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Courseware is presented here, based on Java applets, that is designed to facilitate better under-
standing of some of the most popular algorithms in semi-custom IC physical design automation.
The applets have been applied successfully in the course Microelectronic Design II, a telecommu-
nication engineering fifth-year subject at the University of Vigo (Spain). This method does not
wholly replace traditional lecture classes, but it enhances them by displaying graphically the
intermediate solutions of an algorithm's execution. Thus, students can easily and quickly assimilate
what implies a change of value in a certain design parameter, such as the annealing temperature, the
crossover or mutation operators, the cost function of a placement, a routing, etc. In fact, they not
only understood much more rapidly all those concepts inherited from nature, but they repeatedly
enjoyed executing the algorithms by changing their parameters, with one criterion in mind (not
randomly), in order to optimize a given layout.

INTRODUCTION

EVER SINCE VLSI started in the 1970s, micro-
electronic physical design has developed exten-
sively, in such a way that today it is possible to
fabricate integrated circuits containing millions of
transistors. This progress would not have been
feasible without sophisticated software design
tools, which must not only be computationally
fast but also able to obtain results that are close
to optimal because all phases of the physical design
constitute NP-complete problems; that is, it is not
possible to get an optimal solution in a reasonable
amount of computing time. The most powerful
computer or computer network may need many
years to explore exhaustively all possible cases.

During the last three decades, investment in
Physical Design Automation has been intensive,
as evidenced by the large number of research
articles published and CAD tools developed for
this final stage of circuit design [1±3]. Therefore, it
is difficult to assess, classify and eventually teach
the main algorithms, concepts and solutions
proposed since then.

This work is intended to help students learn the
main physical design automation algorithms, not
simply by exposing the operation sequence and
pseudo-code (classical method), but mainly by
graphically seeing its evolution in order to achieve
an optimal layout partitioning, placement and
routing in a Java-based environment (proposed
method). Java applets have been used in order to
obtain platform independence and user inter-
action.

Commercial tools compute solutions by showing

a small amount of the information about the
algorithm's evolution, but they do not usually
display the intermediate solutions, which may be
interesting from a didactic perspective for a better
understanding of the algorithm. Filling this gap is
the main goal of the applets developed for this
course.

Thus, the courseware provides a learning en-
vironment that augments the traditional one and
helps motivate students, avoiding them just
passively viewing a pseudo-code. It also allows
learning by example, which is most students'
preferred method of learning. Java allows for the
development of interactive examples, so they can
be asked to predict what would happen when a
parameter or certain conditions are changed. Our
experience has shown that this courseware yields
both high student motivation and good learning
results.

We divided the process into several parts, each
one related to a specific phase in the physical
design. They are, however, linked, so that the
results from one act as input to the next. For
instance, the placement obtained by applying a
simulated annealing algorithm is the initial infor-
mation for the global routing algorithms. In this
way, the intention is to approach the real design
process, whereby a problem passes through all
phases until it reaches a satisfactory solution.

In the next section of this paper, the physical
design phase for semi-custom IC is briefly intro-
duced. Furthermore, an analysis is made on how
new trends affect the design cycle. The following
section outlines some of the applets developed and
shows their capabilities. Following this, the simu-
lated annealing (SA) and simulated evolution (SE)
algorithms applied to the placement and routing* Accepted 23 September 2004.
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phases are explored. We selected both methods
because they are so well accepted, especially SA.
SE algorithms have been implemented less in
commercial EDA tools due to their inefficiency
in terms of runtime. However, this may change in
the future as new hardware and software platforms
and tools become increasingly more powerful. In
that case SE could be used more due to its more
exhaustive searching capability.

This paper ends with a few words on the conclu-
sions of our research and our plans to extend and
enhance this tool in the near future.

AN OVERVIEW OF SEMI-CUSTOM IC
PHYSICAL DESIGN

As can be seen in Fig. 1, VLSI physical design
basically comprises six stages: partitioning, floor-
planning, placement, routing, compaction, and
extraction and verification.

Because of memory and processing limitations,
it is not possible to directly obtain a good layout of

a large circuit, so the solution usually adopted is to
divide the circuit into blocks. This process is called
partitioning. In the partitioning process, factors
such as block count, number of interconnections
between them or their sizes have to be considered.

