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Measurement uncertainty is an important concept for electronic instrumentation students. This
paper presents an easy way to explain this difficult concept that has been developed in the
telecommunication engineering school of the Polytechnic University of Catalonia (Barcelona,
Spain). The lesson development is based on a number of references from metrological associations
that can be obtained from the internet. Two examples illustrate the process of evaluation and
calculation of uncertainty in simple measurement situations.

INTRODUCTION

ELECTRONIC INSTRUMENTATION (EI) is
a mandatory subject in the telecommunication
engineering course in Spain, which is a study
program of five years divided into two cycles of
five semesters each. Electronic instrumentation is
studied in the fourth semester of the second cycle.

The aim of this course is to present students with
the knowledge on measurement methods, design of
test instrumentation systems and selection of test
equipment, automatic test equipment and virtual
instrumentation that they will need for their
professional career.

By the end of this course, students should be
able to: (a) develop a measurement procedure, (b)
find the appropriate instruments for performing
the measurements, (c) connect the instruments and
evaluate the problems that result from a bad
connection, (d) assemble the results and present
them, and finally (e) evaluate the measurement
uncertainty.

Most students believe, erroneously, that the
measurement process ends with the fourth step
(d) and never think about the measurement uncer-
tainty. The first barrier to overcome is to convince
the students that the measurement uncertainty is
an important factor. With this in mind, it is a good
idea to suggest they try a simple experiment from
the UKAS web page [1]: give the students a
sheet of paper with a line drawn on it and ask
them to measure the length of this line with a ruler,
then interchange the rulers between them and ask
them to write down the results. They should then
be asked: Do different people produce different
results with the same ruler? Do different rulers give
consistent results? The outcome of this experiment

is amazing enough to motivate students regarding
the concept of measurement uncertainty.

As an introduction to the concept, there are
several articles about measurement uncertainty
on the internet [2, 3]. The lesson plan is based on
four textbooks [4±7], all of which are free docu-
ments that students can obtain from the internet.

The concept of uncertainty is explained on a
metrological basis because this approach provides
a systematic methodology to analyze measurement
uncertainty, and this facilitates its study. The ISO
guide on the expression of uncertainty in measure-
ments (GUM) [8] and the American National
Standard ANSI/NCSL Z540-2-1997 [9] provide
the internationally agreed method for estimating
measurement uncertainty, so the lesson description
is based on this method. The documents recom-
mended as textbooks are also based on GUM and
the ANSI/NCSL Z540-2-1997.

The lesson is scheduled in four parts: the first
part focuses on introducing some definitions. In
the second part, the estimation of measurement
uncertainty by statistical methods (type A uncer-
tainty estimation) is explained. The third part is
devoted to type B uncertainty estimation (estima-
tion not related to statistical methods). Finally, the
fourth part deals with uncertainty estimation in
indirect measurements and the computation of
expanded uncertainty.

SOME DEFINITIONS

The purpose of a measurement is to assign a
numerical value to a property of an object or to a
physical variable. The measurement result is a
number that quantifies this property, but this
number in itself gives little information. A para-
meter is also needed that quantifies the quality of* Accepted 27 September 2004.
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the result of the measurement. This parameter is
the measurement uncertainty. That is: a measure-
ment result m has an uncertainty u(m).

It is important not to confuse the terms `uncer-
tainty' and `error'. While error is the difference
between the measured value and the `true value' of
the measurand (so cannot be obtained), uncer-
tainty is a quantification of the doubt about the
measurement result [10].

A more rigorous definition of measurement
uncertainty would be as follows: `the uncertainty
of measurement is a parameter, associated with the
result of the measurement, that characterizes the
dispersion of the values that could reasonably be
attributed to the measurand' [11].

The measurand is the particular quantity subject
to measurement, for example the value of a certain
resistor R. The value of the measurand depends on
several input magnitudes. In the case of a resistor,
the relationship between its value and the input
magnitudes is given by Ohm's law:

R � V

I
�1�

where V is the voltage and I is the current across
the resistor.

In a more general way, a measurand Y is a
function of several input quantities (X1, X2, . . . , Xn):

Y � f�X1;X2; . . . ;Xn� �2�
An estimate of the measurand Y, expressed as
lowercase (y), can be obtained from the input
quantity estimates x1, . . . , xn

y � f�x1; x2; . . . ; xn� �3�
where the function f represents the procedure of
measurement.

