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Specialists and non-specialists in artificial neural networks (ANN) must closely interact in many
applications, including structural sensing. The non-specialists must be aware of ANN-specific
terminology, capabilities, and connecting concepts for effective collaboration. An instructional
approach for ANNs is described that progresses from practical concepts to guided MatLab-based
experimentation. Back propagation-trained multilayer perceptron neural networks are presented
with an emphasis on parallel processing and training characteristics. The one-week instructional
module has a lecture to convey terminology and structure, detailed examples to illustrate the
training process, and guided application-based exercises. The MatLab neural-networks toolbox
provides a transparent learning environment in which the students focus on network design and
training concepts rather than the tool itself. Learning effectiveness was evaluated in an applica-
tions-oriented sensors curriculum. Instructional resources including realistic problems are web-
accessible. These resources may be adjusted for different degrees of challenge and for simpler or
more realistic problem solving.

INTRODUCTION

ARTIFICIAL NEURAL NETWORKS (ANNs)
are versatile tools that are often integrated with
other technologies. In structural sensing applica-
tions, interdisciplinary considerations involving
instrumentation, signal processing, materials,
manufacturing, and structural mechanics deter-
mine the architecture and characteristics of the
neural network implementation. Even for instru-
mentation teams concerned only with the electrical
engineering issues, ANN specialists and non-
specialists must work together closely. The non-
specialist in ANN needs to be aware of discipline-
specific terminology, ANN capabilities, and
connecting concepts for effective collaboration.
Consequently, tailored instruction that can quickly
teach a systems-level understanding of ANN
design and operation is needed. Such a qualitative
introduction can supplement courses on sensors,
instrumentation, control, and smart structures.
MatLab-based exercises with non-trivial archi-
tecture and training can provide a key link to
applications.

Traditional instruction in ANNs is typically
through a comprehensive course at the graduate
or upper undergraduate levels. Textbooks usually
introduce algorithms and training functions with
assumptions of some mathematical maturity [1].
While this approach may be appropriate for
students who desire to be ANN specialists, other
students can struggle with the mathematical detail.
Also, these students may not have the time for
a standalone course and may not be motivated

without a connection to realistic applications.
However, the concepts behind neural networks
are fundamentally simple and have value for a
more general audiences. Our research at the
University of Missouri±Rolla in the smart struc-
tures area [2] involves monitoring structures using
integral sensors and dedicated processing [3±5].
The instructional motivation and ANN target
concepts grew out of our collaborative experience
as researchers and student advisors [6]. Tailored
student-centered learning [7] coupled with power-
ful software tools can provide benefits to students
with and without prior experience with ANNs.
Typically, the former better appreciate the rele-
vance of ANNs to other fields while the latter
develop collaborative knowledge.

This work describes a systems-level approach.
The operation of ANNs is taught by linking
foundational knowledge to a realistic context [8,
9]. The intended audience is composed of non-
specialists who need to collaborate with specialists
and to understand the capabilities of ANNs. An
instructional module is proposed that progresses
from practical concepts to guided MatLab-based
experimentation. Instructional resources are made
available on a course website. These resources may
be adjusted for different degrees of challenge and
for simpler or more realistic problem solving.

The learning objectives and stages are:

. to convey knowledge of terminology and struc-
ture;

. to illustrate the training process;

. to link ANNs to applications.

Back propagation-trained multilayer perceptron
neural networks are emphasized due to their* Accepted February 2005.
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importance and problem-solving flexibility. The
lecture defines key ANN components and intuitive
explanations with minimal mathematics. The
illustrations give step-by-step training results for
simple network examples for approximating a
mathematical function, identifying damage strain
signatures, and predicting wing performance. The
laboratory activity has guided application-based
exercises, which allow students great flexibility in
network design and in training parameters. There
is not one correct answer. Exercise constraints
allow choices that will produce non-convergent,
poorly convergent, and well-convergent solutions.
The MatLab neural-network toolbox with the
graphical user interface (GUI) [10] provides a
relatively transparent learning environment in
which the students focus on network design and
training concepts rather than the tool itself. The
methodology was implemented and assessed for an
applications-oriented collaborative course in the
topical area of sensors and structural sensing [11,
12]. This paper discusses the design of the instruc-
tional module, documents the web-accessible

resources, presents the qualitative examples and
the MatLab exercise, and evaluates the course
implementation.

