
Motor Control Demonstration Lab*

JIM SIBIGTROTH and EDUARDO MONTANÄ EZ
Freescale Semiconductor launched by Motorola, 8/16 Bit MCU Division, Austin, TX 78735, USA.
E-mail: j.sibigtroth@freescale.com; eduardo.montanez@freescale.com

This paper presents an example laboratory exercise using a microcontroller to control a motor. NI
ELVIS is used as a convenient platform to connect components, provide power, and analyze circuit
operation. A small MCU module with required basic circuitry for crystal, serial I/O, and debugger
connections is provided as a small module that plugs into the NI ELVIS breadboard. MCU
program development and debug are done with Metrowerks CodeWarriorTM software running on
the same host PC as the NI ELVIS and LabVIEWTM software.

INTRODUCTION

MICROCONTROLLERS (MCUs) are used in
virtually every field of science and engineering.
The smallest Freescale MCUs have only eight
pins and are used in toys and appliances, and for
tasks as simple as interfacing a few switches in a
car door. More sophisticated MCUs have process-
ing horsepower rivaling that of the most powerful
desktop computers and are used to perform
complex real-time fuel and spark timing computa-
tions in modern automobile engines. MCUs have
become so common that they are now considered
an essential part of almost all science and engin-
eering programs. As MCU development tools
become more user-friendly and evaluation boards
come down in price, classes in microcontroller
technology are being presented earlier in the en-
gineering curriculum.

This motor control lab exercise was developed to
explore how the NI ELVIS system [1] could
complement existing microcontroller development
tools in the engineering laboratory environment.
The Freescale MC9S12C32 MCU [2] is used and
Metrowerks CodeWarrior [3] is used as the MCU
development tool. NI ELVIS offers an easy way to
introduce controlled stimulus signals to the MCU
and to monitor outputs from the MCU. The
breadboard provides a convenient platform for
wiring peripheral circuitry and multiple power
supplies for the lab exercise. As an added conve-
nience, NI ELVIS virtual instruments such as the
oscilloscope provide a way to look at various
signals such as the pulse width modulated
(PWM) signal that drives the motor speed.

By using virtual switches from a LabVIEW
simulated front panel (SFP) instead of physical
switches, certain real-world complications such as
switch bounce can be avoided during introductory
level exercises. After getting the initial lab exercise
to work, the student could be assigned to replace
the virtual switches with real switches, so that they

experience, and then solve, the real-world problem
of switch bounce.

This paper discusses the implementation of this
demonstration lab exercise. The implementation
and theory of operation is given for each part of
the system. Several possible variations are
discussed that could be used to adapt this lab to
slightly different audiences. For example, some
classes might concentrate on developing a more
sophisticated LabVIEW front panel that could
monitor and record the duty cycle of the PWM
drive signal and the resulting motor speed.
Another class might develop a more sophisticated
enable/disable mechanism rather than the basic
1-2-3 sequence that we implemented. Yet another
class might extend this lab to implement a closed-
loop motor speed controller using either PID or
fuzzy logic techniques.

SYSTEM BLOCK DIAGRAM

Figure 1 shows the overall block diagram of the
system. The host PC is shown with the data
acquisition card leading to the NI ELVIS system.
A background debug mode (BDM) pod [4] is
connected from the host PC to a BDM connector
on the microcontroller (MCU) module. CodeWar-
rior1 development software supports debugging
through a BDM pod connected to a printer port or
USB port on the PC, or a serial I/O connection
from a PC serial port to a serial interface on the
MCU module may be used in place of the BDM
pod (see serial monitor discussion later in this
paper). The NI ELVIS block includes power
supplies, digital I/O, and indicator LEDs, as well
as a large breadboard area for the MCU module
and experiment circuitry. The MCU block includes
an MC9S12C32 16-bit MCU along with a crystal,
RS-232 level shifters, and a BDM connector for
programming and debugging the application soft-
ware. The dc motor interface block includes the
motor, a 2-transistor circuit to translate the 0±5v
PWM signal from the MCU into a 0±15v signal to* Accepted 29 September 2004.

84

Int. J. Engng Ed. Vol. 21, No. 1, pp. 84±93, 2005 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2005 TEMPUS Publications.

drive the motor. Though not used in this demon-
stration lab, the dc motor interface block also
includes an optical interrupter sensor that can be
used to monitor motor speed using a slotted disk
attached to the motor shaft.

