
Modeling and Simulation of the DC Motor
Using Matlab and LabVIEW*

NICOLAE PATRASCOIU
Automatic and Industrial Information Department, University of Petrosani, Romania. E-mail:
patrascoiu@upet.ro

One of the most used actuators in control systems is a direct current (DC) motor. The general
output variable of this actuator can be angular speed or angular displacement motion, but, coupled
with wheels or drums and cables, can provide translation motion. This paper proposes a state±space
model of the DC motor built for constant flux and considering two inputs: supply voltage and
resistive torque. The three states of the resulting model are represented by angular speed, angular
displacement and current supply and any of these states can be an output variable for a simulation
model. Consequently, the system's model has two inputs and three outputs. For the system's
simulation a VI is built where the most important element is a Matlab script which contains the
matrices A, B, C, D of the state-space model, the independent variable time and the Matlab
simulation function lsim. The motor's parameters are given by digital controls on the panel so that
these parameters can be interactively modified. To generate inputs, two CASE structures are used
where the input variables can be set: impulse, step and ramp. Here it is also possible to set the signal
amplitude and duration, either by knob or slide control. TRANSPOSE 2D ARRAY and INDEX
ARRAY are used for setting the matrices' dimensions. The output signals are live display, either
one by one or together, on the WAVEFORM GRAPH.

INTRODUCTION

STUDENTS CAN USE the model and the VI in
the classroom to simulate the running of a DC
motor and also to learn how to incorporate the
latter into a control loop. To start with, based on a
functionality structure of the DC motor and on the
laws of physics and electricity that rule the variable
magnetic flux density (separate excitation) motor's
operation, students build a mathematical model.
Afterwards, using the mathematical model in a
series of simulation experiments in LabView, the
students can observe the motor dynamics. For this,
it is necessary to build the simulation VI and
students must analyze the diagram bloc of the VI
to ensure adequate functionality of the component
subdiagrams.

For the input signal, it is possible to select
various forms of supply voltage and/or resistive
torque so that the above-mentioned outputs can be
observed. The forms of the output can suggest the
design of the control loop or the type of controller
used. Also, for every input signal, students can
observe the effect of varying the parameters of the
DC motor over the outputs.

Functionality equations of the DC motor
We will consider a direct current (DC) electric

motor with separate excitation, compensating
winding and commutating pole. The structure of
this machine is presented in Fig. 1, where:

vS, iSÐsupply voltage and current;

uE, iEÐexcitation voltage and current;
R, LÐwinding electric resistance and inductance;
'�t�Ðexcitation flux;
e(t)Ðback electromotive force;
!�t�Ðangular speed;
m(t)Ðelectromagnetic torque;
rT(t)Ðrestoring torque.

If we apply the Kirchhoff voltage theorem to the
supply circuit, we get:

vS�t� ÿ e�t� � R � ia�t� � L � dia�t�
dt

�1�

The torque equilibrium equation on the axis of the
motor is:

m�t� � mT�t� � fT�t� � rT �t� �2�
where mT �t� is the motoring torque, which is
dependent on the moment of inertia of the rotor,
and fT �t� is the motor friction torque.

Now the torque equilibrium equation can be
written:

m�t� � J � d!�t�
dt
� F � !�t� � rT�t� �3�

It is known that an electromagnetic torque is
dependent on the excitation flux in excitation
winding and on the supply current by the armature
constant kt which in SI units (which we will
use here) is equal to the motor constant ke

�kt � ke � k�:
* Accepted 14 July 2004.

49

Int. J. Engng Ed. Vol. 21, No. 1, pp. 49±54, 2005 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2005 TEMPUS Publications.

m�t� � k � '�t� � iS�t� �4�
and the back electromotive force is dependent on
the angular speed and on the excitation flux in
excitation winding by motor constant k:

e�t� � k � '�t� � !�t� �5�
(1), (3), (4) and (5) are functionality analytical
equations (i.e. a general mathematical model of
the DC electrical motor).

