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The relatively new Wavelet transform and Wavelet-based algorithms have found applications in
virtually all engineering and many scientific disciplines. In this paper we point out their applications
in enhancing education both from a teaching point of view and in carrying out laboratory-based
experiments and projects. We take advantage of Excel's wide availability and familiarity to
students in using it as a medium to bring the power of Wavelet analysis to the classroom and the
lab. We give an overview of the implementation the Wavelet transform, inverse transform, and
denoising algorithms into Excel, which was realized through a Dynamic Link Library (DLL) and
Visual Basic for Applications (VBA) code. We present four examples that relate to education and
research. We highlight the advantages of wavelets in detecting trends and events, removing noise,
and achieving data compression.

INTRODUCTION

WAVELETS WERE DEVELOPED indepen-
dently in the fields of mathematics, quantum
physics, and electrical engineering but interactions
between these fields during the past few years have
led to an upsurge in the number of wavelet
applications and in the amount of wavelet-related
research, both at the applied and theoretical levels
[1]. Just to mention a sample, wavelets have been
applied in the areas of compression and fast
transmission of medical images [2], video compres-
sion [3], image retrieval and digital libraries [4],
digital communication [5±6], power electronics [7],
antennas and electromagnetism [8], and even fluid
dynamics [9]. Basically, any field that involves data
processing and analysis can benefit from wavelets
due to their properties that include the simulta-
neous localization of signal components in the
time and frequency domains, which is not possible
with Fourier analysis. Consequently, wavelets are
increasingly entering classrooms and laboratories
in the form of both theoretical and applied
subjects. Our objective in this paper is to take
advantage of the simplicity and familiarity of
spreadsheets to instructors, students, and other
computer users and encourage the exploration of
wavelet analysis and its applications in educational
subjects and research activities.

WAVELETS AND ALGORITHMS

Like the fast Fourier Transform (FFT), the
discrete wavelet transform (DWT) is a fast and
linear operation that operates on a data vector to

transform it into a numerically different vector.
Also like the FFT, the wavelet transform is inver-
tible and in fact orthogonal. Both FFT and DWT
can therefore be viewed as a rotation in function
space, from the input space (time domain) to a
different domain. For the FFT, the new domain
has basis functions that are the sines and cosines.
The wavelet basis functions on the other hand are
quite localized in time and simultaneously like
sines and cosines, are also localized in frequency
(scale). This duality in localization is what makes
the DWT a valuable tool when dealing with a large
class of problems.

Wavelet transform coefficients
For a data vector y1; . . . yM , the DWT computes

another vector of N coefficients [10]:

w � fdj;k; sJ;mg; j � J; . . . ; log2 N;

k � 1; . . . ; 2 jÿ1; m � 1; . . . 2Jÿ1
�1�

where J is such that 1 � J � log2 N and N � 2K ,
the number of coefficients, is the smallest power of
two that is greater than or equal to the number of
samples in the signal, M. The parameter j is called
the resolution level or scale while k is called the
translation or shift index. The coefficients denoted
by sJ;m, which make up the vector sJ , represent the
smooth behavior of the data at the coarsest level
J while the coefficients dj;k, which make up the
vectors dj , represent progressively finer scale
deviations from the smooth behavior. The coeffi-
cients sJ;m and dj;k are known as the smooth and
detail coefficients respectively. The vectors dlog2 N ,
d�log2 N�ÿ1, d�log2 N�ÿ2; . . . ;dJ contain progressively
coarser-level coefficients and having lengths N=2,
N=4;N=8; . . . ;N=2Jÿ1 respectively.
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vector are computed hierarchically through convo-
lution with the odd and even rows of a transforma-
tion matrix to produce the vectors dj and sj

respectively. The elements of the mostly-sparse
matrix are simple derivations from the wavelet
filter coefficients [11]. For the first (lowest) resolu-
tion level, coefficients are produced from the data
vector but for the remaining levels, it is the smooth
coefficients of the previous level that are used to
produce the coefficients. To reconstruct the signal,
the wavelet coefficients are convolved in a similar
manner by the rows of the inverse transformation
matrix.

Wavelet properties
Unlike sines and cosines, which define a unique

Fourier transform, there is not one single unique
set of wavelet filters. Actually, there are infinitely
many possible sets. In general, the different sets
make different trade-offs between how compactly
they are localized in space and how smooth they
are. (There are also further fine distinctions.) A
special family of wavelets that was discovered by
Ingrid Daubechies [12] and consists of four classes
is described below:

1. The Haar wavelet is a square wave and has
compact support. It is the only compact ortho-
gonal wavelet, which is symmetric. However
and unlike the other wavelets, the Haar wavelet
is not continuous.

2. The Daublets (or Daubechies) were the first
type of continuous orthogonal wavelets with
compact support.

3. The Symmlets also have compact support.
While the Daublets are quite asymmetric, the
Symlets were constructed to be as nearly sym-
metric (least asymmetric) as possible.