SIMULATED FRONT PANEL

In this example lab exercise, a simulated front
panel (SFP) was written in LabVIEW to emulate
switches for inputting a code sequence, an LED to
indicate the enable/disable state of the PWM
output, and a dial to set the desired motor speed.
An SFP is part of a LabVIEW virtual instrument
(VI). This SFP controls digital I/O on NI
ELVIS for the digital signals and the dial controls
the positive variable power supply on NI ELVIS
to produce an analog voltage level between 0
and 5 volts. Figure 2 shows the motor control
SFP. To locate the LabVIEW SFPs, first down-
load and extract the zip file from http://www.
freescale.com/files/microcontrollers/doc/white_
paper/WPMCDLSW.zip hhttp://www.freescale.com/
files/microcontrollers/doc/white_paper/WPMCD
LSW.zipi to your chosen directory. The root SFP
for this project is located at ..\WPMCDLSW\NI_
Labview_FrontPanels\NIELVISMotorolaDemo.vi.

Normally the NI ELVIS Instrument Launcher
would only allow a single VI to run at a time. You
could run multiple instruments under LabVIEW as
long as they do not try to use the same NI ELVIS
resources. Since the front panel for this experiment
and the oscilloscope are both VIs, we have
included a button on our front panel to invoke
the oscilloscope as a sub process. This provides a
convenient way to run the front panel and the
oscilloscope at the same time.

The `Manual?' indicator, at the lower right,
lights when the positive variable power supply on
the NI ELVIS workstation is switched to manual
mode. Since the variable power supply can be set
to �12v in manual mode (compared to 0±5v with
the front panel), a series resistor is installed on the
breadboard between this voltage source and the
ATD input of the MCU.

Virtual switches
Each time a user clicks on a switch on the PC

screen, the corresponding digital input signal is
driven low for a 100 millisecond low-true pulse.
These virtual switch signals are different than real
switches because they produce clean signals while
real switches typically exhibit switch bounce.
Switch bounce causes extra edges as the switch

Fig. 1. Block diagram of the motor control demonstration lab.

Motor Control Demonstration Lab 85

contacts close and open. Dealing with this switch
bounce requires extra programming in the micro-
controller that may be beyond the ability of a
student in an introductory level class. This demon-
strates one way the virtual front panel can be used
to simplify the solution to problems in an intro-
ductory level class. It would also be possible to
program the simulated switches to intentionally
produce worst-case bounce in order to challenge
more advanced students.

Motor control LED indicator
This demonstrates how a digital output from the

NI ELVIS breadboard can be used to provide
signals to the PC, where they can be used in a
simulated front panel. In this case an output from
the MCU is connected to a digital output on the
breadboard. This signal will be used to indicate
whether the motor control output from the MCU
is enabled (granted) or disabled.

Speed dial
The speed dial on the SFP controls the level of

the positive variable power supply to produce an

analog voltage between 0 and 5 volts. NI ELVIS
also has two DAC signals that could have been
used here, but we chose the variable power supply
because it can be placed in manual mode. During
development of the lab, the student can switch the
variable supply to manual to allow control of this
voltage with the knob on the front of the NI
ELVIS workstation rather than being controlled
from the SFP.

Oscilloscope VI button
This button launches the NI ELVIS oscilloscope

VI as a sub process of the front panel. This over-
comes a limitation of the Instrument Launcher, so
that the front panel and the oscilloscope VI can
operate at the same time. Figure 3 shows the
oscilloscope VI. The waveform displayed on the
oscilloscope is the PWM signal from the MCU.
From the settings and measurement annotations
on the oscilloscope screen, you can see that the
PWM signal has a period of about 500 micro-
seconds so the PWM frequency is about 2 KHz.

The oscilloscope VI is a virtual instrument that
appears as an interactive window on the PC screen

Fig. 2. Motor control front panel.

