
Introducing a Graduate Course on
Aspect-Oriented Software Development*

BEDIR TEKINERDOGÆ AN
University of Twente, Department of Computer Science, P.O. Box 217, 7500 AE Enschede,
The Netherlands. E-mail: bedir@cs.utwente.nl

Aspect-oriented software development (AOSD) is an advanced paradigm for separation of
concerns (SOC) in software development, which provides explicit concepts to modularize so-
called crosscutting concerns. After being accepted both by a broad community of researchers and
the industry it is now getting introduced in courses in universities. This paper describes the
experiences of the graduate course Aspect-Oriented Software Development that was introduced at
Bilkent University in Ankara, Turkey. The lessons learned can be useful for peer educators who
teach or aim to teach a similar course.

INTRODUCTION

ONE OF THE most important principles in soft-
ware engineering for coping with complexity and
achieving quality software is the separation of
concerns principle [21]. This principle states that
a given design problem involves different kinds of
concerns, which should be identified and separated
in different modules. The history of software
development has experienced an evolution of
different programming languages and design
methods that have provided useful modularity
mechanisms. However, as experienced in practice
and generally acknowledged by researchers, it
appears that these approaches are inherently
unable to modularize all concerns of complex
software systems. Some concerns like synchroniza-
tion, recovery and logging tend to be more
systemic, crosscut a broader set of modules and
as such cannot be easily specified in single
modules. This increases complexity and reduces
several quality factors of software, such as adapt-
ability, maintainability and reusability. Aspect-
oriented software development (AOSD) is an
advanced paradigm for separation of concerns
(SOC), which provides explicit abstractions to
modularize the crosscutting concerns and compose
these with the system components [7].

AOSD has basically emerged from research in
object-oriented programming. The problems
encountered and the related solutions of aspect-
oriented software development were originally
discussed in various workshops in conferences
such as ECOOP [6], OOPSLA [17] and ICSE
[10]. The topics AOSD is concerned with are
traditionally taught as part of object-oriented soft-
ware development and software engineering
courses.

After an increasing maturation and a consensus
on the core AOSD concepts we can now speak of a
separate AOSD community [1]. A separate confer-
ence called Aspect-Oriented Software Develop-
ment is organized yearly, international projects
such as the network of excellence on AOSD has
been set up, and special issues of journals have
started to publish papers on AOSD. The logical
consequences of the separation and emergence of
AOSD as an independent activity affect software
engineering education as well. The need for separ-
ate courses on aspect-oriented software develop-
ment is growing and an increasing number of
courses on aspect-oriented software development
are actually starting to be taught or are planned to
be introduced into the curriculum.

This paper describes the introduction of the
graduate course Aspect-Oriented Software Devel-
opment at Bilkent University in Ankara, Turkey
[25]. Several important lessons were learned from
this course and we think that our experiences can
be useful for peer educators who teach or aim to
teach a similar course.

Our experiences may help guide educators on:

. planning an aspect-oriented software develop-
ment course in a semester;

. dealing with an introductory course for which
no suitable education material yet exists;

. adopting education forms that were used (pre-
sentations, project, demonstrations and work-
shop organizations);

. setting up a course project on AOSD;

. defining the evaluation criteria for the course;

. organizing a workshop within a course.

COURSE ORGANIZATION AND PLANNING

Existing software engineering courses at Bilkent
university included courses on object-oriented
programming, programming languages, software* Accepted 26 October 2004.

361

Int. J. Engng Ed. Vol. 21, No. 2, pp. 361±368, 2005 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2005 TEMPUS Publications.

architecture design, software engineering project
management and object-oriented software devel-
opment. The course was thus introduced as a
graduate course, but selected undergraduate
students were accepted as well. For these under-
graduate students it was required that they fulfilled
the following constraints:

. a fourth year student;

. a cumulative point grade average (CPGA) above
or close to 3.0;

. having followed the course on Object-Oriented
Software Development for which at least a B+
was required.