4. The Coiflets were constructed to be nearly
symmetric and also have additional properties
thought to be desirableÐvanishing moments,
which are useful in compression applications.

Signal denoising
Wavelet-based denoising is based on the

Waveshrink algorithm that was developed by
Donoho and his colleagues [13±15]. The algorithm
works by shrinking the wavelet coefficients of a
data vector, that typically includes additive noise,
and then inverse-transforming them to obtain a
denoised approximation of the true underlying
data. There are several shrinkage methods that
basically differ in the way the threshold is
computed and to which coefficients it is applied.
The details of these methods are beyond the scope
of this paper but a somewhat detailed treatment
can be found in [5].

IMPLEMENTATION IN EXCEL

The wavelet transform, inverse transform, and
denoising code is quite involved (for an example

implementation of the transform and its inverse,
see [16] ) and hence, its implementation using
elementary Excel functions is highly unmanageable
and impractical. A more straightforward approach
that benefits from publicly available open source
code and works with Excel is much more attrac-
tive. The three algorithms were implemented as a
dynamic link library (DLL) that was written in
C��. The DLL interacts with Excel as a Common
Object Model (COM) object. This latter is a
Microsoft technology that represents a mechanism
allowing programs to communicate. The DLL
becomes accessible to Excel after being added to
Window's Registry and proper communication
with it is made possible by way of adding its type
library to Excel through the menu of its Visual
Basic Editor. This allows for correctly marshalling
(converting to a `neutral' data type) Excel's data so
they are correctly received by the DLL code. The
VBA code of Excel calls the functions of the DLL
through interfaces, which are specified in an Inter-
face Definition Language (IDL) file. Each inter-
face includes the set of data types and the set of
functions to be executed from Excel. Interfaces
specify the function prototypes for remote func-
tions and for many aspects of their behavior from
the point of view of interface users.

As seen in Fig. 1, the DLL exposes three
interfaces through which the Excel forms send
and receive data. Three forms are provided,
which allow users to run the wavelet transform,
inverse wavelet transform, and the wavelet-based
de-noising algorithm.

User Interface
To allow the user to control the actions of the

wavelet transform, inverse transform, and denois-
ing algorithm, three user interfaces were designed
using VBA. These are shown in Fig. 2. In parti-
cular, the wavelet transform form allows for a
great flexibility in picking the desired wavelet
filter, the number of applicable vanishing
moments, the number of resolution levels, and
the format of the presentation of computed wave-
let coefficients on the Excel sheet. Two options
were implemented. The first one allows for isolat-
ing coefficients per resolution level while the
second arranges the coefficients into groups that
progressively contain more detail coefficients. The
first option can be used to reconstruct the data
from coefficients belonging to a single resolution
level while the second one allows for adding more
details to the reconstruction process and hence,
acting as a low pass filter with a controllable cutoff
frequency.

The inverse transform form inherits all the
options from the coefficients but the denoising
form allows for selecting one of the available
shrinkage methods. Additionally, the user is able
to select the specific wavelet to be used for the
computation of the coefficients which get subjected
to shrinkage. The choice of the wavelet greatly
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Fig. 1. Interaction between the Excel forms and the DLL's implementation. The dotted circles in the DLL represent support math and
signal processing functions that are used by the wavelet transform, inverse transform, and de-noising functions.

Fig. 2. User Interfaces for interacting with the wavelet DLL. The left window allows the user to control the actions of the wavelet
transform, the middle one allows for performing the inverse transform, and the right one allows for controlling the denoising algorithm.
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impacts the results as certain wavelets are able to
highlight particular features within the data
more than others. As an example, the Haar
wavelet is known for making discontinuities
more pronounced in the wavelet coefficients
when compared to other wavelets.

Comparison with Matlab's Wavelet Toolbox
The obvious package to compare the developed

toolbox to is MATLAB's Wavelet Toolbox. In this
paper, it is not claimed that the developed toolbox
has advantages over MATLAB's toolbox in terms
of computational capabilities and functionalities.

Fig. 3. Multiresolution analysis of an FM communication waveform. The top two plots show the FFT transform (left) and the FM
waveform (right) while the remaining plots show the wavelet transform at each resolution level and the corresponding inverse

transform.
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The developed toolbox however can be used wher-
ever Excel is present and inherits from it its flexible
data viewing capabilities, ubiquitous accessibility,
and interface simplicity. We also note that the code
of the developed toolbox, including the C�� code
that compiles into the DLL and the VBA code of
the Excel forms, is available from the author for
educational purposes, at no cost. This allows
students and instructors to make changes, add
functionality, or customize the toolbox to perform
special functions.