J. Sibigtroth and E. MontanÄez86

with buttons and knobs similar to those found on
traditional oscilloscopes. The probes for this osc-
illoscope can be connected to the BNC connectors
on the front of the NI ELVIS workstation, or they
can be wires from the CH_A�/ÿ and CH_B�/ÿ
connectors at the upper left corner of the bread-
board. The student can make the same kind of
measurements with this virtual oscilloscope as they
could with a physical oscilloscope, without the
need for a separate piece of test equipment.

MC9S12C32 MCU BLOCK

The MCU block is a pre-assembled module
made by Technological Arts [5] that includes the
MC9S12C32 MCU and a small amount of
common support circuitry. This module is also
available from Freescale Semiconductor under
the part number M68MOD912C32. A crystal
and a few passive components provide a clock
source for the MCU. An RS-232 level shifter
converts MCU signals to levels required by the
serial I/O standard. The level shifted versions of
RxD and TxD are wired to pins 1 and 2 of the
MCU block. These can be wired to a DB-9 serial
I/O connector to allow the MCU to communicate
with a host PC or other computer device.

Figure 4 shows the pin assignments for the
MCU block. The block has the same footprint as
a standard 32-pin DIP IC. Pin 1 is shown in the
upper left corner. Pin names inside the block are
the Technological Arts pin names. The names of
the signals as used in the application are shown
outside the block.

I/O characteristics
For this lab exercise, we use an analog (ATD)

input to measure the SUPPLY� voltage which is
used to set the motor speed. The ATD inputs to
the MCU should be limited to 0±5 volts. Because
of input protection circuitry inside the MCU, there
is effectively a diode to Vdd which conducts when
the voltage on an ATD input is a diode drop or
more above Vdd. In this application, the front
panel VI limits the output on SUPPLY� to 5
volts, but if the variable power supply is set to
manual, it is possible to adjust this voltage to 12
volts. In order to avoid damage to the MCU, a
1K ohm resistor is placed in series between the
SUPPLY� voltage and the ATD input pin. For
normal levels on this pin, there is very little current
in this resistor so the voltage at the ATD input pin

Fig. 3. Oscilloscope VI showing PWM signal from MCU.

Fig. 4. Pin assignments for the MCU block.

Motor Control Demonstration Lab 87

is effectively equal to the SUPPLY� voltage.
When SUPPLY� is set to 12 volts, the ATD pin
clamps at about 5.7 volts so there is (6.3v/1K ohm)
or about 6.3 milliamps of current into the ATD
input pin. This is not enough current to harm the
MCU.

The three virtual switches are connected to input
pins PT1, PT2, and PT3 on the MCU. For this
application, our software configures these multi-
purpose pins as timer input capture pins so they
can be used to detect edges that correspond to
switch closures. These are standard CMOS inputs
that have their switch point near Vdd/2. These pins
also have a small amount of hysteresis to help filter
out noise when the input level is near its switch
point. NI ELVIS `DO x' signals are TTL compa-
tible so a high level is about 4 volts rather than 5
volts like a CMOS device would normally drive.
This level is compatible with the MCUs CMOS
input levels. Like the ATD input pins, these
general purpose digital I/O pins have internal
input protection circuitry that clamps the pin
level to no more than a diode drop above Vdd or
below Vss. The user is responsible for limiting the
current if higher or lower voltages are expected
from external circuits.

The Lock/Unlock Status signal shown in the
middle of Fig. 1 is driven by a general-purpose
digital output pin on the MCU. These pins typi-
cally drive the pin to Vdd for logic one and Vss for
logic zero. They are specified to drive up to 2 mA
each in reduced drive mode or 10 mA each in full
drive mode over the full rated voltage and
temperature ranges.

The PWM signal is also a digital output pin with
the same characteristics as a general-purpose digi-
tal output. The 9S12C32 PWM timer can generate
8-bit or 16-bit resolution PWM signals with a clock
input frequency of up to 25 MHz. For example,
you could produce an 8-bit resolution PWM signal
with a frequency of nearly 100 KHz. For this
motor control demonstration lab we chose a
PWM frequency of just 2 KHz so that the oscillo-
scope VI could be used to examine the waveform
even with a relatively slow DAQ card. In a
commercial application, you would probably
want to use a PWM frequency of 20 KHz or
higher so that you couldn't hear this frequency at
low motor speeds. In this demo lab, you can hear
the 2 KHz signal a little bit at low motor speeds.
You can try this by listening while the PWM is
controlling the speed and then drive the motor
directly from the variable power supply in manual
mode (you will not hear the 2 KHz whistle when
the motor is driven from the dc supply.)