INSTRUCTIONAL OVERVIEW

Methodology
The progression for the instructional module

starts with a lecture conveying target knowledge
and examples and ends with an interactive design
and training exercise. The educational approach
incorporates classic hearing, seeing, and doing
components. The main goal is to teach a systems-
level, applications-oriented understanding of arti-
ficial neural networks. A succinct presentation is
desired for qualitative understanding. The instruc-
tion should be sufficient to be a standalone intro-
duction for ANNs or to be a systems view that
complements other ANN studies. Tools for colla-
boration are desired. ANN capabilities should be
linked to applications and the module should be
easily adjusted for needs in different application

Fig. 1. Flowchart depicting the progression of the module, which includes the lecture and MatLab exercise stages. The three stages of
the lecture are: (1) to present terminology and structure (lecture knowledge stage), (2) to illustrate the training process (lecture example

and homework stage), and (3) to link ANNs to applications.
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areas, e.g. sensors. Minimal mathematics is desired
so that the target audience can be general. The
instruction is not intended to teach students to
apply ANNs independently, but to build a capabil-
ity to interact with ANN specialists on collabora-
tive teams. Figure 1 shows the structure of the
educational module. The lecture concepts are
reinforced through examples with associated
homework assignments and a capstone exercise
using MatLab.

The ANN non-specialist needs an awareness of
discipline-specific terminology, ANN capabilities,
and connecting concepts for effective collabora-
tion. Students should gain exposure to the target
concepts of:

. terminology, including supervised learning,
training cycles, convergence, and error;

. ANN architecture of layers, neurons, weights,
and transfer functions;

. performance factors of network complexity,
learning rate, and gradients;

. parallel processing of multiple inputs and out-
puts;

. capabilities for function approximations and
data classification;

. problem definition for applications.

A qualitative understanding is sought for the single
versatile case of multilayered-perceptrons feedfor-
ward networks with the back propagation training
algorithm.

The learning environment for the laboratory
exercise is MatLab with the neural network tool-
box. This toolbox contains menus for common
algorithms to pre- and post-process data, for
setting up neural network architectures, and for
operations and error display during training. In
addition, the general computing resource can
handle multiple-dimensional files as needed for
input and output manipulation in many applica-
tions. Many computer languages are suitable for
neural network implementation, but the GUI-
based control of the MatLab toolbox facilitates
this introductory exercise. No programming is
needed and step-by-step visual procedures for
setting up architectures and algorithms are
possible. Intuitive control is critical for a non-
specialist target audience.

Public access to module
The lecture notes including the examples, a

multiple-choice quiz, the exercise assignments,
MatLab data files, and other resources are avail-
able at the `Educational Resources' section of the
web site http://campus.umr.edu/smarteng/ [13].
The material was developed with MatLab v6.0,
and MatLab neural network toolbox v4.0. For
those instructors using the module, an assessment
is requested. The questionnaire is included on
the website. The instructional module is intended
for upper-level undergraduates and beginning
graduate students in electrical and computer
engineering. The materials assume a working

understanding of MatLab, but prior experience
with the neural network toolbox and MatLab
programming are not necessary. Other examples
and exercises are planned which highlight addi-
tional applications.

GUIDED INSTRUCTION

Lecture
Multilayer, feedforward networks with various

back propagation training algorithms are
discussed exclusively in the lecture due to their
practical importance and wide use [1]. The lecture
topics are

. motivation of biological neural networks;

. the artificial neuron;

. the sigmoid and linear transfer functions;

. types of artificial neural networks;

. supervised learning techniques;

. back propagation training;

. training algorithms;

. function approximation examples;

. engineering examples of ANNs.

The lecture PowerPoint file, as given on the web
site, is designed for a presentation between one and
two hours. The presentation uses practical defini-
tions, block diagrams, simple figures, and step-by-
step procedures.

Lecture examples
Key features of the lecture are the examples.

Four examples are included. The initial two exam-
ples show the details of the training process and
emphasize the gradient procedure for convergence
and minimizing error. The latter examples show
how ANNs can provide engineering solutions.

The target concepts for the initial examples are
network training details to obtain satisfactory
weights for the neurons. Given a training set of
input data with known outputs, the selected
network with arbitrary weights produces incorrect
outputs. The error is back propagated through the
network and the weights are updated. In successful
training, the neuron weights converge to values
for which the network output has a prescribed
error. The examples illustrate the effect of varying
the learning rate from zero to one and of error
rate-of-change on the rate of change for weights.
The optimal learning rate is dependent on the
specific problem and can achieve faster or slower
convergence.

