape factors in rows
24:28 is described separately later.

5. Resistances are calculated in rows 32 to 36. Inter-
surface resistances are evaluated in B32:F36
using Equation (3). Surface resistances using
Equation (2) are in G32:G36. The layout of the
spreadsheet is such that the cell formulae for
Equations (2) and (3) need to be entered only in
one cell before being copied to the remaining
cells. Because some shape factors in this example
are zero, the resistances between these pairs of
surfaces are infinite. These resistances have been
assigned an arbitrary high value of 10%° to
prevent ‘divide by zero’ errors.

6. Heat flows are calculated in rows 43 to 47
using equations (5) for the inter-surface flows
in B43:F47 and (4) for the external flows in
G43:G47. For example, D43=($F16-D$38)/
D32 and G43=(E16-F16)/G32. The sum of
heat flows at each node, calculated in H43:H47,
should be zero according to Kirchhoff’s law. For
example H43=G43-SUM(B43:F43). These pro-
vide an essential check on the correctness of the
solution, but also play a vital part in arriving at
the solution. As was the case for the resistances,
Equations (5) and (4) need to be entered into
only one cell each before being copied to the
other cells. To make this possible, the radio-
sities are also displayed in B38:F38 so that they
are available as a row as well as in a column in
F16:F20.
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Fig. 2. Spreadsheet for the example radiation enclosure after convergence using Solver.
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7. Any specified heat flows are entered in
B53:G57. The remaining cells in this range are
left blank. The cell formula for ¢, is: G54=-
C11*¥B17%(D17-D20).

8. To this stage, all heat flows will be correctly
calculated if the correct temperatures and
radiosities have been entered. This will be
indicated by having zero values for all node
sums in H43:H47. The sum of all external heat
flows should also be zero and is displayed in
G438 as a check. Two measures of the correct-
ness of the solution are provided in cells H49
and G58. H49 contains the sum of the squares
of the node sums of heat flows. This is calcu-
lated using H49=SUMSQ(H43:H47) and will
be zero for an exact solution. The agreement
between the calculated and specified heat
flows is calculated in G58. This is most con-
veniently done with the array formula {=SUM
(IF(B53:G57="",7",(B43:G47-B53:G57)*2) )}.
This sums the squares of the differences
between the specified values in B53:G57 and
the calculated heat flows in B43:G47 for those
heat flows for which a value has been specified.
Again the sum of squares of differences will be
zero for an exact solution. Note that it is
necessary to use Control/Shift/Enter instead of
just Enter after entering or modifying an array
formula.

9. The solution is reached from the initial guessed
values for temperatures and radiosities by using
the built-in optimisation package Solver in
Microsoft Excel. This needs a single target cell
as the objective function to optimize. Cell G59,
which sums the two sums of squares of differ-
ences in H49 and G358, provides the target cell
for Solver.

Solution of the equations using Excel’s Solver

The equations for the radiation enclosure are
solved using Excel’s Solver. The target cell to be
minimized is the global sum of squares calculated

Solver Parameters

Sat Target Cell frgss
Equal To: " Max (v Mi
By Changing Celks:

™ ahie of: [

in cell G59 in the example (Fig. 2). The changing
cells are the radiosity values in F16:F17 as well
as the unknown surface temperatures: in this ex-
ample those for surfaces 1 to 4 in D16:D19. No
constraints are needed. The window for Solver for
this example is shown in Fig. 3.

The Solver convergence parameter should be
reduced to a smaller value such as 108, Otherwise
no changes need be made to the default settings. A
typical solution will take less than five seconds and
require fewer than 100 iterations by Solver. After
solving, the accuracy can be readily seen from the
heat flow residuals at each node in H43:H47 and
the sum of squares between specified and calcu-
lated heat flows in G59. If all surface temperatures
are specified, the errors are extremely small. In
Fig. 2, the largest error is associated with the flows
at surface 1 (1.8 W or about 0.02%). This is smaller
than the errors that would be caused by uncertain-
ties in the emissivities in a real problem.

Shape factor calculations

In describing the solution method, the calcula-
tion of shape factors between surfaces was
deferred. Calculation of the shape factors, used
in calculation of the resistance between each pair
of surfaces, is the most time-consuming part of
solving most radiation enclosure problems. Use of
Excel for performing these calculations has certain
advantages. Firstly, they can be evaluated on the
same worksheet as the remaining calculations,
bypassing the requirement to transcribe or enter
them from a separate calculation medium.
Secondly, there are shape factor equations avail-
able for many more geometries than are given in
the standard textbooks [8]. These can be readily
programmed as functions in Visual Basic for
Applications (VBA) which is present within any
recent version of Excel. The VBA functions can
then be used from within Excel as user-defined
functions in the same way that Excel’s built-in
functions are accessed. Programming the required

(40 16:80819, 4F416:4F 417
Subiect ko the Constraints:

| Soive i
_ Cose |

~ Guess |
Optons |

| __add |

Change

————— Reset Al |
| Delebe —.
o] (SR —mtaar Help I

Fig. 3. The Excel Solver window for the example.
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user-defined functions is treated as an integral part
of radiation assignments in the author’s course.