Setting these criteria for this relatively demanding
course was necessary since there were too many
students who did not really have a strong enough
background to follow the course, but who were
still eager to follow it. In this way, we actually also
ensured that basically the best students in the
department were selected for the course.

For organizing the course content and the plan-
ning over a 15-week semester we had first to decide
on how to approach AOSD. An analysis of the
historical developments of the contemporary
AOSD approaches shows that some of these, such
as Multi-Dimensional Separation of Concerns
(MDSOC) [20, 24] and DJ [19] have evolved from
program design principles based on separation of
concerns, while others, such as Composition Filters
(CF) [2] and AspectJ [11], have their roots in
reflective computation [16]. The basic question
was whether to explicitly focus on reflection or
not. Although we think that reflection is important,
we have chosen to build the course on the applica-
tion of design principles rather than from reflective
computation. The reason for this is twofold. Firstly,
explaining reflection is very difficult and requires
more background and conceptual effort. Secondly,
current aspect-oriented programming approaches
all seem to motivate the reason for AOSD based on
design principles and reflection has become more
implicit. This decision had a direct impact on both
the content and the planning of the course; there was
no stringent need to explain reflection in detail
anymore. Rather we chose to only briefly explain
it and referred to reflection papers in the recom-
mendation list of papers of the course.

Directly related to design principles is the notion
of design patterns [8] which represent reusable
solutions to a set of problems within a given
context. Design patterns are considered to repre-
sent the best possible application of design prin-
ciples and as such can improve the modularity of
the system. Before explaining aspects, an explicit
discussion on design patterns would provide the
student a more balanced view on dealing with
design problems. Since design patterns have their
limitations and cannot appropriately cope with
crosscutting concerns, the classes on design
patterns explicitly dealt with these problems so
that the motivation for aspects became clear. Our
aim in this course was to teach AOSD concepts so

that they would be considered as complementary
to existing practices such as the application of
design principles and design patterns. As such we
hoped to avoid `aspect-hacking' in which every
design problem would be mapped to aspects even
when this could be elegantly solved by applying
design principles or design patterns.

After the motivation for AOSD together with
the application of design principles and design
patterns was explained, we could start explaining
the solutions provided by AOSD. We had deliber-
ately chosen to select the name of the course as
Aspect-Oriented Software Development, and not
Aspect-Oriented Programming to provide a
broader view. This decision resulted in the intro-
duction of Aspect-Oriented Programming and
Aspect-Oriented Design sections of the course.

For the Aspect-Oriented Programming part,
we had to decide which aspect-programming
languages to employ. Options for this were
AspectJ, Composition Filters, HyperJ and DJ, all
of which can be considered as prominent aspect-
oriented programming languages [7].

In contrast to the programming part, the aspect-
oriented design part was more challenging since
there were very few publications that might be
considered. Our aim with this part, however, was
not to focus on a specific design approach but
rather to teach that aspects occur also at the design
phase and even at earlier phases.

Overall, we decided that the course had to be
organized as follows:

. General software engineering design principles.
Here we introduced the notion of software en-
gineering [22], and the general design principles
for achieving modular software. The separation
of concerns principle was discussed in detail.

. Object-oriented design patterns. We used the
patterns as explained in [8]. However, our aim
was not to present a comprehensive overview of
all the patterns but rather their context within
the aspect-oriented software development para-
digm.

. Problems of crosscutting concerns. This part
showed that given the contemporary software
development paradigms the application of
design principles and patterns alone were not
sufficient to cope with so-called crosscutting
concerns, which cannot be localized in single
modular units, are tangled with other concerns
and scattered over different modules [13]. The
problems of tangling and scattering and the
reduction of modularity were illustrated using
comprehensible examples.

. General principles of AOSD. After the problem
and the motivation for AOSD were understood,
the basic principles common to all AOSD
approaches were explained. These include the
notions of aspect, pointcut, joinpoint, advice,
static crosscutting, and dynamic crosscutting [7].