Every input quantity estimate xi has an asso-
ciated standard uncertainty, u(xi), that is the esti-
mated standard deviation of xi. The measurement
standard uncertainty is defined as a combination
of the standard uncertainties of the input quantity

estimates and is called combined standard uncer-
tainty:

uc�y� � g�u�x1�; u�x�2�; . . . ; u�xn�; x1; x2; . . . ; xn�
�4�

where g is a function related to f.
Returning to the resistor example, the uncer-

tainty in the resistor value will be a function of
voltage and current uncertainties.

uc�R� � g�u�V�; u�I�;V; I� �5�
Regardless of which are the uncertainty sources,
the international consensus method for estimating
measurement uncertainty provides two ways of
evaluating it: Type A Evaluation, where the uncer-
tainty is estimated by using statistical methods,
and Type B Evaluation, where the uncertainty is
estimated from other information (past experience,
calibration certificates, manufacturer specifica-
tions, etc.) [4±7].

Before attempting to estimate the measurement
uncertainty, it is necessary to know how the effects
are contributing to it. There are three kinds of
effect that influence the measurement result:

a) Random effects: When the measurement is
repeated the result is randomly different (with
a zero mean).

b) Systematic effects: The effect is the same for
each measurement. These are usually factors
related with the measurement instrument like
bias or aging, or related with the measurement
procedure like load effects. They must be cor-
rected prior to estimating the measurement
uncertainty.

c) Mistakes or aberrations: These should not be
considered in measurement uncertainty estima-
tions, so they should be rejected.

Figure 1 shows these three kinds of effects.
Random effects are distributed around the central
point without following any definite pattern.
Systematic effects are all biased from the central

Fig. 1. The concepts of random effect, systematic effect and aberration or mistake.

M. FernaÂndez Chimeno et al.526



point. Aberrations or mistakes are far away from
the central point and can be easily detected as a
mistake.

TYPE A EVALUATION OF UNCERTAINTY

Type A evaluation of uncertainty is performed
by a statistical analysis of experimental data. The
procedure for the evaluation is as follows:

1. From all possible results obtained when mea-
suring a magnitude q (the population), a set of n
independent results qk is extracted (the sample).
The expectation of the population is the true
value of q.

2. To estimate the value of q, the arithmetic mean
is calculated as follows:

q � 1

n

Xn

k�1

qk �6�

3. The experimental standard deviation is used to
estimate the dispersion of results:

s�q� �
�������������������������������������

1

nÿ 1

Xn

j�1

�qj ÿ q�2
vuut �7�

In fact s(q) gives information about the disper-
sion of the sample. If a new set of n measure-
ments are extracted from the population, the
value obtained for the arithmetic mean will be
different. So a parameter for estimating the
dispersion of values of the arithmetic mean is
needed.

4. The experimental standard deviation of the
arithmetic mean is defined as:

s�q� � s�q����
n
p �8�

this parameter is an estimator of the standard
uncertainty so:

u�q� � s�q� � s�q����
n
p �9�

Equation (8) is only valid if the n measurements
are statistically independent. If the measurements
are correlated, the mean and the experimental
standard deviation of the mean may be inappropri-
ate estimators of the desired statistics. In such
cases the data should be analyzed by statistical
methods adequate for treating a series of corre-
lated randomly varying measurements [8, 12].

Figure 2 shows graphically the type A standard
uncertainty evaluation. Two sets of n independent
measurements (n = 10) are shown. The mean, the
standard deviation and the standard uncertainty
for the two sets of measurement are also shown.

Example 1
In order to measure an unknown voltage, an

acquisition card for a PC is used. Eight measure-
ments of the unknown voltage are performed
obtaining the following readings: 10.110V,
10.107V, 10.119V, 10.105V, 10.111V, 10.108V,
10.108V, 10.109V. The PC card offset is 0.003v
and its gain is 1.003.

a) Obtain an expression for the correction of
systematic effects and correct the readings.

b) Obtain an estimation of the unknown voltage
and the standard deviation of the electrical
noise superimposed on it.

c) Calculate the standard uncertainty of the
unknown voltage.

