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The present work focuses on teaching fault detection and diagnostics in industrial processes,
through a computational tool that integrates a virtual instrument developed in LabVIEWTM 6.0
and a computer application in MatLab1 6.1 for simulating an industrial process. For integrating
the applications, the dynamic data exchange (DDE) protocol has been used. The objective of this
work has been to use the integration of the LabVIEWTM interface with the MatLab computational
tool in order to allow students to interact with a process for detecting, by inspection or fault-
detecting filters, the possible faults that can occur.

INTRODUCTION

THE INCLUSION OF computers in the educa-
tional environment has its roots in the mid-1950s,
based on the Skinner behaviorist theory [1]. The
paradigm used for developing the teaching of
applied technology was called `programmed
instruction', based on the design of instructional
elements composed of a series of small `steps'
which require the active response of students,
giving them instantaneous feedback.

At the beginning of the 1970s, with the rising
popularity of artificial intelligence [2], it was
discovered that these techniques could be used
for computer-aided learning. For instance, Carbo-
nell [3] developed an intelligent tutorial system for
teaching South-American geography. This was the
first step towards intelligent tutorial systems.

Another type of program that has expanded
rapidly over the last decades is the simulator,
which allows a similar environment to that found
in industrial control rooms to be created so that it
becomes possible to accumulate knowledge and
experiences that can be used in real situations.
These simulators try to support learning, by
emulating real-world situations [4]. They have
been widely used for applications in the engineer-
ing field, because they can be used for simulating
chemical, physical, mechanical and other processes
using personal computers (PC).

The present work uses the capabilities of
LabVIEWTM [5] to develop human±machine inter-
faces, combining it with a processes simulation
program using MatLab1 [6] to create a tutorial-
type computational tool whose main objective is to
teach people fault detection and diagnosis
methods. Learning is achieved through a group
of virtual tests whereby students can observe the

behavior of the system under different fault condi-
tions.

The paper is structured in the following way.
First, the DDE protocol for process commun-
ication and the application program that interfaces
LabVIEWTM MatLab will be introduced. Next, a
brief introduction to fault detection will be
presented. Then the computational tool that has
been developed for learning fault detection and
diagnostics using a virtual system will be described.
Finally, the results and conclusions are presented.

PROCESSES COMMUNICATION: DDE
PROTOCOL

The dynamic data exchange (DDE) protocol is
one of the communication methods most
commonly used for exchanging data between
Microsoft Windows1 applications. The DDE
protocol is based on the messaging system devel-
oped by Windows1 [7], hence two Windows
programs, as shown in Fig. 1, carry out a `DDE
conversation' by exchanging messages between
them. These two programs are known as the
server and the client. A DDE server is a program
which has access to data that can be useful for
other programs. The DDE client is the program
that obtains these data from the server.

A DDE conversation begins when the program
that acts as the client transfers a message to all the
Windows1 programs that are being utilized. This
message indicates which general data category the
client needs. The DDE server that possesses the
data can respond to this message, and it is at that
moment that the conversation begins. Only one
program can be client for another program and the
server for others, but this requires two different
DDE conversations. A server can give data to
multiple clients and a client can obtain data from* Accepted 4 August 2004.
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multiple servers, but this requires multiple DDE
conversations.

Both applications should be running and both
of them give a statement concerning their call-
ing functions to Windows before the DDE
communication begins. The calling function
accepts any DDE message that Windows sends
to the application.

A DDE client begins a conversation with
another application (a DDE server) by sending a
connection message. After establishing a connec-
tion, the client can send orders or data to the server
and it can request the data values that the server
manages. When the DDE communication is
completed, the client sends a message to the
server closing the conversation.

For developing a DDE communication or
conversation, it is necessary to identify the data
type to be exchanged. This operation is carried out
by means of three strings with information
concerning the server: application, data topic and
data item.

More precisely, it needs to know: the application
or `service name' that specifies the name of the
application server that the client is connected to;
the data topic (this is often the file name, but the

definition can vary) for opening the connection
with the application server; and, finally, the data
item (often the name of a variable). Data and
commands are transferred as text format. The
`topic' is the second level in the three strings and
defines the object of a DDE conversation, and this
is usually an important point for the server appli-
cation and for the client. The `element' identifies
the data or value that is being sent during the DDE
conversation between the server and the client.