. Aspect-oriented programming. Within this part
the most prominent AOP approaches were

B. TekinerdogÆan362

presented (in order) AspectJ, Composition Fil-
ters, Hyper/J and DJ. A comparative analysis of
the different approaches was also made.

. Aspect-oriented design. This part looked at very
recent publications on both aspect-oriented
modeling and the approach (method) for identi-
fying aspects [3, 23, 26].

Table 1 shows how these topics were distributed
throughout the 15-week semester, together with
the evaluation schedule.

COURSE MATERIAL

Conventional courses on software engineering
usually have no difficulty finding relevant text-
books, which include the important topics and
suitable exercises. However, one of the problems
with the introduction of relatively new topics into
the curriculum is that suitable course material is
hard to find. At the time of introducing the course
(and now?) we could not find a textbook that we
considered as being suitable and comprehensive
enough.

We required a book that covered the state-of-the
art AOSD techniques, and was not too specific
dealing with, for example, a single Aspect-Oriented
Programming language. Since we were unable to
find such a book we decided to dispense with a
textbook and rely on selected papers published by
the Aspect-Oriented Software Development
Community. The list of the papers that were used
for the course is shown in Table 2. Note that in
addition to the papers that were required for the
course we have also included a list of recom-
mended papers that were interesting but fall
outside the scope of the current course.

COURSE IMPLEMENTATION AND
PEDAGOGIC FORMS

Powerpoint presentations
The course met two days a week, for one one-

hour and one two-hour lessons. Each lesson was
presented using Powerpoint. As such more than
800 (animated) Powerpoint slides were prepared
based on the guidelines for multimedia presenta-
tions [9], and they were effectively used to explain
the topics. During the course, active discussions
were encouraged as much as possible. In general,
the students appreciated the use of electronic
presentations especially when showing the concep-
tual problems such as tangling, scattering, and
crosscutting. The presented course slides were put
on the course home page (http://www.cs.bilkent.
edu.tr/~bedir/ CS586-AOSD/) so that the students
could download and view them later again when
needed [11].

In-class demonstrations
The aspect-oriented software development

course is an advanced course in software develop-
ment and requires a considerably conceptual effort
from students in order to understand both the
problems and the proposed solutions. To clarify
the topics and to make it more concrete, we
focused on presenting as many examples as pos-
sible. In addition to the examples presented, we
arranged demonstrations of three AOP languages,
AspectJ, ComposeJ and HyperJ (downloaded
from their corresponding websites). The demon-
strations were shown after the discussion on
the theory of the corresponding AOP approaches
was completed, and were accompanied with
separate presentations explaining the cases of

Table 1. Course content and form of evaluation

Week Course Topic Evaluation

1. General overview of Course
2. Basic design principles
3. Object-Oriented Design Patterns
4. Object-Oriented Design Patterns Written Exam (45 min)

(covering Design Principles and OO Design Patterns)
5. AspectJ
6. AspectJ

AspectJ Demo
Written Exam (45 min)
(covering AspectJ)

7. Composition Filters (CFs)
8. Composition Filters

ComposeJ Demo
Midterm Exam (90 min)
(covering topics from week 1-week 8)

9. Hyper/J
Start of Project Description

10. Hyper/J
Hyper/J Demo

11. Adaptive Programming and DJ
12. Aspect-Oriented Design (Notation)
13. Aspect-Oriented Design (Method)
14. ConsultancyÐNo classes

Individual group meetings with instructor
15. First Turkish Aspect-Oriented Software

Development Workshop
Paper presentation, Workshop Paper, AspectJ Code

16. Free (Exam week)
17. Final Exam Final Exam (90 min)

(covering topics from Wk 9±Wk 13)

Introducing a Graduate Course on Aspect-Oriented Software Development 363

the demonstrations. The demonstrations included
both several predefined scenarios and new scenar-
ios that came up after discussions during the
lesson. In addition to the plenary demonstrations,
the students were also given the opportunity to
redo the demonstration at home. In our experi-
ence these demonstrations have not only been of
great help for an improved understanding of the
presented topics but also improved the enthu-
siasm for the course topics. In fact, with the
demonstrations the students observed for the
first time the problems that AOSD addresses,
the approach, and how aspects were implemented,
compiled, and debugged.