The serial port of the PC uses standard RS232
voltage levels (from ÿX volts to �X volts, where X
can be from 6 to 15 volts depending upon the
particular PC). A level shifter device is included on
the MCU block to convert the RS232 levels to the
0±5 volt levels that are required at the RxD
and TxD pins of the MCU. We have wired the
level shifted RxD and TxD pins to the DSUB

connector. This connection would be used if you
were using the serial monitor rather than a BDM
pod to interface CodeWarrior to the MCU. The
serial monitor eliminates the need for a BDM pod,
but it is not as elegant (unobtrusive) as the BDM
pod.

Background debug connections
The ideal way to allow CodeWarrior to access

the MCU is through the background debug inter-
face. The MCU module includes a 2� 3 square-
post header for this purpose. This interface uses a
single dedicated pin on the MCU plus ground and
optional connections to reset and Vdd. Code-
Warrior communicates with a BDM pod through
a parallel or USB port on the PC. The BDM pod
converts commands from CodeWarrior into a
custom serial BDM protocol. Using this interface,
CodeWarrior can execute primitive commands to
read or write memory locations (even while appli-
cation programs are running), read or write CPU
registers, set breakpoints, or trace single instruc-
tions. These primitive commands allow Code-
Warrior to program the Flash memory and
debug user programs.

Serial monitor option
The serial monitor [6] is a small 2 Kbyte

program that is programmed into the Flash
memory of the MC9S12C32. This program
emulates primitive debugging commands similar
to those available through the background debug
interface. CodeWarrior has the ability to choose
either a BDM pod or this serial monitor as the
interface to the target MCU. All of the Flash
programming and debug options of CodeWarrior
are available, independent of which interface is
chosen. The main differences between these two
interface methods are the connection from the PC
and the degree to which debugging interferes with
the application program in the target MCU.

With the serial monitor, a simple serial cable is
used to connect the serial I/O port of the PC to the
(level shifted) SCI pins of the target MCU. This
eliminates the cost of the BDM pod.

Like traditional ROM monitor programs such
as BUFFALO for the M68HC11, the serial moni-
tor is more intrusive than a BDM pod. The serial
monitor uses 2 Kbytes of Flash memory, including
the vector locations, and takes over control of a
serial communications interface (SCI) port. Since
the monitor program and the user program share
the same CPU and memory, there can be interac-
tions between the monitor and the user programs.
These interactions can cause some confusion for a
beginner such as a student in an introductory level
class. The instructor should consider the trade-off
between ease-of-use and the cost of a BDM pod.

Motor circuits
This demonstration lab exercise has two small

blocks of circuitry associated with the motor as
shown at the bottom of Fig. 1. A 2-transistor

J. Sibigtroth and E. MontanÄez88

emitter-follower circuit is used to translate the 0±5
volt PWM signal from the MCU to the 0±15 volt
levels required for the motor. An optical inter-
rupter sensor (light emitter-sensor pair) monitors
the speed of the motor with the help of a slotted
disk attached to the shaft of the motor. The motor
speed sensor is not used in this demonstration lab,
but it would be relatively easy to connect the
sensor signal to a timer input to the MCU to
measure motor speed. You could also use the
oscilloscope VI to monitor the sensor output
signal.

The motor is a basic dc brush motor. This motor
could be driven by an analog voltage between 0
and 15 volts, or it can be driven by a PWM signal
from the MCU. By adjusting the duty cycle of the
PWM signal, you can control motor speed. The
1N4001 diode across the motor reduces the
amount of noise generated by the motor when it
is driven by a PWM signal. If you remove this
diode while the motor is running, you should
notice the speed drop slightly and the sound will
change to be slightly more raspy.

MICROCONTROLLER SOFTWARE

The software for this paper can be downloaded
form the Freescale Semiconductor website. For
this lab, the software is built using CodeWarrior
software stationery. The software stationery
provides all the software necessary to access inter-
nal microcontroller register space and program
memory through software labels. The stationery
associates all register and control bit names from
the MCU data sheet with the appropriate address
and bit position. The stationery provides the
foundation for students to write their own
embedded programming routines.