THE MATLAB APPLICATION INTERFACE
PROGRAM (MATLAB-API)

MatLab1 is a mathematical environment whose
fundamental operating elements are matrices [6];
this allows its immediate application in the solu-
tion of lineal algebra problems and includes
graphic capabilities and basic programming
structures with similar syntax to programming
languages such as C, Fortran and Basic.
MatLab1 possesses a graphic programming en-
vironment called `Simulink', which simulates linear
and non-linear systems by means of programming
based on block diagrams.

The DDE protocol can be used for interacting
with Simulink through another application [8], for
which MatLab1 can be either a client or a server.
If MatLab1 is a client, it is necessary to build a
dialog box in Simulink with suitable functions for
initiating a DDE conversation for exchanging data
[9]. A function flow diagram is shown in Fig. 2 for
integrating the virtual process in MatLab1 with
LabVIEWTM.

The functions used by MatLab for DDE client
applications are: `ddeinit', `ddepoke', `ddereq',
`ddeadv', `ddeexec', `ddeunadv' and `ddeterm'.
These functions are used for creating the processes,
as described in Fig. 2.

THE LABVIEW APPLICATION INTERFACE
PROGRAM (LABVIEW-API)

LabVIEWTM is a graphic programming en-
vironment which has a direct interface with a
personal computer for developing applications
such as data acquisition and data analysis.
LabVIEWTM uses graphic symbols (icons) to
describe the action sets. The data flow is through
the connections in a block diagram.

Fig. 1. Diagram of a DDE conversation.

Fig. 2. DDE MatLab client: function flow diagram.
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LabVIEWTM provides a group of VIs (virtual
instruments) or program DDEs; these facilitate the
creation of VIs that act as DDE clients for other
applications (these VIs request or send data to
other applications) [5]. Furthermore, VIs can also
be created that act as information servers which
can be used through other applications. As a
server, LabVIEWTM is not able to use commun-
ication based on connection.

The DDE protocol used by LabVIEWTM is
based on ASCII, and the transmission ends when
a null byte appears.

A number has to be transformed into a string
format before it can be sent from LabVIEWTM to
another application. Also, the data received as a
result of a request should be in numbers.

A LabVIEWTM VI application can be created to
act as a server for the data elements. In general, a VI
indicates that it can provide information regarding
a specific service and topics. LabVIEWTM can use
any name for the service and the topic.

Figure 3 shows the block diagram of a VI DDE
server that provides data to other client applica-
tions. In this case, the data comes from random
numbers. The random number generator can be
easily replaced by real-world data from a data
acquisition system or from series connections.

FAULT DETECTION

It is well known that operational reliability
should be ensured by correct operation of the
processes, appropriate control systems and coordi-
nation. The whole infrastructure is held by diverse
support systems inside an integral automation
structure, where the quality of the information
and its exchange are guaranteed in terms of relia-
bility, security and productivity. At any stage in
the production chain, the information should be
managed to ensure high efficiency and operational
productivity.

Fig. 3. Block diagram for a LABVIEW DDE server.

Fig. 4. An SDD system.
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Inside a reliable and safe operational context,
the systems that allow events recognition should be
presented, which should guide decision-making
when the behavior of the productive process is
affected by any adverse eventuality. Since reliabil-
ity is very close to the concept of security, it is
fundamental to provide industrial processes with
strict security mechanisms whose basic elements
are supervision, diagnostic and detection (SDD).
These, using the indicators and measured variables
of the processes, maintain continuous supervision
of the evolutionary process of the product and
report anything abnormal.

SDD systems have the capacity to respond to
unexpected situations during processing, so their
main task is fault diagnosis and detection (FDD).
An FDD system, such as the one shown in Fig. 4,
uses the measurements of the process in order to
produce some residuals, which, by means of
evaluation functions and decision logics, identify
and isolate the fault. Any system that, starting with
measured variables of the process, allows residuals
to be generated and evaluates these in depth with
regard to fault recognition is known as a `faults
detection and diagnosis filter'.

From the point of view of generating compar-
ison-based residuals, the filter design techniques
for FDD can be classified as `methods based on
physical redundancy and methods based in
models' [10]. We use model-based methods, as
this is a precise analytic redundancy approach.