If we consider the angular displacement ��t�
instead of angular speed !�t�, a similar output
variable is necessary to take account of the rela-
tionship between these:

!�t� � d��t�
dt

�6�

The DC motor angular speed control is achieved
by two methods: constant flux and variable flux. In
this paper we consider speed control by constant
flux.

Constant flux simulation model
If the excitation flux is constant, insert the

notation:

k � � � Km �7�

into the general mathematical model of the DC
electrical motor. Now it can build the mathematical
model in state±space form so that it is possible to use
it in a Matlab simulation.

Substituting equations (4) and (5) and notation
(7) in equations (1) and (3) results in a complete
DC motor model by constant flux, respectively:

di��t�
dt
� 1

L
� vS�t� ÿ R

L
� iS�t� ÿ Km

L
� !�t�

d!�t�
dt
� ÿF

J
� !�t� � Km

J
� i��t� ÿ 1

J
�mL�t�

�8�

To build the state±space model, bring into this
mathematical model the input, state and output
vectors:

. State vector x�t�, whose components are repre-
sented by supply current iS�t�, angular displace-
ment ��t� and angular speed !�t�:

x�t� �
iS�t�
��t�
!�t�

��������
�������� �9�

. Input vector u�t�, whose components are repre-

Fig. 1. DC motor functionality structure.

Fig. 2. Front panel and bloc diagram of the simmot.vi.

N. Patrascoiu50

sented by supply voltage vS�t� and load torque
mL�t�:

u�t� �
vS�t�
mL�t�

�����
����� �10�

. Output vector y�t�, whose components we treat
as the same as state vector components, so that
it is possible to simulate these three physical
quantities.

Using these vectors it is possible to write equations
(8) in matrix form:

iS�t�
��t�
!�t�

��������
�������� �

ÿR

L
0 ÿKm

L

0 0 1

Km

J
0 ÿF

J

����������

����������
�

iS�t�
��t�
!�t�

��������
��������

�

1

L
0

0 0

0 ÿ 1

J

����������

����������
�

vS�t�
mL�t�

�����
����� �11�

Using systems general equations, this form can be
written in compact form:

x�t� � A � x�t� � B � u�t� �12�
where A and B are a costants matrix:

Fig. 3. Matlab script node and parameter controls.

Fig. 4. Generation of input signals.

Modeling and Simulation of the DC Motor 51

A �
ÿR

L
0 ÿKm

L
0 0 1

Km

J
0 ÿF

J

���������

���������; B �

1

L
0

0 0

0 ÿ 1

J

���������

��������� �13�

If we add the output vector definition, the input±
output equation can be written as the matrix:

y�t� �
1 0 0

0 1 0

0 0 1

�������
������� �

iS�t�
��t�
!�t�

�������
��������

0 0

0 0

0 0

�������
������� �

vS�t�
mL�t�

���� ����
�14�

or, in compact form:

y�t� � C � x�t� �D � u�t� �15�
where:

C �
1 0 0

0 1 0

0 0 1

�������
�������; D �

0 0

0 0

0 0

�������
������� �16�

Now we have the matrix A, B, C, D and we can use
the function lsim, which has the form:

y � lsim�A;B;C;D; v; t� �17�
where vector t specifies the time samples for the
simulation and consists of regularly spaced time
samples t to simulate the DC motor as an LTI
system.

Build the VI to simulate a DC motor in LabView
The control panel and bloc diagram of the VI

that was used to simulate the DC motor are
presented in Fig. 2.

The base element of the LabView program
simmot.vi, which is used to simulate a working
DC motor, is the Matlab script node. Through
this, the matrix A, B, C, D of the motor state±
space model and the simulation function are
inserted into the LabView program (Fig. 3).

The motor construction parameters R, L, Km, F
and J also represent the model parameters and
these are set using the controls on the front panel,
which should be named with the same letters as the

Fig. 5. Data representation of input signals.

Fig. 6. Data representation of output signals.

N. Patrascoiu52

parameters. For the respective controls, the steps
of values corresponding to the real values of these
parameters are chosen. The values set by these
controls represent the inputs for the script node
with real data type.