To open the demo software, first download and
extract the zip file from http://www.freescale.
com/files/microcontrollers/doc/white_paper/
WPMCDLSW.zip hhttp://www.freescale.com/files/
microcontrollers/doc/white_paper/WPMCDLSW.
zipi to your chosen directory. The extraction will
form a directory labeled WPMCDLSW (ex.
C:\WPMCDLSW\, which includes a directory
labeled NI_ELVIS_DEMO_C32. The NI_ELVIS_
DEMO_C32 project directory is built for the
MC9S12C32 MCU Block. To proceed, make sure
to have Metrowerks CodeWarrior for HC(S)12
installed on your computer. Since this paper focuses
on the MC9S12C32 MCU Block, the software
description below will also reflect the NI_ELVIS_
DEMO_C32 project. Within the NI_ELVIS_
DEMO_C32 directory you will find a file labeled
NI_ELVIS_DEMO_C32.mcp, which is the Metro-
werks CodeWarrior project file for this lab's demo
software. Double-click on the file and the demo
software project will be loaded in the CodeWarrior
development environment. Figure 5 shows the
lab's demo software open in the CodeWarrior
development environment.

Typical microcontroller software is written in
three basic steps. First, you must define specific
microcontroller setup parameters. This includes
manipulating internal clock prescalers to change
the core bus speed, relocating memory space, or
specifying the desired microcontroller operating
mode. For this lab, the software uses default
clock prescalers (Bus Clock Speed�Crystal
Clock Speed/2), since there is no need for faster
cycle execution (lab is not time critical). The
MC9S12C32 MCU block is supplied with an
8 MHz crystal. Therefore, the default microcon-
troller bus clock speed equals 4 MHz. Also, this
introductory level lab does not require any
memory relocation or special operating modes.

The second step to developing microcontroller
software is configuring the behavior of individual
peripherals or multiplexed I/O pins. In software,
this is referred to as initialization. Ritual initializa-
tion routines specify the tasks to be performed by
peripherals or select the functionality of multi-
function I/O pins. For this lab, the io_init ()
function initializes the Lock/Unlock Status signal
by configuring a general-purpose I/O pin to act as
an output with an initial level of 0V (logic 0� lock;
logic 1� unlock) reflecting the motor status. The
pwm_init () function initializes the PWM peri-
pheral to generate a left-aligned, high-true PWM
on PWM Ch. 0 (0% duty cycle� continuous low).
The routine also configures the PWM period to
2 KHz by adjusting the channel's period and clock
prescaler registers. The signal duty cycle is set to a
default 0% and the PWM Ch. 0 output remains
disabled (Lock/Unlock Status� 0) until later in the
demo software where a successful 1-2-3 switch
combination enables the Motor PWM signal.
Next, the atd_init () function initializes the
ATD peripheral to continuously sample the
Motor Speed Reference signal (Supply�) that
determines the speed of the dc motor. In detail,
the function configures an 8-bit resolution conver-
sion sequence on ATD Ch. 0, which generates an
interrupt when a sampling sequence is completed.
The tim_init () function initializes timer channels
1, 2, and 3 as input capture channels that generate
separate interrupts upon an edge detect. These
channels are set to detect falling edges generated
by switch closures. These switch inputs are gener-
ated by virtual switches programmed in the motor
control front panel VI. Note that each of the
functions mentioned above can be found in their
respective peripheralname.c files. Also, note that it
is good practice to disable interrupts, while initi-
alizing the peripherals, and re-enabling interrupts
upon completion.

The final step to developing microcontroller
software is to write the main control algorithm
by using the results provided by the individual
peripherals. For this lab, the microcontroller
generates an interrupt when a switch closure is
detected that calls a switch_decoder () function.
The switch_decoder () function then determines
which switch was pressed and checks whether the