The shape factors in the example are evaluated
in rows 24:28 in Fig. 2. All shape factors are
calculated by using the VBA functions or applying
the basic equations of shape-factor algebra such as
the reciprocity rule. For example, F;s is obtained
using the cell formula: =UnequalDisks(radl,
rad4,L)-UnequalDisks(radl,rad3,L). This cell
formula uses the fact that F;s=F;s5~Fis
UnequalDisks is the name of the function for the
shape factor from a disk to a parallel coaxial disk
of unequal radius [8, case C35]. The other shape
factor equations supplied to the class were Howell
case C45 [8] for an annulus to a parallel coaxial
annulus, and Howell case C75 [8] for the shape
factor between a disk in a cylinder base and the
inside of a right circular cylinder. The code for this
last case is given in the Appendix.

The fact that the shape factors from any surface
to the other surfaces, 1 to 5, must sum to unity has
not been used in calculating any shape factors.
This is then used as a check in column G.

Alternative treatment of the radiosity calculation

In the above procedure, those surface radiosities
known to equal the surface blackbody potentials
were excluded from the set of Solver changing
cells. An alternative is to use only the unknown
temperatures as the Solver changing cells and to
rearrange Equation (4) to Equation (9) to solve for
the remaining radiosities:

Ji=Ep —qiR; (9)

Since Equation (4) is also used to solve for ¢;, this
creates circular references. As long as iteration is
enabled, Solver will usually converge to the correct
temperature solution. The advantage of this
approach is that the sum of squares of the node
heat balances is reduced almost to zero. However,
depending on the order in which the spreadsheet
equations are set up, it is possible for the calcula-
tion to get trapped in an incorrect solution. The
extra effort required to recover from this occa-
sional problem means that this alternative method
is not recommended, despite the slight improve-
ment in accuracy.

TEACHING APPROACH

Discussion of how to use spreadsheets to solve
problems, where appropriate, is now an integral
part of the author’s heat transfer courses. The
underlying theory is first taught using conven-
tional ‘chalk and talk’ methods. Methods of struc-
turing the calculations for solution on a
spreadsheet are then discussed, supported by
demonstration of the creation of a spreadsheet
and solution of a problem using a data projector
in the lecture room. Issues discussed include
whether or not to use named cells for particular

variables, and such tips as repeating the radiosities
in a row as well as the column to permit easier
copying of formulae. In the lecture demonstration,
using coloured cell backgrounds is a considerable
aid in clarifying the role of various cells. For
example, one colour is used for the entry of
geometric data, another for specified temperatures
and heat flows, and another to highlight Solver
adjustable and target cells. During construction of
the spreadsheet, it is also instructive to use one
colour for cells into which a computational
formula must be typed, and another colour for
cells into which the formulae are copied.

An assignment problem, such as the example
problem in this paper, provides an exercise in
which the students must apply all aspects of the
theory taught. Requests for the demonstration
spreadsheet to be made available electronically
are declined, as this would potentially degrade
the assignment into an exercise of putting the
numbers into a prepared program. Students are
permitted to work individually or in pairs, and this
seems to eliminate the temptation to plagiarise
others’ spreadsheets. The mean time taken for
the assignment is 7 hours (range 4 to 10 hours),
including the programming of the necessary VBA
functions for the shape factors.

Students are expected to demonstrate how they
have verified the correctness of their VBA func-
tions and their spreadsheet solutions. Emphasis is
also placed on the value of good documentation of
spreadsheets. This is reinforced by allocating 30%
of the assignment marks to the quality of the
documentation. Assignments are handed in only
in hardcopy form, and the documentation is
expected to permit verification of answers and, if
desired, complete construction of the spreadsheet
from the hard copy and documentation submitted.
The expected documentation on the worksheet
includes a statement of the aims and assumptions,
the equations used, sufficient sample cell formulae
to permit checking that the equations have been
correctly coded, and instructions on manual opera-
tions needed such as the use of Solver. Much of
this has been omitted from Fig. 2 in the interests of
space. The documentation of spreadsheets is an
aspect neglected in textbooks on spreadsheet use,
even those aimed at engineers and scientists.
Approaches have been described by Morison and
Jordan [9], but there is scope for considerably more
discussion and consensus on the subject.

STUDENTS’ RESPONSE

The students have responded positively to being
taught how to apply spreadsheets to solve a range
of problems. By the time they reach this course in
the third year of their degrees, spreadsheets are
their preferred computation tool and they are keen
to extend their repertoire of spreadsheeting tech-
niques. They are by then competent in the use of
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Solver, but have not usually encountered array
formulae before.

Typically two thirds of the class will opt to solve
the problem with a partner. The remaining third
produce an individual solution. The mean time
taken for the assignment does not vary signifi-
cantly between those doing an individual effort
and those working as a team.