Homework
The students were given homework on the topics

thatwerediscussed inthecorrespondingweek.These
homework assignments were not graded. The home-
work included small assignments on aspect-oriented
design and aspect-oriented programming. The
assignments were shortly discussed in the course
and, if needed, explained in more detail afterwards.

One of the important homework assignments was
to download and install the prominent aspect-
oriented tools for AspectJ, HyperJ and ComposeJ.
The students had to experiment with the examples
that were implemented in the tools. These were, for
example, the design of a space war game and a
concurrent mail delivery system. By doing this, the
students got practical experience on using these
important tools in particular, and the obstacles in
aspect-oriented programming in general. Further,
they were also able to define their preferences for
the tool and aspect-oriented programming
language that they would use later on in the project
assignments.

Project
The course included one midterm project in

which the basic aspect-oriented concepts and tech-
niques were practiced. The project's aim was to
clarify the concepts that had been taught during
the classes using teamwork [14]. For this, the
students formed groups of four, working together
on a case that they had selected themselves. There

Table 2. Course material

General Software Engineering Principles/introduction to Aspect-Orientation
. B. TekinerdogÆan, On The Notion of Software Engineering, Chapter 2 in PhD thesis: Synthesis-based Software Architecture

Design, University of Twente, Dept. of Computer Science, The Netherlands, 2000.
. W. Hursch and C. Lopes. Separation of Concerns, technical report, College of Computer Science, Northeastern University,

1995.
. G.Kiczales, J. Lamping, A.Mendhekar, C. Lopes, J. Loingtier, J. Irwin. Aspect-Oriented Programming, European Conference

on Object-Oriented Programming (ECOOP), Springer-Verlag, LNCS 1241, June 1997.

Design Patterns
. E.Gamma, R.Helm, R. Johnson, J. Vlissides. Design Patterns: Abstractions and Reuse of Object-Oriented Design, European

Conference on Object-Oriented Programming, Conference Proceedings, Springer-Verlag, Lecture Notes in Computer Science,
1993.

Aspect-Oriented Programming (AOP) approaches
. M. Aksit, L. Bergmans & B. TekinerdogÆan. Aspect-Composition using Composition Filters, in: Software Architectures and

Component Technology: The State of the Art in Research and Practice, M. Aksit (Ed.), Kluwer Academic Publishers,
pp. 357±382, 2001.

. H.Ossher & P. Tarr, Multi-Dimensional Separation of Concerns in HyperSpace, IBM-TJ Watson Research Center, Research
report, RC 21452 (96717), Yorktown Heights, USA, 16 April 1999.

. P.Tarr, H.Ossher, W.Harrison & S.Sutton jr. N Degrees of Separation: Multi-Dimensional Separation of Concerns, in: Proc.
International Conference on Software Engineering (ICSE 1999), 1999.

. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Griswold. An Overview of AspectJ.
In J. Lindskov Knudsen (ed.), ECOOP 2001 Object-Oriented Programming 15th European Conference, Budapest Hungary,
pages 327±353. Volume 2072 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, June, 1997.

. K.Lieberherr, D. Orleans & J. Ovlinger. Aspect-Oriented Programming with Adaptive Methods.

. D. Orleans & K. Lieberherr. DJ: Dynamic Adaptive Programming in Java.