Motor Control Demonstration Lab 89

valid 1-2-3 sequence has been satisfied. If not, it
either saves the last switch value entered to
compare with the next switch value input or it
clears all three switch values if the 1-2-3 pattern
has been violated. Once the correct 1-2-3 combina-
tion is entered, the software enables the PWM Ch.
0 output, which drives the Motor PWM and drives
the Lock/Unlock Status signal high. If the combi-
nation is entered again the PWM Ch. 0 output is
disabled turning off the dc motor, and the Lock/
Unlock Status signal is cleared to a locked (0) level.
The next control algorithm is the motor speed
control. The PWM Ch. 0 duty cycle must reflect
the analog voltage Motor Speed Reference signal.
The ATD Ch. 0 peripheral continuously samples

this reference voltage and generates an ATD inter-
rupt when a conversion sequence is completed.
Within this interrupt function, the 8-bit ATD Ch.
0 data result register is copied into the 8-bit PWM
Ch. 0 duty cycle register. This causes the micro-
controller PWM Ch. 0 to generate a 0 to 100%
duty cycle directly proportional to a 0 to 5v
reference on ATD Ch. 0. The two software vari-
able windows of the CodeWarrior debugger in
Fig. 6 show the ATD Ch. 0 data result is copied
into the PWM Ch. 0 duty cycle register. These two
control algorithms are continuously executed.

The software involved in this lab exercise
demonstrates one of many ways to implement the
motor control example. This lab uses an interrupt-

Fig. 5. Motor control project in CodeWarrior.

Fig. 6. Software variable windows in CodeWarrior debugger.

J. Sibigtroth and E. MontanÄez90

driven procedure, which might not be typical in
more complex real-world applications. However,
this lab simplifies the software process in order
to focus on control and embedded interfacing,
typically addressed in an introductory microcon-
troller course. For more involved, time-critical
applications a routine like the switch_decoder ()
function would not be implemented within an
interrupt service routine. Instead it would be
embedded within your main () function and
would be serviced periodically through a timed
software loop. Overall, the three basic steps to
developing microcontroller software remain the
same regardless of which control approach you
take. For additional information about writing
programs for real-time MCU applications see
Embedded Microcomputer Systems: Real Time
Interfacing [7] by Jonathan W. Valvano.

TROUBLESHOOTING

The NI ELVIS system offers many helpful
debugging tools in addition to the MCU debug-
ging tools offered in CodeWarrior. NI ELVIS
tools range from simple LEDs to the virtual
DMM and oscilloscope tools.

Breadboard LEDs
The eight LEDs on the NI ELVIS breadboard

can be used as simple logic level probes to test the
digital levels present at various circuit nodes in the
system. In this lab exercise we wired one LED to
each of the digital input signals that are controlled
by virtual switches on the SFP. Normally these
LEDs remain lit. When a switch is clicked on the
PC screen, the corresponding LED will blink off
for about 100 milliseconds. This can be a useful
debugging tool to make sure the SFP works as
expected and to check the connections to the MCU
input pins. You could also use another LED to
monitor the level on the MCU output pin that
indicates whether or not the motor PWM signal is
active.

CodeWarrior1

The CodeWarrior debugger provides a rich
graphic user interface for debugging the applica-
tion program. The debugger screen includes
several window panes referred to as components.
The user can add, remove, or rearrange window
panes. Figure 7 shows a typical CodeWarrior
debugger screen.

This debugger allows the programmer to debug
their code, including C source-level debugging.

Fig. 7. CodeWarrior debug screen with several components.

Motor Control Demonstration Lab 91

You can monitor or change the contents of
memory or registers, set breakpoints, trace indivi-
dual instructions or C statements, monitor or
change CPU register contents, and so on. For
more information, refer to the CodeWarrior docu-
mentation.

The newest HCS08 and HCS12 MCUs, includ-
ing the MC9S12C32 used in this lab, have an on-
chip ICE (in-circuit emulator) [8] that can capture
real-time bus information into an on-chip FIFO
buffer. This system works with the CodeWarrior
debugger to provide the functions of an in-circuit
emulator and bus-state analyzer. In order to use
the on-chip ICE, you need to add a `Trace'
component to the debug screen, and then set up
the desired trigger conditions. Bus information is
captured in real time based on your trigger
settings. Later, CodeWarrior reads the contents of
the capture buffer FIFO, decodes the information,
and displays the results in the trace component.

Oscilloscope VI
The virtual oscilloscope can be used to examine

various points in the motor system. The `Launch
SCOPE' button on the MotorDemo VI launches
the oscilloscope VI (but also keeps the Motor-
Demo VI active). This allows you to connect the
oscilloscope probe to a circuit point such as the
PWM output from the MCU block and watch the
waveform as you adjust the dial on the Motor-
Demo front panel.