Solution
a) The offset and gain of the PC acquisition card

are systematic effects. Equation (10) gives the

Fig. 2. Graphical illustration for type A uncertainty evaluation. Two sets of measurements ($, *) are shown. The mean value for each
set of measurements ($, *) and its uncertainty are also presented.
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measured voltage as a function of input voltage
and systematic effects:

Vmeasured � G � Vinput � Voffset �10�
where G is the gain of the acquisition card and
Voffset is the offset voltage. The corrected read-
ings are expressed as:

Vinput � Vmeasured ÿ Voffset

G
�11�

Table 1 contains the corrected readings.
b) The estimation of the unknown voltage and the

electrical noise superimposed can be obtained
respectively from the arithmetic mean equation
(6) and the standard deviation equation (7) of
the corrected values:

Vinput �
P

Vinput

8
� 10:075 V

Vnoise �
����������������������������������������P�Vinput ÿ Vinput�2

7

s
� 4:6 mV

�12�

c) The standard uncertainty of the measurement
can be obtained from equation (9):

u�Vinput� � 1:7 mV �13�

TYPE B EVALUATION OF UNCERTAINTY

Type B evaluation of uncertainty is performed
by means other than statistical analysis of a series
of observations. If only an estimate xi from an
input quantity Xi is available, the evaluation of
standard uncertainty is based on all available
information on the possible variability of the
input quantity (previous measurement data, know-
ledge of behavior of materials and instruments,
manufacturer's specifications, data provided in
calibrations etc.). The more common methods for
type B standard uncertainty evaluation are:

a) From previous knowledge of the measured
input quantity Xi a probability distribution of
Xi can be supposed. In this case, the expectation
of Xi, E(Xi), is an estimate of the input quantity
and the standard deviation of Xi, s(Xi), is an
estimate of the measurement uncertainty.

b) If only the limits of the distribution are known,
two distributions are commonly used: rectan-
gular or uniform distribution or triangular
distribution. Rectangular distribution is the
simplest option for the analysis and it repre-
sents the worst case. Triangular distribution is
used when it is known that there is a central
tendency for the values of the variable of
interest. Although these two distributions are

the most commonly used, other distributions
are sometimes employed. Some of these distri-
butions are described below.

Rectangular distribution
All the possible values have the same probabil-

ity. Typical situations for using this distribution
are, among others, digital resolution, component
tolerances, quantization error or RF phase angle
[13]. In a more general way, a rectangular distribu-
tion should be used when only the two limits of
possible values are known, or when the probability
distribution function is unknown. The uniform
distribution leads the most conservative uncer-
tainty estimation; that is, it gives the largest
standard deviation.

Normal distribution
This distribution is very important because it

represents the statistical behavior of most phenom-
ena that occurs in nature. It is a less conservative
way to estimate uncertainty because it gives the
lowest standard deviation. Usually, the calculation
of the standard deviation is based on the assump-
tion that the end-points, � a, encompass 99.7
percent of the distribution, if the number of
observations is high enough [14].

Triangular distribution
This distribution is used when there is a 100%

minimum containment limit and when it is known
that there is a central tendency for the values of the
variable of interest. Triangular distribution leads
to a less conservative estimate of uncertainty than
uniform distribution but a more conservative esti-
mate than normal distribution; that is to say, it
gives a smaller standard deviation than uniform
distribution, but larger than normal distribution.

U distribution
This distribution is used when the most likely

value of the measurand is near to the containment
limits. For instance, it applies to sinusoidal inter-
ference.

Poisson distribution
This is used to model the number of random

occurrences in a given unit of time or space. In this
case the interest variable must be a count of events.

Table 2 contains the most common distributions
and their relevant parameters.

Other ways to evaluate type B standard
uncertainty

Sometimes the estimate of xi is taken from a
manufacturer specification, or a calibration certi-
ficate, etc., and its uncertainty is stated to be a
multiple of a standard deviation. In this case, the

Table 1. Corrected offset and gain readings for example 1

Reading (V) 10.110 10.107 10.119 10.105 10.111 10.108 10.108 10.109
Vinput (V) 10.076 10.073 10.086 10.071 10.077 10.074 10.074 10.075
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standard uncertainty is the value of the uncertainty
divided by the multiplier.

The uncertainty in the estimate of xi can also be
given by an interval with a 90, 95 or 99% level of
confidence. In this case it may be assumed that
there is normal distribution (unless there are other

indications). The standard uncertainty is calcu-
lated by dividing the stated value by the corres-
ponding factor for normal distribution and the
confidence level. The factors for the confidence
levels of 90, 95 and 99% are 1.64, 1.96 and 2.58
respectively.