Aspect-Oriented Design (Notation)
. S. Clarke, W. Harrison, H. Ossher, P. Tarr. Subject-Oriented Design: Towards Improved Alignment of Requirements, Design,

and Code. Proceedings of OOPSLA '99.
. S. Clarke, R.J. Walker. Composition Patterns: An Approach to Designing Reusable Aspects. In proceedings of the 23rd

International Conference on Software Engineering (ICSE), Toronto, Canada, May 2001.
. D. Stein, S. Hanenberg, & R. Unland. A UML-based Aspect-Oriented Design Notation for AspectJ, in: G. Kiczales (ed.), Proc.

of First ACM International Conference on Aspect-Oriented Software Development, Enschede, The Netherlands, April, 2001.

Aspect-Oriented Design (Process)
. B. TekinerdogÆan, M. Aksit. Separation and Composition of Concerns through Synthesis-Based Design, ACM OOPSLA'2000

workshop on Advanced Separation of Concerns, Minneapolis, October 2000.
. B. TekinerdogÆan and M. Aksit. Deriving Design Aspects from Canonical Models, in Object-Oriented Technology, S. Demeyer

and J. Bosch (Eds.), LNCS 1543, ECOOP'98 Workshop Reader, Springer Verlag, pp. 410±413, July 1998.

Other recommended reading (not part of the syllabus)
. L. Bergmans, Composition Filters Model, chapter PhD thesis
. P. Maes, Concepts and Experiments in Computational Reflection, ACM SIGPLAN Notices, v.22 n.12, p.147±155, Dec, 1987.
. D. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules, Communications of the ACM, Vol. 15, No. 12,

pp. 1053±1058, December 1972.

B. TekinerdogÆan364

were 36 students in the class, which led to 9 groups.
The cases they selected had to be the design of a
sufficiently complex and relevant application. To
illustrate the diversity of the topics we list the cases
that were selected:

. Applying AOSD to Legacy Systems

. Aspect-Oriented Design of Ant Simulation

. Aspect-Oriented Testbed for Cost-Sensitive
Classification Algorithms

. Identifying Domain Specific Aspects in a Path-
way Analysis Toolkit

. A Development Toolkit for Aspect-Oriented
Programming

. Aspect-Oriented UML Class Diagram Drawing
Tool

. Aspectual Development of Concurrent Version-
ing System

. Aspect-Oriented Design for a Peer-to-Peer File
Sharing System

. Aspect-Oriented Worker Thread Pool Frame-
work.

Most of these cases were existing cases or
research topics of the group in which the students
had to finalize their M.Sc. assignments. As such
the projects had also an indirect positive effect
since the students directly applied the concepts in
the real research setting.

Another important aim of the project was to
learn how to identify crosscutting concerns
(problems) and specify, implement and evaluate
aspects (solutions). For this, the students had to
formulate the problem of crosscutting concerns in
the given case, plan the solution, design and
translate the solution, and finally implement the
solution. As such we aimed to support not only the
understanding of common domain-specific issues
of AOSD but also the individual problem-solving
skills as described in for example [4].

To exercise the AOP problems, the selected
cases had to include at least two development
aspects and three production aspects [11]. Devel-
opment aspects represent the aspects that are used
to facilitate the development of aspects, such as
tracing, debugging and testing aspects. Production
aspects represent aspects that are inherently
intended to be included in production. Considering
multiple aspects at a time is important to highlight
the dependencies between aspects, and the addi-
tional complexities they impose on the eventual
design. In general, the development aspects of the

groups did not differ much because there seems to
be a fixed set of these aspects. The selected produc-
tion aspects on the other hand were all different
because every group had a different case.

Using the selected cases the following subtasks
had to be performed:

. Object-oriented design of the case: to include at
least two object-oriented design patterns.

. Develop change scenarios which cannot be
easily integrated into the case.

. Problem Statement: explain the shortcomings of
the object-oriented model with respect to the
crosscutting concerns and show this using the
defined change scenarios.

. Aspect-Oriented Design of the case using a
selected notation.

. Aspect-Oriented Programming in AspectJ:
implement 5 aspects (3 production aspects, and
2 development aspects).