In analytic techniques, all the information
coming from the process measurement devices is
used to obtain a mathematical model for diagnos-
tic purposes. A detailed description of the proce-
dure used to generate these residuals can be found
in [10±12]. The following four steps briefly describe
the procedure:

1. Use direct substitution in the model equations.
2. Use the model together with the real process, so

that in both the same inputs are applied.
3. Use a state observer. This is an extension of the

parallel-method model. The main aim is resi-
dual generation, with precise directional prop-
erties, by means of an appropriate selection of
the observer's gain.

4. Create an inverse model in order to reconstruct
the faults.

Observer-based filter design
State observers are analytic techniques based on

the design of the fault detection and diagnostic
(FDD) filters. The FDD filter design can be
divided into two stages: the first phase is generat-
ing the residuals (detection). The second stage is
evaluating the residuals in order to determine the
origin of the fault (faults separation). In this way,
the residuals are vectorial signals that contain
information about the time and locality of the
faults. In principle, the residuals should be zero
in the absence of faults and, obviously, other than
zero when a fault appears.

With these premises, the state observers can be

used for residual generation. The main goal is to
build a classical observer for the system described
by equation (1), in order to produce a vector of the
estimated states. The residuals are obtained by
comparing the estimated output with the measured
output of the physical plant.

_x�t� � Ax�t� � Bu�t�; x�0� � x0

y�t� � Cx�t�
�1�

Where a gain matrix D2Rnxq exists in such a way
that the estimate x̂�t� of the state vector x(t) will be
the solution for the equation:

_̂x�t� � Ax̂�t� � Bu�t� �D�y�t� ÿ Cx̂�t��;
ŷ�t� � Cx̂�t�

�2�

The system outputs (2) are the estimated outputs
and the observer gain matrix D should be appro-
piately selected. If we define an error signal as:

e�t� � x�t� ÿ x̂�t�; �3�
which produces an innovation in the output
defined by

��t� � y�t� ÿ ŷ�t�; �4�
then the error dynamics and the corresponding
output error will be given as

e�t� � �AÿDC�e�t� � Af fp � Bf fa ÿDCf fa;

��t� � Ce�t� � Cf fa �5�
If D is selected so that (A-DC) is stable, all the
eigenvalues will have a negative real part. When a t
goes to infinite, the estimation error will become
null (i.e. e(t) = 0). In this case, it is said that the
observer is exponential or asymptotic. Since, for
t< t0, the process has a normal operation (i.e.
faults do not exist) at that moment, the residuals
or the innovation of the output is approximately
zero. When any fault occurs, for t� t0, the residual
is different from zero and is favorable for fault
detection [13].

Knowledge-based methods
Knowledge-based methods are very useful in

cases where it is difficult to find an analytic
model to obtain the residuals. These methods are
based on existing knowledge concerning the beha-
vior of the system outputs. This knowledge will
allow us to infer the process operational condi-
tions. One of the techniques that can be used for
this is artificial neural networks [14]. The most
common approach for fault detection consists of a
neural network that possesses, as inputs, the vari-
ables of the process used for detection and, as
outputs, a group of signals according to the opera-
tional condition. In this approach, as in most
neural network applications, it is recommended
that all the input signals should have been
previously normalized at between 0 and 1 in
order to be able to guarantee that the training
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will not depend on the range of variability of each
signal. On the other hand, each desired output
should be chosen in a way that represents a
particular condition of the process. For instance,
1, if the neural network output is 1, can indicate
the presence of a fault condition; otherwise, the
neural network output takes on the value of ±1.

DESCRIPTION OF THE COMPUTATIONAL
TOOL

A tutorial-type software was developed to help
in the teaching±learning process of fault detection
and diagnostic methods. The computational tool
developed here allows the user to interact with the
process through a human±machine interface
(HMI) that has been designed using LabVIEWTM.
The process is simulated in MatLab and this
virtual instrument tries to emulate a control

room where the operator observes the HMI of
the process in order to detect the operating condi-
tions of the system.

The main screen of the computational tool is
shown in Fig. 5. This screen presents an intro-
duction to fault detection and diagnostic
methods. The user will be able to learn the
different techniques using the connections to the
redundancy and heuristic methods information.
From this main screen the user will have access
to the process that was chosen for reinforcing the
understanding of the fault systems. All the infor-
mation in the computational tool has been made in
English and Spanish, in order to increase the
number of student that can use it.

The application described in this work consists
of a system with three interconnected tanks, as
depicted in Fig. 6.