Table 2. Most common distribution probability functions used in type B uncertainty evaluation
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STANDARD UNCERTAINTY IN INDIRECT
MEASUREMENTS

The result obtained from an indirect measure-
ment is a combination of several magnitudes. In
the section `Some Definitions', equation (3) gives
the measurement result as a function f of several
input quantities, and equation (4) gives the
measurement uncertainty as a function g of input
quantity uncertainties. In this section the relation-
ship between the functions f and g will be analyzed.

Independent magnitudes
If the different magnitudes used to obtain the

measurement result are independent, the combined
standard uncertainty can be calculated using a
first-order Taylor series approximation as follows:

uc�y� �
�������������������XN

i�1

u2
i �y�

vuut �14�

where ui(y) is the contribution to the standard
uncertainty of y resulting from the standard uncer-
tainty of the input quantity xi

ui�y� � ci � u�xi� �15�
ci is the sensitivity coefficient associated with the
input quantity

ci � @ f

@xi
�16�

Substituting equations (16) and (15) in equation
(14) the combined uncertainty can be expressed as:

uc�y� �
�������������������XN

i�1

u2
i �y�

vuut �
������������������������XN

i�1

c2
i u2�xi�

vuut
�

���������������������������������XN

i�1

@ f

@ xi

� �2

u2�xi�
vuut �17�

Dependent magnitudes
We say that two magnitudes are dependent

when a variation in one of them causes a variation

in the other. In this case the combined standard
uncertainty can be calculated as follows:

uc�y� �
����������������������������������������XN

i�1

XN

k�1

cicku�xi; xk�
vuut

�
������������������������������������������������������������������������������XN

i�1

c2
i u2�xi� � 2 �

XNÿ1

i�1

XN

k�i�1

cicku�xi; xk�
vuut

�18�
where ci is the sensitivity coefficient and u(xi, xk) is
the covariance between the input magnitudes xi

and xk. This covariance can be obtained from the
standard uncertainty of input quantities and their
correlation coefficient:

u�xi; xk� � u�xi� � u�xk� � r�xi; xk� �19�
Note that r(xi, xi) = 1.

Uncertainty budget
The uncertainty analysis for a measurement

should include a list of all sources of uncertainty
and the associated standard uncertainties of
measurement and the methods for evaluating
them. A good method of showing all this informa-
tion is the uncertainty budget of measurement.
Table 3 shows a typical uncertainty budget.

Expanded uncertainty
In some applications it is often necessary to give

a measure of uncertainty that defines an interval
around the measurement result that may be
expected to encompass a large fraction of the
distribution of values expected for the measurand
[8].

This measure of uncertainty is called expanded
uncertainty and is denoted by U. The expanded
uncertainty is obtained by multiplying the
combined standard uncertainty by a coverage
factor k:

U � k � uc�y� �20�
The result of a measurement is now expressed as:

Y � y�U �21�

Table 3. Typical uncertainty budget: an ordered arrangement of the quantities, estimates, standard uncertainties, assumed
probability density functions, sensitivity coefficients and contributions to total uncertainty calculation

Input
quantity
Xi

Estimate
xi

Standard
uncertainty

u�xi� pdf

Sensitivity
coefficient

ci

Contribution to the standard
uncertainty

ui�y�
X1 x1 u�x1� . . . c1 c1 � u�x1�
X2 x2 u�x2� . . . c2 c2 � u�x2�
. . . . . . . . . . . . . . . . . .
XN xN u�xN� . . . cN cN � u�xN�
Y y uc�Y�
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where y is the best estimate of the value attribu-
table to the measurand Y, and yÿU and y�U
define an interval about the measurement result
that includes a large fraction p of the probability
distribution characterized by the result and its
combined standard uncertainty, and p is some-
times referred to as the level of confidence of the
interval.

The coverage factor k is chosen for providing an
interval Y� y � U corresponding to a particular
level of confidence p. This is not easy to do in
practice because it requires an extensive knowledge
of the probability distribution characterized by the
result and its combined standard uncertainty. But,
by the Central Limit Theorem the probability
distribution of a variable obtained from a combi-
nation of several variables with different probabil-
ity distributions can be approximated by a normal
distribution. The larger the number of variables,
the more exact the approximation.

In order to obtain a stricter approximation of
expanded uncertainty, we should consider that the
calculation of an interval having a specific level of
confidence requires the distribution of a variable
[yÿY]/uc(y). If the measurand Y is a normally
distributed quantity and y is the best estimation of
Y (that is, the arithmetic mean of n independent
observations of Y) with experimental deviation of
the mean s(y)� uc(y), the variable [yÿY]/uc(y)
follows a student t-distribution with �� nÿ 1
degrees of freedom.