The floorplanning phase comprises the selection
of a suitable layout for each block. The block area
must be estimated and the shape selected. The area
estimation depends on the block count, the block
types and the interconnection area. Blocks are
often rectangular but in some cases can have
other shapes, except curved sides.

In the placement phase, each block is assigned to
an exact position in the available area. The objec-
tive is to obtain a block arrangement of a mini-
mum area that allows all connections to be made,
while meeting some given constraints. Usually, an
initial placement is obtained and iterative improve-
ments are made until the layout shrinks or has a
better ability to meet the design specifications. In
addition, some space has to be left empty to allow
interconnections between blocks. The quality of
the placement will not be evident until the routing

Fig. 1. Physical design cycle.
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phase has been completed. What is more, the
routing may not be feasible in the available
space, in which case another placement iteration
is required.

The goal of the routing phase is to carry out the
interconnections between blocks according to the
given netlist. Firstly, the space not occupied by the
blocks is partitioned into rectangular areas called
channels and switchboxes. The router tries to
complete all connections, minimizing wire length.
Generally this is done in two steps: global routing
and detailed routing. The former finds a list of
channels and switchboxes for each wire. Detailed
routing is done for every channel or switchbox
separately, calculating the coordinates in order to
place each connection segment.

Compaction consists of compressing the layout
in all directions so that the whole area shrinks.
This also implies a reduction in wire length and
signal delay. At the same time, more chips can be
produced on a wafer, which in turn reduces the
cost of manufacturing.

Design Rule Checker (DRC) verifies that all
geometric patterns meet the design rules imposed
by the fabrication process. After removing the
design rule violations, the layout must be verified
through circuit extraction. This is a reverse engin-
eering process that allows the schematic to be
generated from the layout. Then the extracted
description is compared with the original circuit
for verification of its correctness. This process is

called `layout versus schematics' (LVD) verifica-
tion.

As fabrication technology improves and
processes enter the deep sub-micron range, inter-
connect delay is not scaling at the same rate as gate
delay. As it becomes a more significant part of the
overall delay, in high performance chips, it must be
considered from the very early design stages.
Several methods can be employed to reduce it,
such as:

Chip level signal planning: At the chip level, the
routing of the main signal and buses must be
planned from the early design stages, so that
interconnection distances can be minimized. In
addition, these global signals must be routed in
the top-level metal (less parasitic capacitance) to
minimize delay per unit length.

OTC routing: Over-the-cell (OTC) routing refers
to the routing made over blocks and active
areas. This is a departure from the conven-
tional channel and switchbox routing
approach. Chip level signal planning is in fact
OTC routing on the entire chip. This approach
essentially makes routing a three-dimensional
problem. Another effect of it is that pins are
not brought to the block boundaries for
connection to other blocks. Instead, pins are
brought to the top of the block as a sea-of-
pins. This concept is called the `arbitrary
terminal model' (ATM).

Fig. 2. Menu for the placement phase.
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This research has not considered the new trends so
far, but we intend to do so in the near future.

DEVELOPED APPLETS

So far our applets comprise three main phases in
the VLSI physical design: partitioning, placement
and routing (both global and detailed). For this
paper, we only describe some of the applets devel-
oped for placement and routing. All of them can
be viewed at: http://www.dte.uvigo.es/articulos/
al4pda.

Three applets were developed for the placement
phase:

Genetic algorithm for standard-cell placement
(GASP)

Simulated annealing (SA)
Simulated annealing and genetic algorithm for

standard-cell placement (SAGA)

One was developed for global routing:

Maze routing

And one more was developed for detailed routing:

Greedy detailed routing algorithm

As can be seen in Fig. 2, each window, in the
rightmost frame (and scrolling down the page),
presents a general description of the selected algo-
rithm, focusing on:

Main concepts and features
Working parameters
Target function to minimize
Specifying the input data
Ancillary windows for easily following the execu-

tion
How the results are shown and should be inter-

preted

PLACEMENT

Clicking on the Placement button, the window
in Fig. 2 will appear with the options already
mentioned: GASP, SAGA and SA.