The initial examples are function approximation
problems. These first highlight the training itera-
tions so that error is minimized. In this case, the
function relates the output y with a single input x
and the mathematics are trivial, i.e. y� x. A
network with an input layer, one hidden layer,
one output layer, and the gradient descent training
algorithm is used. A Sigmoid transfer function is
used for neurons in the first and second layers and
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a linear transfer function is used for the output
neuron. Figure 2 illustrates the first pass of the
training sequence with arbitrary initial weights.
Intermediate values and weights are explicitly
shown. Figure 3 illustrates the determination of
weight gradients. Note that the simulated output is
subtracted from the expected output to obtain the
error. Figure 4 shows the new weights and the
second pass. A third pass is illustrated in the

lecture. The symmetric values reinforce the steps
in the process.

The second function approximation highlights
the learning rate and shows multiple inputs and
outputs. The function relates the outputs (1, 0) to
the inputs (1, 0.4). This example was chosen to
show the philosophy behind weight update, i.e. by
how much and in which direction the weights are
updated depending on value and sign of the error

Fig. 2. First pass for function approximation ANN. The numerical values for the first training cycle are progressively shown.

Fig. 3. Error correction for ANN. The weight gradients are determined based on the output error through a back propagation
procedure.
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generated. A network with one hidden, one output
layer, and the gradient descent training algorithm
is used. A Sigmoid transfer function is used for all
neurons. Figure 5 illustrates the first pass of the
training sequence and the gradient determination.
The value of the gradients generated for the output
layer decides how the weights will be updated as
shown by dotted arrows in the figure. The initial
weights are uniform and the asymmetry of the
solution is readily apparent. This behavior leads
to a lecture discussion of ANN performance.

A homework was assigned to get students to go
through the step-by-step process of understanding
the gradient descent training algorithm. Students
were required to repeat the steps shown in the class
example (Figs 2 and 3) for a different function
(output y� 3� input x). To keep the solutions
consistent, an input of `1' was assigned to be
used as the training and test input.

Two supplemental examples are included to
connect the ANN concepts to sensor applications.
The first is an identification problem for charac-
terizing strain signatures during damage events
using multilayered feedforward ANNs as classi-
fiers. The second is a prediction problem for
predicting strain in a wing based on airspeed and
angle-of-attack information using ANNs as func-
tion approximators. Both the applications were
projects carried out here at UMR and have been
presented in major neural network conferences
[4, 14]. In both the examples, students were
shown generation of data for the respective
problem, setup of the input vectors, the type of

pre-processing done on the inputs, type of outputs
(output classes for classification problem), archi-
tecture of the ANN used, training algorithm used
to train the network and results from simulation of
test data. Figure 6 shows how the error changes as
training progresses. The display is a screen shot
from the MatLab neural network toolbox to
acquaint the students with the environment used
in the exercise.

MatLab exercise
A MatLab-based laboratory exercise follows the

lecture and homework assignment. This guided
activity gives the students a wide range of design
and training choices. Students are encouraged to
start with simple feedforward networks and
progress to more complex networks until a
prescribed mean-squared-error condition is met.
The assignment is not unconstrained. The training
and testing data sets are preprocessed, a maximum
of three layers is allowed, and only the LOGSIG
[10] transfer function is used. The solution to the
exercise problem is not unique; many design
combinations can satisfy the error criteria, albeit
at different rates and with different minimum
values. However, many other design combinations
will not satisfy the error criteria or will converge
too slowly. Performance can be measured in terms
of network simplicity (number of neurons and
layers), minimum error, training cycles, and
errors in the test simulation.

The exercise incorporates the IRIS-flower data
set [15], which is a benchmark data classification

Fig. 4. Weight updates and second pass for function approximation ANN. The new weights produce a converging output.
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Fig. 5. Two-input/two-output ANN. The gradients decide the direction and value of the weight updates as shown in (a) and (b).

Fig. 6. Sample variation of mean-squared error as a function of training cycles, from the classification example.
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problem. The network must distinguish among
three types of similar flowers from the iris family,
which are iris setosa, iris verginica and iris verico-
lor. The distinguishing features are petal width,
petal length, sepal width, and sepal length as
shown in Fig. 7. The input data sets are pre-
normalized as required by the ANN and ready
for MatLab importation. The output classification
is done using a binary code: Code 00 for Setosa,
Code 01 for Verginica, and Code 10 for Versicolor.
Consequently, the ANN must have four inputs
and two binary outputs. Available training vector
sets number 120 and testing vector sets number 30.