The system presented in Fig. 6 consists of three
tanks, where tank 1 receives a constant flow
u(t) = 5000 cm3/s and feeds tanks 2 and 3. It is
assumed that the tanks have the dimensions shown
in Table 1.

Starting with these values and considering that
tank 1's flow is equal to 60% of the input flow u(t),
and the flow of tank 2 is equal to 40% of the input
flow u(t), the resistance values and flows of each of
the four valves was obtained (see Table 2).

The possible faults that have been considered in

Fig. 5. Computational tool: main screen.

Fig. 6. System with three interconnected tanks.

Table 1. Tank dimensions

Tank Area
(cm2)

Height
(cm)

Initial
Conditions
(cm)

1 2500 100 0.5
2 2000 80 4.5
3 3000 80 0.2
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this system are blockage of any of the four valves,
either individually or at the same time. The system
can be represented as follows:

_h1�t� � ÿ 1

r0
� 1

r1

� �
1

a1

� �
h1�t�

� 1

r0a1

� �
h2�t� � 1

a1

� �
u�t�

_h2�t� � 1

r0a2

� �
h1�t� ÿ 1

r0
� 1

r2

� �
1

a2

� �
h2�t�

_h3�t� � 1

r1a3

� �
h1�t� � 1

r2a3

� �
h2�t� ÿ 1

r3a3

� �
h3�t�

where ri is the inverse of the valve's resistance (Ri)
and ai is the area of tank i.

Under normal operational conditions, the four
valves that comprise the system are open and it is
assumed that the liquid supply is constant. Over
time, the levels in the three tanks are increased, and
the supply of liquid from tank 1 to tank 2 and from
tanks 1 and 2 to tank 3 is not interrupted.

Figure 7 illustrates the HMI designed for this
process using LabVIEWTM. The user will be able
to generate any of the four possible faults and to
observe the behavior of the tank levels. In addition
to this interface, the user will have a help file that
includes the system equations and the tank level
behaviors under different fault conditions for the
system.

RESULT AND DISCUSSION

The computational tool implements the
designed detecting filters using the two methods
introduced previously. One of the filters is based
on an analytic redundancy method that calculates
the residuals using a state observer. The other filter
is based on a heuristic method and implemented
through a neural network that was previously
developed using a different operation. Both filters
are simulated in MatLab and when they detect a
fault they send a signal to LabVIEWTM, which
immediately turns on a light signal indicating that
the fault has occurred. Using this system, the
students can evaluate the filter operation and
efficiency based on the results obtained.

In the example, LABVIEW is a DDE server
and MatLab is a DDE client. For integrating
MatLab with LABVIEW we used MatLab's
function ddeula.m.

We have exploited the LABVIEW capabilities

for developing virtual instruments and creating
human±machine interfaces. The simulation
capabilities of MatLab together with the benefits
of using the DDE protocol allowed us to create a
computational tool for fault detection and diag-
nostics. Figure 8 shows the block diagram that
implements the MatLab±LABVIEW integration.

Preliminary results show that students who have
been developing topics on fault detection have
used this computational tool. It has been clearly
demonstrated that students have found this an
effective methodology for understanding the
topic of fault detection, as in just a few hours
they are able to acquire the basic knowledge
needed in this field and to investigate the possibi-
lity of acting on the processes that have faults. This
qualifies the tool as a facilitating mechanism in the
teaching±learning process.

CONCLUSIONS

This approach to fault detection and diagnostics
can be used effectively in the teaching process or
for individual learning in the area, allowing on-line
interaction with MatLab.

This kind of computational tool helps students
to interact with industrial processes, to modify

Table 2. Valve resistance

Valve Resistance

R0 100
R1 30
R2 25
R3 60

Fig. 7. Virtual instrument developed using LabVIEWTM.

Fig. 8. Block diagram for integrating MatLab and LABVIEW.
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operational conditions and to verify faults and
their consequences. This helps to obtain super-
vision-based learning of real operational condi-
tions. Futhermore, the use of a computer-based
tutorial offers an interactive way to study fault
detection and diagnostic methods based on state
observers and artificial neural networks.

The use of simulator-type educational software
in combination with traditional educational tech-
niques allows the lecturer to involve students in
their future work environment. Thus, the future
engineer will have the opportunity, from the begin-
ning of his/her training, to develop his/her skills in
a real-world environment.
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