Because the input vector has two components
for generating the right signals, two blocs are built
on the front panel. These two blocs are represented
in diagram bloc by a CASE structure with three
subdiagrams, which generates the standard signals
(i.e. IMPULSE, STEP and RAMP). The subdia-
grams contain, respectively, Impulse Pattern.vi,
Pulse Pattern.vi and Ramp Pattern.vi, and these
can be adjusted by the corresponding controls.
Also, the control panel can be used to set para-
meters such as amplitude, width (given by START
TIME end STOP TIME) and delay (given by
START TIME) using either a knob or a slide
control (Fig. 4).

With the two arrays that contain the input
pattern, the BUIL ARRAY node can be used to
obtain a new array that has values arranged in
rows that represent for a real system the input
signals. For a graphic representation of these, it
can use a graphic display WAVEFORM GRAPH
type. The input vector requires a transpose array
so that a vector can be obtained that is arranged in
two columns and in order that it can use the
TRANSPOSE 2D ARRAY node to rearrange
the elements of the 2D array such that the 2D
array [i, j] becomes a transposed array [j, i].
Similarly, the same node is used at the output of
the Matlab script node because the output vector
of this node must be in rows and must have three
columns that correspond to the three output
signals. The input and the output terminals of
the Matlab script node corresponding to the
input and output signals must be in Real Matrix
type.

The input and output signals have different
forms and different value ranges (Figs 5 and 6),
so that a selection of these signals is necessary
using the AutoScale option of the WAVEFORM

GRAPH display. To do this, the INDEX
ARRAY nodes are used for the input and the
output. The right signal is selected to set the
index input of these nodes using the corres-
ponding button on the front panel, so as to
display the same signal by its connection to the
Matlab scrip input.

The right sequence of the simulation program is
necessary in order that the number of samples of
the vector t, which represents the simulation time
in Matlab, is the same as the number of samples of
the signal generation pattern. To do this in Matlab
script, the vector t that specifies the time samples
for the simulation should have 5/0.01� 1� 501
components. It is also necessary for the number
of samples of the Ramp Pattern to be 501. For
Stop Time control, Relative time (seconds) in the
Format & Precision option should be selected.

CONCLUSIONS

The Matlab lsim function simulates the (time)
response of continuous or discrete linear systems
to arbitrary inputs and lsim (sys, u, t) produces a
plot of the time response of the LTI model sys to
the input time history. If this function is incorpo-
rated into a Matlab simulation program, such as
adding Matlab script to a LabView program called
Virtual Instrument (VI), the input u can be
produced by a different signal generation function
in VI.

LabView starts Matlab and, if using the plot
(t,y) instruction after the lsim instruction in
Matlab script, a new Matlab window appears
labeled Figure No. 1, which displays the graphical
responses of the DC motor outputs. In Fig. 7, the
similarity between the LabView and Matlab results
can be observed.

By means of controls placed on the front panel
of the VI, the model parameters and the input
signal parameters can be set. For example, where
the load torque has a significant value, as shown in

Fig. 7. Data representation of output signals in LabView and Matlab.

Modeling and Simulation of the DC Motor 53

Fig. 6, negative values appear for displacement
and speed outputs. This means that the motor
axle starts spinning the other way round.

Also, because LabView is a data acquisition

program, it is possible to make comparisons
between data acquired from a real system and
data obtained from a mathematical model of the
system.

REFERENCES

1. A. Fransua, Masini si actionari electrice, Tehnica, Bucuresti (1986).
2. M. Ghinea, Matlab: Calcul numeric-grafica, Teora, BucuresÎti (1997).
3. D. Matko and R. Karba, Simulation and Modelling of Continuous System, Prentice-Hall, New

York (1992).
4. N. Patrascoiu, Modelarea sÎi simularea sistemelor, Focus, PetrosÎani (2001).
5. LabView User Manual, National Instruments.
6. MATLAB1 Release 11. Documentation set (http://www.mathworks.com/support/).

Nicolae Patrascoiu is an Associate Professor in Engineering. He teaches data acquisition
and control systems at the Automatic and Industrial Informatics Department at the
University of Petrosani, Romania. He shows a particular interest in the links between
data acquisition and modeling and simulation systems.

N. Patrascoiu54