. Provide alternative aspect specifications using
Composition Filters, HyperJ or DJ.

. Evaluate the aspect-oriented design and a com-
pare the chosen AOP approaches.

Note that for the implementation of aspects we
have chosen to use AspectJ. The reason for
this was that AspectJ had the most mature inte-
grated development environment and related
documentation.

The deliverables of the project included a report
(about 40±50 pages), an aspect-oriented program
in AspectJ, a PowerPoint presentation which was
presented in class, and a workshop paper. The
students were in general very positive about the
project since it provided them the opportunity
to experience a real aspect-oriented software
development process.

ASSIGNMENT AND GRADING

The final course grade was based on a set of
written exams/assignments, which were used to
evaluate students' understanding of the course
material. These are listed in Table 3. There were
two short examinations of 45 minutes each, and
one midterm and one final exam of 120 minutes.
The short examinations helped to assess the
student's knowledge of particular topics. The
midterm and final exams were more comprehen-
sive and focused on a broader understanding and

Table 3. Examinations and grading

Task Description Weight

Written (Short) Exam During the courseÐ45 min. 15%
Project Report (75%) 35%

Presentation (15%)
Code (10%)

Midterm Exam Open book 120 mins. 25%
Workshop Paper Write a workshop paper based on project results 10%
Final Exam Open book 120 mins. 15%

Introducing a Graduate Course on Aspect-Oriented Software Development 365

application of the topics. The examinations did not
only help to evaluate and grade the students but
also ensured indirectly that the course topics were
studied on time. This was important considering
the relative advanced nature of the course. Besides
the examinations, which were evaluated individu-
ally, the students also got a group grade for the
project and the related workshop (see next
section). Note that the project counts for a signifi-
cant part of the grade, which emphasizes its
importance.

WORKSHOP ORGANIZATION

During the project, complex cases were selected
from industry and ongoing projects at the univer-
sity and these were analyzed for aspects and re-
engineered as aspect-oriented designs. Aspect-
oriented programs have been implemented in
AspectJ and a comparison made with other promi-
nent AOP approaches such as Composition
Filters, Hyper/J and DJ. This resulted in a
unique collection of valuable aspect-oriented
designs, which show the strengths, and weaknesses
of AOSD. To make these valuable practices public
for a broad audience we decided to organize the
First Turkish Aspect-Oriented Software Deve-
lopment Workshop (http://www.cs.bilkent.edu.tr/
taosd03/) for which we would invite participants
from industry and other universities. This was a
unique experience since most of the students had
never participated in a workshop before. In addi-
tion, since the topic was introduced for the first
time in Turkey, the audience would consist of
participants who were new to this paradigm.
Consequently, we thought that organizing such a
workshop would be beneficial for both our
students and external participants. In particular,
with the organization of the workshop we had the
following goals in mind:

. Trigger academic and industrial activities in the
AOSD domain in Turkey.

. Show real-world example cases using different
AOSD approaches to highlight the current state
of the art in the AOSD community.

. Show the lessons learned from aspect-oriented
software development.

. Share our ideas with respect to aspect-oriented
software development education on AOSD in
Turkey.

. Trigger new research topics on AOSD.

The project results have been presented as work-
shop papers. Because most students in the AOSD
course wrote a workshop paper for the first time,
they also received a short course on how to write
workshop papers and in addition got extensive
feedback on their papers by the instructor. The
papers present a broad range of aspects in different
applications, discuss the crosscutting problems and
as such provide a unique set of aspect examples. In
addition, the papers also highlight the obstacles in

AOSD and provide some triggers for new research
directions. As such, we consider the papers in the
published workshop proceedings as both useful for
novice aspect-oriented software developers and
aspect-oriented researchers.