GASP [3] is a placement algorithm designed
according to the simulated evolution concepts
introduced by Holland [3] in 1975. Each placement

solution (chromosome or individual) is repre-
sented, as shown in Fig. 3. That is, each gene
(corresponding to a cell in the placement) consists
of four fields:

Cell identifier
X-coordinate of the cell upper left corner
Y-coordinate of the same point
Identifier of the slot associated with the cell

Each chromosome's fitness is given by the equa-
tion (1):

f � 1X
nets

�x�i�WH�i� � y�i�WV �i��

where x(i) and y(i) are, respectively, the width and
height of the lowest rectangle including all pins of a
given net i. WH(i) and WV(i) represent the width
and height of assigned weights. This expression
does not include overlapping penalization, as most
algorithms do, because overlaps are removed
before fitness evaluation.

Four basic genetic operators are used: selection,
crossover, mutation and inversion.

A random initial population is generated, in
which every individual has an associated cost
according to (1), and then an iteration takes
place (applying the mentioned operators) to gener-
ate some offspring. The new population must be
reduced in order to hold constant the individual
count. The probability of each individual surviving
is a function of its fitness, so the population
improves at each iteration or age. When a given
age count is reached, the best individual becomes
the solution.

The implementation done finds a solution to a
placement of 75 cells belonging to the library
shown in Fig. 4. The upper pins are inputs and
the lower are the cell outputs. The circuit netlist is
generated randomly. An available area of
400� 440 units has been considered.

Four windows are used to enter the data and
easily follow the placement evolution:

Control. This window allows the user to select the
working parameters, as can be easily seen in
Fig. 5a.

Algorithm evolution, which appears only during
algorithm execution to show the actual execu-
tion percentage and generation (see Fig. 5b).

Placement display window. This shows the place-
ment of the best individual in the population
(Fig. 6 shows an example). The display-refresh-
ing period can be selected. A color code (which
obviously cannot be distinguished in this black-
and-white figure) indicates the longest nets

Fig. 3. A cell placement and its genetic representation.

Fig. 4. Library cell used in the GASP placement example.
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(more than 700 units, in red), the intermediate
(less than 700 and more than 400, in blue) and
the shortest ones (less than 400 units, in gray).

Cost evolution, which shows the population and
the best individual average cost evolution as the
algorithm is executed between generations.
Figure 7 displays two graphics of the same
GASP example with different values of popula-
tion size and generation count. As generations
evolve, both costs shrink.

The SAGA algorithm is a combination of
genetic and simulated annealing placement,
which improves the convergence process due to
the initial fast convergence of the genetic place-
ment and the final one in the case of the annealing.
For further details about the algorithm, references
[3] and [4] can be consulted.

The implementation done finds a solution to the
same problem shown above for GASP. When the
algorithm finishes, some feedthrough cells are
inserted if indicated by the user in the control
panel, with a capacity of 16 nets passing through.
The number of feedthroughs inserted into each
row depends on its width.

Again, four windows are used to enter the data
and easily follow the placement evolution: control
(see Fig. 8), cost evolution (Fig. 9), placement
display (Fig. 10) and algorithm evolution (similar
to Fig. 7).

The cost evolution window, which only appears
during algorithm execution, indicates the current
phase:

Genetic evolution: The execution percentage is
displayed as well as the actual generation count.

Fig. 5. GASP algorithm control and evolution windows.

Fig. 6. GASP placement display window.
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Simulated annealing: This is executed when the
population is just one individual. The execution
percentage and the actual individual tempera-
ture are displayed.

Optimization: This is the final step. The window
shows the algorithm execution percentage.

The placement display window shows the place-
ment associated with the current best individual.
Again, the user can select the display-updating
interval. Furthermore, by clicking the right
mouse button on the desired cell, this and the
nets connected to its output terminals change to
orange. In the same way as GASP, each net is
colored according to its length. Feedthroughs are
represented by yellow rectangles in each row.

The algorithm evolution window allows the
current population average cost evolution to be

followed, as well as the best individual cost
recorded.

Regarding the SA algorithm, two versions have
been implemented: Jespen-Gelatt [5] and Timber
Wolf [6].

JESPEN-GELATT
A placement solution is given by the whole

module locations in the chip as well as the rotations
and reflections, with respect to a standard disposi-
tion that they have experimented. It has been
assumed that all modules are rectangular with
different proportions and sizes. The algorithm
allows overlapping in the intermediate configura-
tions, which simplifies the definition of the three
possible movements: M1 (module shifting), M2 (90ë

Fig. 7. GASP cost evolution window.

Fig. 8. SAGA algorithm control window.