APPLICATIONS IN EDUCATION

In this section, we present four applications in
education and research. The first two are in the
areas of analog communications and antenna
theory and explore the capability of multiresolu-
tion analysis. The other applications are in the
areas of feature detection and signal denoising,
which are topics that relate to many research
fields and are encountered in several graduate
courses.

Example in Analog Communications
Figure 3 shows several plots that belong to an

FM signal. The top left plot shows the FFT of the
signal while the top right one shows its inverse
transform, which produces an exact replica of the
original waveform. Starting from the second row
from the top and going down, we show the

amplitude of the wavelet coefficients of each
resolution level and the corresponding inverse
transform. We start with the smoothest coefficients
at the lowest level and end up with the detail-most
coefficients at the highest level (the signal was
represented with 1024 samples). The smooth coef-
ficients render the trends in the data while the
detail ones highlight events, sudden changes, and
noise. The figure shows that there were insignif-
icant details beyond level 6, which leads to a very
significant discovery: The entire signal can be
represented with 1024ÿ (512� 256� 128)� 128
samples with negligent losses in terms of recon-
structed signal quality. This property of the wave-
let transform can positively impact the bandwidth
utilization if the wavelet coefficients are trans-
mitted across the communication channel in
place of the signal samples themselves. Such prop-
erties can be further explored by students using
laboratory experiments not only in the area of
analog communications but in the fields of digital
communications and computer networking as well.

Example in antenna design
Figure 4 show polar plots of the array factor of a

10-element antenna array. The top left plot corre-
sponds to the entire data while the remaining
plots represent the array factor for given resolution
levels, reconstructed from corresponding groups
of wavelet coefficients. Basically, each plot repre-
sents the response of the antenna array to a
particular range of frequencies, as determined by

Fig. 4. Polar plots of the Array Factor of a 10-element antenna array. The top left plot shows the array factor for the original data
while the remaining ones show the inverse transform of the wavelet coefficients at each resolution. The scale used for the plot of the

original data is 0 to 100 while the one used for all the remaining ones is ÿ17 to 13.

H. Artail et al.924



the corresponding level. Educators, students, and
researchers can use these findings to explore the
behavior of antenna systems under certain condi-
tions, e.g., combinations of phase angle and
frequency ranges. The plots also reveal trends
and sharp fluctuations that could only be isolated
to various degrees by using the power of wavelets.

Example in feature detection
One of the benefits of wavelet analysis is the

ability to detect and locate hidden trends and
events within the data. Basically, events represent
sharp and sudden fluctuations in the data that may
not be obvious when the data series is visually
inspected. Figure 5 shows two examples of wave-
forms that include obvious jumps in the data and
illustrate the ability of the wavelet transform to
identify those jumps through the magnitude and
the positions of the transform coefficients. The
first plot is about a sine wave with increased and
decreased amplitudes during certain intervals. The
wavelet coefficients clearly indicate the relative
value of each jump and its position. This property
is clearly demonstrated in the example of the
second plot.

In both plots, the shown coefficients belong to
the highest detail resolution level. Since this level
contains N/2 coefficients (N is the number of
samples that make up the waveform), we had to
interleave the coefficients with N/2 zeros to align
the coefficients with the samples of the signals.
Once this is done, the analyst is able to pinpoint
the exact positions within the waveform using the
positions of wavelet coefficients that have ampli-
tudes above a certain threshold.

Example in denoising
Figure 6 demonstrates the capabilities of the

non-linear denoising algorithm. The two shown
plots illustrate the effectiveness of the algorithm
when used with continuous as well as non-contin-
uous waveforms. Using the cutoff level (see the
screen dump in the far-right of Fig. 2), which is the
level above which shrinkage is applied, the user can
control the degree of denoising. An aggressive level
can cause loss of signal information while a relaxed
one does not remove all the noise. Second, it is
important and as mentioned before, to select the
appropriate wavelet filter. In the lower plot for
example, the discontinuous Haar wavelet was used
to denoise the square-like noisy waveform. By
comparing this denoised waveform of this figure
to the bottom-left plot of Fig. 5, a close approx-
imation of the original data was obtained from a
severely noise-corrupted data.

CONCLUSION

In this paper we focused on the applications of
an Excel-based implementation of the wavelet
transform, inverse wavelet transform, and the
wavelet-based denoising algorithms in education.
We presented the user interfaces of the developed
toolbox, which were implemented using VBA to
allow users to perform different types of data
analyses. We have shown through two applications
the potentials of wavelets in uncovering trends
and details within the data using multiresolution
analysis. We presented two other applications that
demonstrate the role of wavelets in localizing

Fig. 5. Feature detection and localization examples. The figure shows the plot of the waveform data (left) and the corresponding detail
coefficients (right). The magnitude, polarity, and location of each coefficient clearly describes a particular event in the waveform.
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features and in effectively removing noise from
data. The popularity and wide use of Excel
among students and instructors represents a

motivating factor for using such a tool for all
types of data and signal analyses within classroom
and lab settings.
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