Based on the number of the project groups we
had in total nine presentations, each of them took
30 minutes including a 10-minute plenary discus-
sion after each presentation. There were three
presentation sessions, and each presentation
included one real demo showing sample aspect
code in AspectJ. The workshop was concluded
with a plenary session in which we summarized
the results and discussed our future plans to
distribute and share our knowledge on AOSD in
Turkey.

The workshop was really successful; about 70
participants both from industry and academia
registered for it. We hope that by organizing
such a workshop we have contributed to the
early discovery and active involvement of aspect-
orientation in the Turkish software engineering
community.

CONCLUSION

In this paper we have described the introduction
of the graduate Aspect-Oriented Software Devel-
opment course at Bilkent University in Ankara,
Turkey. The course organization has provided a
number of lessons that might be useful for peer
educators who teach or plan to teach a similar
course.

Since no suitable textbooks for teaching AOSD
exist yet, the course material was collected from a
set of important AOSD research papers. In our
experience we have seen that this does not form a
real obstacle. In fact we could even say that this
helped to improve scientific reading and writing
skills, which is essential for graduate students. For
this reason, even if an appropriate textbook were
available we would still consider including some
research papers in the course material.

Regarding the historical development of AOSD
and the motivation for adopting AOSD we have
chosen to start the course by explaining funda-
mental software design principles. This was
followed by design patterns which can be consid-
ered as the optimal approaches in which the design
principles are applied. After having explained that
some concerns might still be crosscutting and as
such reduce modularity of software, we have first
taught Aspect-Oriented Programming and then
Aspect-Oriented Design.

The use of examples and real demonstrations of
prominent AOP approaches in class have helped to
increase the understanding of AOSD topics and
the enthusiasm of the students for the course
topics. The project helped students gain a concrete
understanding of the aspect-oriented concepts by
designing and implementing a real example case.

B. TekinerdogÆan366

Both the problems and the solutions afforded by
AOSD were explicitly covered in the project.

The project results formed a unique collection of
AOSD design examples, which we planned to
make public for a broader audience by organizing
a workshop. The organization of a workshop
within a course was really a unique experience
and helped increase not only the scientific reading,
writing and presentation skills of the students but
also supported the popularization of the AOSD
concepts in Turkey.

The course was evaluated by the students and
the results were overly positive. On a scale from 1

(low) to 5 (high), the overall effectiveness of the
course was rated as 4.71, which is considered an
exceptionally good evaluation.

In the future we plan to give the same course in a
similar way. The only extension might be to
include laboratory work [18] but we do not
consider this really necessary because in the
current organization of the course the students
already do considerable practical work.

AcknowledgmentÐI would like to thank all the CS586 students
for their enthusiasm and their hard work during this course.
Finally, I would like to thank David Davenport at Bilkent
University for reviewing earlier versions of this paper.

REFERENCES

1. AOSD community home page. http://aosd.net
2. M. Aksit, L. Bergmans and B. Tekinerdogan, Aspect-composition using composition filters, in

Software Architectures and Component Technology: The State of the Art in Research and Practice,
M. Aksit (ed.), Kluwer (2001) pp. 357±382.

3. S. Clarke, R. J. Walker, Composition patterns: an approach to designing reusable aspects, Proc.
23rd Int. Conf. Software Engineering (ICSE), Toronto, Canada, May 2001.

4. F. Deek, M. Turoff and J. McHugh, A common model for problem solving and program
development, J. IEEE Trans. Educ., 42(4), November 1999, pp. 331±336.

5. E. W. Dijkstra, The structure of `THE' multiprogramming system, Communications of the ACM,
11(5), 1968, pp. 341±346.

6. European Conference on Object-Oriented Programming (ECOOP). http://www.ecoop.org/
7. T. Elrad, R. Fillman and A. Bader, Aspect-oriented programming, Communication of the ACM,

44(10), October 2001.
8. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design patterns: abstractions and reuse of

object-oriented design, Proc. European Conf. Object-Oriented Programming, Springer-Verlag,
Lecture Notes in Computer Science, 1993.