The MatLab neural network toolbox provides
intuitive control through the GUI `Network/Data
Manager' windows. Figure 8 shows the options
within the toolbox. Note the buttons for building

the network architecture and importing the train-
ing and testing data. The `new network' window
gives menus for the student to select the type of
network as well as the number of layers, number of
neurons in each layer, the function for each
neuron, the training algorithm, and learning rate.
Other windows visually represent the location of
variables and the network diagram. The network is
defined and a pictorial view is available in the
`Create New Network' and `Networks' window,
see Fig. 9. The diagram specifies the number of
layers, the neuron transfer functions, the number
of inputs and the weight matrices. After the
weights are initialized and the number of training
cycles (epochs) is chosen, the ANN is ready for
training, i.e. adjusting weights according to the
error and the algorithm. Figure 10 shows the

Fig. 7. Iris verginica (left). Note the parts of the flower. Used with permission from Brooklyn Botanic Garden [15].

Fig. 8. The GUI-based neural network toolbox. The various buttons lead to options for building the network and handling the data.
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Fig. 9. (a) Network definition and (b) block-diagram representation of the specific neural network. The number of layers, the neuron
transfer functions, the number of inputs, and weight matrices are displayed.

Fig. 10. Network training window. The selection of training inputs and targets is intuitive.
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window for selecting the training inputs and
outputs.

The convergence of the ANN is also displayed
visually. Figure 11 shows the mean-squared-error
between the simulated and actual outputs as a
function of training cycles. Once the performance
criterion of a prescribed mean-squared-error is
reached, the network solution is ready for simula-
tion with the test data sets. Otherwise, the training
is terminated if the maximum training cycle is
reached. Again, a window is available to control
the simulation tests. The results of the simulation
are exported to the MatLab workspace for
comparison to the actual outputs. A post-process-
ing algorithm is provided to the students for this
final operation. A write-up of the exercise is
required along with a screenshot of the error plot
[13]. Several networks must be run and documen-
ted with a discussion of the network configurations
giving the best results.

IMPLEMENTATION

Description
The neural networks module was implemented

in an upper-level/introductory graduate course
entitled `Smart Materials and Sensors' [11] during
the 2003 Fall semester. The technical interest
area was smart structures with an emphasis on
intelligent sensing and control technologies. Topics
included material properties, stress-strain rela-
tionships, strain sensing and networks, electrical
resistance gages, linear variable differential trans-
formers, fiber optic sensors, neural networks, and
smart bridge applications. The learning objectives
of this applications-oriented course were (1) to
integrate cross-disciplinary knowledge, (2) to
build collaborative skills, and (3) to gain related
applied experience. One week was devoted to the
topic of neural networks. The two function

approximation problems and a VLSI-circuit-
feature identification problem were the only exam-
ples used. Iris flower identification problem was
the only exercise used. The additional examples as
given on the website were added based on the
assessment.

Sixteen students with interests and background
spanning the course topics participated. The aver-
age G.P.A. was 3.500/4.00. A majority had not had
any previous exposure to neural networks. The
student demographics were typical for a course at
this level. Ten students were in graduate school
and six were undergraduates. Twelve students were
male and four were female.

The neural networks component included a
ninety-minute lecture, a homework assignment
similar to the initial training illustration, the
MatLab exercise, an exercise write-up, and a
component assessment. Fifty minutes of in-class
time was devoted to the MatLab exercise. The
students completed the exercise and the write-up
out of class. All students found ANN design and
training selections that resulted in no error or
minor errors in classification for the test data set.
However, no student created an ANN with no
errors on the first try.

Assessment
The ANN module was assessed through a series

of multiple-choice questions and rated statements.
The assessment questions and statements
concerned the instructional effectiveness of specific
components and of the module as a whole. In
particular, the lecture, examples, the exercise, and
the MatLab environment were addressed. Figure
12 shows the student evaluation of the three
components of the module. Eleven students felt
that the lecture was sufficient background for the
exercise and two felt more and less were needed.
All students regarded the lecture examples as
beneficial with six students wanting more realistic

Fig. 11. Variation of mean-squared error as a function of training cycles.
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cases. A majority of students liked the MatLab iris
flower exercise, while a few wanted a redefined
exercise. Figure 13 shows results for the overall
experience and the MatLab environment. A great
majority felt that the module was a valuable
introduction and that the MatLab environment
facilitated the experience. (The intent of the
instruction was not training students to use
ANNs, but to understand basic operations.
Student responses reflected this limitation.)