Fig. 9. SAGA cost evolution window.
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rotation) and M3 (module reflection). The cost
function is given by the sum of two terms:

. W: interconnection cost estimation. With a
superimposed grid, the cost is estimated by the
number of nets passing through each grid line
and the sum of the cell overlapping lengths with
the grid lines.

. O: penalization function for module overlap-
ping, given by the sum of the squares of the
cell overlapping areas, weighted by a factor r
ranging from 0 to 1.

TIMBER WOLF
This algorithm is similar to the last one. The

differences are that Timber Wolf allows some
flexibility in module shaping, which may be
useful for minimizing the total chip area, and it
also allows the modules to have mobile terminals.
The possible movements are: M1, M2 and M3
(idem to Jespen-Gelatt), M4 (change in the
aspect ratio of a module) and M5 (change pin
site assignment of a pin or a group of them). The
cost function is the sum of three terms:

An estimation of the interconnect length, given by
the sum of the rectangular half-perimeters asso-
ciated with the nets.

An overlapping penalization given by the sum of
the squares of the cell overlapping areas.

A penalization due to the pin site capacity over-
flowing.

The implementation done allows the user to gener-
ate a random proof case with a given area ratio,
which can be selected in the control panel. This
parameter is the ratio between the area occupied

by the cells and the available placement area. If it
takes small values, the generated input case will be
simple: there will only be a few cells and over-
lapping will be eliminated quickly. On the other
hand, if its value is high, the input case will
comprise many cells and, thus, the convergence
process and elimination of overlapping will be
slower. There are two steps in the generation
process of an input case:

Cell generation. Cells (belonging to any of the nine
basic types, Fig. 11) are randomly generated
until the area is full. They are all assumed to
have their input pins in the upper and left sides,
and the outputs in the lower and right sides.
Figure 12 shows the available cell library, whose
numbers refer to Fig. 11.

The cells are interconnected randomly accord-
ing to the next process: an output pin is
connected (with a probability of 0.9) to another
randomly generated input. With a probability of
0.1, the output is connected to two randomly
generated inputs. This means that there will be
both two-terminal and three-terminal nets. This
process goes on until all outputs have been
connected or all inputs have already been
assigned. It may happen that some outputs or
inputs remain unconnected. In this case, each
free input terminal will be connected to a
randomly generated output, thus obtaining
nets with more than three terminals.

Once the netlist is generated, locations are
assigned, also randomly, to the cells (overlapping
is allowed by now) and then the placement algo-
rithm (Jespen-Gelatt or a simplified version of
Timber Wolf) is executed.

Fig. 10. SAGA placement display window and a local zoom in.
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Four panels are used for the program interface:

1. The control panel (see Fig. 13a). Either of the
two algorithms can be selected. The other
options are:
Randomize. A new random configuration of the

current cell list is generated and displayed.
Run SA. The algorithm starts execution.
To. Initial temperature selected.
Tfinal. T at which the algorithm finishes execu-

tion.

New case. A new cell list is generated such that
the sum of their areas is a percentage (area
ratio) of the total available area for the
layout (400� 400).

Iterations. Iteration count at each temperature.
Alpha. Weight of penalization overlapping.
Beta. Associated weight to the sum of the cell

lengths overlapping to line grid (only for
Jespen-Gelatt).

Area ratio. Percentage of the total area occu-
pied by the cells.

Store/Load IN. Storing/retrieving an input case
(cell list, netlist and cell configuration).

Store/Load OUT. Storing/retrieving an algo-
rithm result for an input case.

2. Algorithm evolution (Fig. 13b, active only during
execution). This displays the percentage of
execution and current temperature.

3. Placement display (Fig. 14). This panel shows
the configuration currently being processed.
Once again, a color code is employed to distin-
guish the different net lengths as well as the
inputs from the outputs. Furthermore, there are
two buttons: OK.
. The value introduced into the text field

becomes the current screen refreshing time
for the layout.

. GRID. It can be seen that the grid employed
by the Jesper-Gelatt algorithm. To eliminate
it, simply click on the button again.

4. Cost function evolution (Fig. 15). This shows the
values of both terms in the cost function during
execution. For each one, the highest value taken
is also displayed.

GLOBAL ROUTING PHASE

As stated above, the goal of this phase is to
obtain the channel list to form the path between
each source and target. To access the global
routing, one must return to the main menu and

Fig. 11. Cell types for the SA macrocell placement.

Fig. 12. Library cell for the SA macrocell placement.