9. F. T. Hofstetter, Multimedia Presentation Technology, Belmont, California: Wadsworth Publishing
Company (1993).

10. Int. Conf. Software Engineering. www.icse-conferences.org
11. S. Kanya, Online education expands and evolves, IEEE Spectrum, 40(5), May 2003, pp. 49±51.
12. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. G. Griswold, An overview of

AspectJ, in J. Lindskov Knudsen (ed.), ECOOP 2001 Object-Oriented Programming 15th European
Conf., Budapest Hungary, Volume 2072 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, June, 1997, pp. 327±353.

13. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier and J. Irwin,
Aspect-oriented programming, Proc. ECOOP '97, Springer-Verlag LNCS 1241.

14. M. Krishnan, S. Das and S. A. Yost, Team-oriented, project-based instruction in a new
mechatronics course, Frontiers in Education Conf., 1999.

15. K. Lieberherr, D. Orleans and J. Ovlinger, Aspect-oriented programming with adaptive methods,
Communications of the ACM, 44(10), October 2001, pp. 39±43.

16. P. Maes, Concepts and experiments in computational reflection, ACM SIGPLAN Notices, 22(12),
Dec, 1987, pp. 147±155.

17. Object-Oriented Programming, Systems, Languages and Applications Conference. http://
www.oopsla.org/.

18. L. Ohlsson and C. Johansson, A practice driven approach to software engineering education, IEEE
Trans. Educ., 38(3) August 1995.

19. D. Orleans and K. Lieberherr, DJ: Dynamic Adaptive Programming in Java, in Reflection 2001:
Meta-level Architectures and Separation of Crosscutting Concerns, Springer Verlag (2001)

20. H. Ossher and P. Tarr, Multi-Dimensional Separation of Concerns using Hyperspaces, IBM
Research Report 21452 (1999).

21. D. Parnas, On the criteria to be used in decomposing systems into modules, Communications ACM,
15(12), Dec. 1972, pp. 1053±1058.

22. R. S. Pressman, Software Engineering: A Practitioner's Approach, Mc-Graw-Hill (1994).
23. D. Stein, S. Hanenberg and R. Unland, A UML-based aspect-oriented design notation for

AspectJ, Proc. First ACM Int. Conf. Aspect-Oriented Software Development, Enschede, The
Netherlands, April, 2001.

24. P. Tarr, H. Ossher, W. Harrison and S. M. Sutton, Jr., N degrees of separation: multi-dimensional
separation of concerns, Proc. ICSE 21, May, 1999.

25. B. Tekinerdogan, CS586-Aspect-Oriented Software Development Course Home Page, Bilkent
University, Ankara, Turkey (2003). www.cs.bilkent.edu.tr/~bedir/CS586-AOSD/

26. B.TekinerdogÆan and M. AksÎit, Deriving design aspects from conceptual models, Demeyer, S. and
Bosch, J. (eds.), Object-Oriented Technology, ECOOP '98 Workshop Reader, LNCS 1543, Springer-
Verlag, pp. 410±414 (1999).

Introducing a Graduate Course on Aspect-Oriented Software Development 367

Bedir TekinerdogÆan received his M.Sc. degree in Computer Science in 1994, and a Ph.D.
degree in Computer Science in 2000, both from the University of Twente, The Netherlands.
From September 2000 until August 2002 he fulfilled a post-doc position at the University of
Twente. From September 2002 until July 2003 he was an assistant professor at Bilkent
University in Turkey. Currently he is an assistant professor at the University of Twente in
The Netherlands. His basic research topics are aspect-oriented software development,
software architecture design, and software product line engineering. He has served on the
program committee and organising committee for different conferences and workshops
related to aspect-oriented software development, software architecture design, and object-
oriented software development. From 1994 on, he has taught courses on object-oriented
programming, object-oriented analysis and design, object-oriented design patterns, soft-
ware architecture design and aspect-oriented software development.

B. TekinerdogÆan368