The oscilloscope can be used to troubleshoot
other parts of the circuitry in the demonstration
lab as it is being built. For example, it could be
useful to look at various points in the emitter
follower circuit to make sure the circuit is
functioning as expected. You could look at the
ATD pin on the MCU block as you manually
adjust the positive variable power supply to levels
above �5v Vdd. This would allow you to
confirm the clamping of this input level to a
diode drop above Vdd. You could also look at
the switch inputs from the `DI 0', `DI 1' and `DI

2' signals from NI ELVIS to confirm levels and
to measure the low-true pulse that is generated
when you click on a virtual switch on the front
panel. The oscilloscope can also be used to
examine the output from the optical interrupter
that monitors the motor speed.

CONCLUSION

This motor control demonstration lab has
shown that NI ELVIS works well with microcon-
trollers and Metrowerks CodeWarrior software
development tools. The NI ELVIS breadboard
provides a convenient place to build the circuitry
for the lab exercise. LabVIEW front panels can
be used to provide digital and analog stimulus to
the student's circuitry including the micro-
controller. NI ELVIS provides various power
supply voltages, so there is no need to locate
special equipment. Microcontrollers such as the
MC9S12C32 are available on MCU blocks that
easily plug into the breadboard so they can be
integrated with other components to implement
laboratory exercises.

The CodeWarrior development software
provides useful tools for debugging MCU soft-
ware, but does not allow a user to debug other
external circuits such as the motor circuits in this
lab exercise. NI ELVIS provides inexpensive
virtual instruments, such as the oscilloscope VI,
which give the student a way to examine and
troubleshoot the circuitry that is connected to the
MCU.

Including a 16-bit microcontroller like the
MC9S12C32 in NI ELVIS lab exercises allows
the development of sophisticated engineering
applications. These projects can include both
circuit and software components. Working with
this sort of application in an engineering course
will help prepare students for the kind of projects
they will find in industry after they graduate.

REFERENCES

1. National Instruments, NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) User
Manual, National Instruments, Austin, TX (2003).

2. Freescale, MC9S12C32 Users Guides, Freescale Semiconductor Inc., Austin, TX (2003).
3. Metrowerks, CodeWarrior Development Studio for HC(S)12 Microcontrollers (Special Edition),

Metrowerks, Austin, TX (2003).
4. P&E Microcomputer Systems, BDM Multilink, P&E Microcomputer Systems, Boston, MA (2003).
5. Technological Arts, Using Your M68DKIT912C32 Microcontroller Kit, Technological Arts,

Toronto, Canada (2003).
6. J. Williams, AN2548/D Serial Monitor for HCS12 MCUs, Freescale Semiconductor Inc., Austin, TX

(2003).
7. J. W. Valvano, Embedded Microcomputer Systems: Real Time Interfacing, Brooks/Cole, Pacific

Grove, CA (2000).
8. E. MontanÄez, AN2596/D Using the HCS08 Family On-Chip Debug System, Freescale Semiconductor

Inc., Austin, TX (2003).

James M. Sibigtroth received his B.S.E.E. degree from the University of Illinois at Urbana
in 1974 and has worked on 8- and 16-bit MCUs at Motorola for 26 years. Jim defined the

J. Sibigtroth and E. MontanÄez92

MC68HC11 MCU and was the author of the MC68HC11 Reference Manual, commonly
known as the `Pink Book', and Understanding Small Microcontrollers, and was co-author of
ISBN 0-19-512469-3 Software and Hardware Engineering: Motorola M68HC12 with
Professor Fredrick M. Cady. Jim holds 23 patents related to microcontrollers and fuzzy
logic instructions. He currently manages the systems and applications engineering group in
the 8/16 Bit MCU division of Motorola SPS in Austin, Texas.

Eduardo MontanÄez received a B.Sc. degree in Electrical Engineering with a technical
concentration in Computer Engineering and Integrated Electronics from The University
of Texas at Austin in 2001. For the past three years, Eduardo has worked for Motorola Inc.
as an Applications Engineer in their 8/16 Bit Microcontroller Division.

Motor Control Demonstration Lab 93