The students rated their agreement or disagree-
ment with several statements. In all cases, the scale
ranged from `1' for strongly disagree to `10' for
strongly agree. Table 1 shows the results. Again,
the student response was positive. For the limited
scope of the module, the students rated their
learning, the content, and the approach as effec-
tive. For instance, Question D inquired whether
students gained a qualitative/better understanding
of the capabilities of neural networks from the

lecture. The average response was a 7.440, which
signifies that the response is on the positive side.
(Note that Questions C and H were asked in such a
way that a low average number would be a positive
result). Also, most students found the time devoted
to the various components adequate. Among the
most positive ratings were those for the effective-
ness and value of the qualitative instruction in
ANNs. The ratings indicated an uncertainty as to
whether additional ANN content in this sensors
course was desirable. The ratings showed some
weakness in the examples and the iris flower
exercise. The students seemed to desire more
applications that are related to sensors and elec-
trical engineering. Note that GUI-based MatLab
was considered a user-friendly environment.

The ANN module was modified to reflect the
results of the assessment. The examples and the
MatLab exercise were improved to further em-
phasize applications and to address sensor issues.

Fig. 12. Responses to multiple-choice questions regarding course components.

MATLAB-based Introduction to Neural Networks for Sensors Curriculum 645



The resources on the website are the modified
version. The lecture was expanded to fill two full
fifty-minute lecture periods. The lecture engineer-
ing example section was changed and expanded to
better relate to the course. Two new ANN
problems concerning structural sensing were
added and the associated discussion has more
detail. The applications are shown using MatLab
screenshots to help prepare for the laboratory
exercise. Also, additional sensor-related options
for the MatLab laboratory are under development
to supplement the IRIS-flower identification prob-
lem. Many other options are possible for examples
and for exercises. Any expansions should relate to
the course using the module and the associated
ANN should have a limited number of outputs,
inputs, and layers for the feedforward back propa-
gation architecture. Additional applications-
oriented exercises should be easy to implement,
while allowing wide variation in the outcome, i.e.
training choices should give networks that produce
non-convergent, poorly-convergent, and well-
convergent solutions.

CONCLUSION

The instructional module provides a systems-
level, applications-oriented introduction to ANNs.

It is designed for non-ANN curricula such as
structural sensing courses. It addresses the need
for non-ANN specialists to collaborate with ANN
specialists. The student-centered objectives are to
convey awareness of discipline-specific ANN
concepts, ANN capabilities and training through
examples, and connecting links with engineering
applications. The one-week module, which is avail-
able on a sensors course website, contains a
succinct lecture with examples and an interactive
exercise. With a qualitative understanding and a
connection to real problems, students are better
prepared to collaborate on project teams involving
ANNs.

The module was implemented in a smart sensors
course and was revised based on an assessment.
The overall student response was positive espe-
cially regarding the MatLab-based interactive
exercise. As per the module design and the limited
time, the instruction emphasized ANN capabilities
and connecting concepts without mathematical
detail and programming experience. The students
should be able to interact with ANN specialists
and to read ANN literature with general compre-
hension. Several observations can be drawn.
Examples and exercises need to be realistic and
to be linked to student interests. Exercises should
balance the constraints to limit student design
choices to target concepts, with options that will
produce a range of ANN performance. The lecture

Fig. 13. Responses to multiple-choice questions regarding the module and MatLab.
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concepts and examples provided the necessary
preparation for the laboratory experience

The interactive MatLab exercise provided key
educational reinforcement and motivation for
ANN concepts. This exercise was a capstone
experience in which the foundational knowledge
was connected to an engineering context. A rela-
tively transparent learning environment, such as
GUI-based MatLab, was needed to make the
exercise `doable' and effective within time limita-
tions. Otherwise, students who are not fluent in
programming algorithms and the mathematics of
ANNs would have difficulty in completing and
comprehending any significant exercise in the
limited amount of time.

The approach is appropriate for a wide range of

curricula and student interests. While the resources
assume familiarity with MatLab (but not the ANN
toolbox), the GUI controls are intuitive, such that
a brief tutorial would give a working MatLab
ability. The lecture and exercise could be easily
adjusted for other topical areas. The engineering
examples in the lecture could be replaced and the
iris flower exercise could be supplemented with
other ANN applications. If more time is available,
exercises could be made collaborative and involve
student presentations [12].
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