Feedback from recent graduates indicates an
appreciation of the emphasis on documentation
of spreadsheets in this and other courses in the
author’s department.

DISCUSSION

The pre-packaged programs that accompany
some texts enable students to solve certain radia-
tion problems. However they have some draw-
backs. The main skill developed is that of
entering numbers into menus, rather than gain-
ing understanding of the underlying structure of
the problem. Students cannot see the underlying
code in the program to understand what it is
doing.

Provision of pre-packaged programs is a
response to students’ lack of time to program the
calculations themselves and to an increasing lack
of fundamental programming skills in traditional
programming languages. However students are
now developing considerable skills in applying
spreadsheets to a wide range of calculations.
Ideas developed in solving one problem can often
be transferred to other apparently unrelated
problems. The approach used here encourages
and takes advantage of this.

The spreadsheet-based approach to teaching
radiation enclosure calculations has been
employed for the past six years, building on the
earlier introduction of spreadsheet methods for
steady-state and transient conduction calculations.
It has proved to be an effective means for convey-
ing the essential relationships in the problem. It
has enabled students to tackle and solve non-trivial
problems from first principles in a way that
enhances their problem-solving skills. The use of
VBA as the language of instruction for computer
programming has aided the use of this approach.
The students learn VBA in the year prior to the
thermal radiation topic. Because they are able to
use VBA to enhance their spreadsheet calculations,
they use it sufficiently often that writing code for
user-defined functions is a straightforward part of
the process.

The treatment of the external flow for surface 2
in the example deals with a common situation,
where the external heat loss depends on the surface
temperature, which is not discussed at all by the
standard texts [1-3].

The solution method demonstrated in the ex-
ample provides a very flexible way of specifying
and solving radiation problems. For example, to

change from specifying a surface temperature to
specifying a heat flow, it is simply a matter of:

® cntering the specified heat flow, or calculation
using Equation (8), in the ‘specified heat flows’
section of the spreadsheet;

® cntering an initial guess for the temperature that
is now unknown;

® solving the problem again with Solver, after
adding the new unknown temperature to the
set of changing cells.

The main parts of the spreadsheet that contain
problem-specific formulae are the area and shape
factor calculations. The remainder of the spread-
sheet can be used as a template to apply directly to
other problems. This suggests that there is merit in
doing the area and shape factor calculations on a
separate worksheet so that there is a geometry-
specific part and a generic part of the solution on
separate worksheets. However the author’s prefer-
ence is to have all calculations on a single work-
sheet, when this is not excessively large. The
template developed for a problem with, say five
surfaces, can be easily extended to more surfaces
by inserting rows and columns as appropriate and
then copying the necessary resistance and heat
flow formulae into the extra cells.

The solution method has proved to be very
robust. If the sum of squares of deviations
cannot be reduced to a reasonable value by
Solver (say less than 10%), then this has invariably
been found to be the result of inconsistent specifi-
cation of the set of temperatures and heat flows.
When all temperatures are specified, convergence
to the solution is extremely rapid and the sum of
squares of deviations is trivial. In the example in
[7], one surface was not involved in any of the
specified quantities. In such a case, the accuracy is
not quite so good, but the errors in nodal heat
balances will typically be well below 1%. The
information displayed on the spreadsheet makes
it very easy to see how well all equations are
satisfied, compared with matrix-inversion methods
where there is generally no information readily
available about the accuracy of the result.

Occasionally Solver will reach a solution with
one of the calculated temperatures being negative.
This will happen for surface 4 in the example from
many initial guesses. Because the temperatures,
apart from 7, are used only in calculating the
blackbody potentials, the sign of any other
temperature can simply be changed to positive.
The use of constraints or other Solver options to
prevent negative temperature results can hinder
Solver’s progress to the solution.

The approach used in this paper can be equally
applied to any network problem where there is
flow through branches of the network determined
by the relationship:

_ potential difference

Sflow (10)

resistance
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CONCLUDING REMARKS

Using a spreadsheet provides a convenient and
flexible tool to solve radiation enclosure problems.
It builds on the considerable skills students
already possess in spreadsheet computation and

provides an opportunity to reinforce the
necessity for good practices in documenting
spreadsheets. The change to this approach to
teaching calculations has been stimulating and
satisfying, and the students have responded
very positively.
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APPENDIX

Sample VBA Code for shape factor calculation

Function DiskToCylinder(dR1, dR2, dH) As Double

'Calculates radiation shape factors for a disk in a cylinder base or top to inside of a right circular cylinder

"using the equation for Case C75 in Howell (1982).
!

'dR 1 =radius of disk

'dR2 =radius of cylinder

'dH= length of the cylinder

"Written by P J Jordan, 25 March 2002
Dim dRR As Double, dHH As Double
dHH =dH/dR1

dRR =dR2/dR1

DiskToCylinder =0.5 * (1 ~dRR A2~ dHH A 2 + ((1 + dRR A 2 + dHH 2 2) A 2 — 4 * dRR * 2) » 0.5)

End Function
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