The coverage factor is now obtained from the t-
distribution tables for a determinate confidence
level and �� nÿ 1 degrees of freedom.

When the degrees of freedom tends to 1 be
the student t-distribution tends to be a normal
distribution.

Example 2
In order to characterize a sensor that can be

modeled as a voltage source, a digital multimeter is
used for measuring its output voltage. The manu-
facturer of the sensor specifies an output resistance
of 10 kQ � 1kQ with a coverage factor k� 2. The
manufacturer of the digital multimeter specifies an
input impedance of 10 MQ � 0.1 MQ with a cover-
age factor k� 3, and a measurement accuracy of
0.0035% of the reading �0.0005% of the range.
The multimeter reading is 99.9v when a range of
100v is selected.

a) Draw the equivalent circuit for the measure-
ment.

b) Obtain the equation for estimating the value of
the voltage source and calculate it.

c) Calculate the standard uncertainty of each
input quantity.

d) Obtain the uncertainty budget and calculate the
voltage source combined standard uncertainty.

Solution
a) Figure 3 shows the equivalent circuit for the

measurement.

b) The measured voltage source is:

Vm � Rin

Rin �Rs
Vs �22�

where Vs and Rs are the source voltage and
source resistance respectively and Rin is the
multimeter input resistance.

Obtaining Vs from equation (22):

Vs � 1� Rs

Rin

� �
� Vm �23�

The value of Vs is obtained by substituting the
nominal values in equation (23)

Vs � 1� 10 kQ

10 MQ

� �
� 99:9 V � 100 V �24�

c) In equation (23) there are three input magni-
tudes for obtaining Vs: Vm, Rs and Rin.

c-1 Rs standard uncertainty: the manufac-
turer gives the value of Rs with its expanded
uncertainty. In this case:

u�Rs� � U�Rs�
k
� 1000

2
� 0:5 kQ �25�

c-2 Rin standard uncertainty: this is the same as
for c-1; the manufacturer gives the expanded
uncertainty as follows:

u�Rin� � U�Rin�
k

� 100 000

3
� 0:033 MQ �26�

c-3 Vm standard uncertainty, from the multi-
meter specification:

multimeter accuracy � 0:0035% of reading

� 0:0005% range

accuracy � 0:0035

100
� 99:9 V

� 0:0005

100
� 100 V � 3:9 mV �27�

Because the probability distribution function is
unknown, a uniform distribution is considered

Fig. 3. Equivalent measurement circuit for example 2.
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for the worst case. In this case the standard
uncertainty is:

u�Vm� � accuracy���
3
p � 3:9 mV���

3
p � 2:25 mV �28�

d) The voltage source combined standard uncer-
tainty is obtained applying equation (17),
because all input quantities are independent.
First, the sensitivity coefficients must be calcu-
lated:

Vm sensitivity coefficient:

@Vs

@Vm
� 1� Rs

Rin
� 1:001 �29�

Rs sensitivity coefficient:

@Vs

@Rs
� Vm

Rin
� 9:99 � 10ÿ6 A � 9:99�A �30�

Rin sensitivity coefficient:

@Vs

@Rin
� ÿ Rs

R2
in

Vm � ÿ9:99 nA �31�

Note that Rs and Rin coefficients have electrical
current units and the Vs sensitivity coefficient is
dimensionless.

Table 4 contains the uncertainty budget and the
combined standard uncertainty for the voltage
source. With this example, the standard uncer-
tainty calculations using a type B evaluation of
uncertainty are shown. The contribution of each
uncertainty source can be seen in Table 4.

CONCLUSIONS

Measurement uncertainty is an important
concept for undergraduate electronic instrumenta-
tion students to know. In this paper a simple way of
explaining this subject has been presented. Refer-
ence materials for this subject can be obtained from
the web pages of metrological associations. Some
important measurement concepts have been intro-
duced in this paper, then the two types of uncer-
tainty evaluation are explained, and finally the
calculation of combined standard uncertainty is
presented. Two examples have been provided to
illustrate type A standard uncertainty evaluation
and combined standard uncertainty calculation
using a number of input quantities with type B
standard evaluation. The use of this approach to
explain measurement uncertainty has been a posi-
tive experience for our electronic instrumentation
students.
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