Fig. 13. Control and algorithm evolution panels for SA macrocell placement.
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select the Routing option to bring up the window in
Fig. 16. If the user clicks on the OPEN button (just
below the text `(2) Routing'), global routing starts.
If the placement is not yet completed, the option
`(1) Placement' allows the user to return to this
phase.

In 1961, Lee presented an algorithm for routing
two terminal nets on a grid. There have been many
improvements since then, mainly in processing
speed and memory requirements, which has led
to the maze routing algorithms. These represent
the available routing areas as unblocked vertices
and the obstacles as blocked. A path between the
source and target vertex must be found without
using any blocked ones. The process consists of
two phases:

Exploration: Several paths start at the source and
expand until one reaches the target.

Retrace: When the target is reached, the vertices
must backtrack to the source to identify the

path. This can be easily implemented as long
as the information on the parentage of each
vertex is kept during the exploration phase.

The implementation again uses four panels:

Control. The user can move between the placement
and routing applets, as well as select the maze
routing he wishes to execute.

Get placement. The solution generated by the
placement phase is the input to the routing
algorithm.

Run global routing. The maze algorithm is applied
to that placement.

Cost evolution panel. This window (similar to
Fig. 5b) shows a progression bar with the percen-
tage of execution, the number of routed nets and
the time employed in routing the last net.

Routing display. The routing evolution is displayed
while the algorithm is executed, representing the
last routed nets in magenta and the ones already
routed in yellow. Figure 17 shows a detail of a
placement obtained by a SAGA algorithm. The
selected cell and its output nets are highlighted
in orange to better see their routing.

Result display panel. When execution ends, a
new window displays the routing cost obtained,
given by the sum of all net lengths (given in turn
by the slot count) and routing runtime.

The `Greedy' option (see Fig. 16) must be selected
to enter this phase, thus bringing up the window
shown in Fig. 18. An optimal routing can be
obtained if, for every column, there is just one
track per net. Greedy's algorithm [7] is based on
that observation. Basically, it tries to reduce the
channel height by routing the nets column by
column and placing the horizontal trunks, belong-
ing to the same net, as near as possible. Dogleg
insertion is allowed in any column.

Fig. 14. Placement display panel.

Fig. 15. Cost function evolution panel.
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DETAILED ROUTING PHASE

To execute the algorithm, the placement and
global routing algorithms must be executed first.
Clicking on the OPEN button, two panels will
appear on the screen. During execution, an addi-

tional one shows the execution state. These panels
are:

. Control. One option captures the global routing
result and another one starts the execution.

. Algorithm evolution. Similar to Fig. 5b.

. Routed channel and completed channel display.
The purpose of this is twofold:
1. To display every channel routing. According

to the implementation done, there are always
13 or 14 channels in the layout (11 or 12
horizontal and 2 vertical). Numeration starts
from the upper horizontal channel (0) to the
lower one (10 or 11). The left vertical channel
is the 12th or 13th and the right one the 13th
or 14th. Thus, the channels are displayed
sequentially in the order described, showing
number and density at the top of the window.

2. To display a local zoom-in of the routed
circuit (Fig. 19). Any area in the layout can
be selected (by using the scrolling and shifting
bars) to zoom in.

Finally, Fig. 20 shows a completely routed channel
in more detail.

CONCLUSIONS

We have developed a tool to help teach some of
the major physical design automation algorithms,
mainly based on graphically displaying their evolu-
tion to achieve an optimal layout partitioning,
placement and routing. Java applets have been
used in order to get platform independence and,
above all, user interaction.Fig. 17. Global routing display panel.

Fig. 16. Routing main menu.
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Fig. 19. A zoom-out view of several routed channels.

Fig. 18. Detailed routing menu.

Fig. 20. A more detailed view of a completely routed channel.
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The different sections are accessed through a
web page. Each one corresponds to a phase in the
semi-custom physical design and implements some
selected algorithms as well as an introduction to
them.

The didactic approach prevails through all this
courseware, not just by showing in detail the
graphic evolution, but also by the possibility of
interactively changing any working parameter to

better understand its effect in the algorithm search-
ing and the layout quality.

Student feedback has shown a high level of
acceptance and they were clearly much more
interested in physical design than their fellows in
previous years, so we are currently trying to
improve the courseware. We will be adding some
more items, such as floorplanning and compac-
tion, as well as algorithms for high performance
driven partitioning and OTC routing.
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