
The Development of a MATLAB
Instrumentation Tutor*

FASIL MUDDEEN and KESTER GABRIEL
Department of Electrical and Computer Engineering, University of the West Indies. Trinidad, West
Indies.E-mail: fmuddeen@eng.uwi.tt

This paper describes a MATLAB/Simulink blockset called the MATLAB Instrumentation Tutor,
currently being developed in the Department of Electrical and Computer Engineering at the
University of the West Indies. The Tutor is being designed to support the teaching of a final year
Instrumentation Systems course. The system will enable students to simulate various scenarios
involving sensors, instrumentation amplifiers, filters, analog to digital and digital to analog
conversions, sampling and quantizing, interference, error budget calculations, and the effect of
random and coherent noise on system performance. Real parameter values taken from component
data sheets will be used in this system so as to form an environment that will enable simulation of
typically encountered real world instrumentation problems. The development of the necessary S-
functions needed to accomplish this will also be discussed.

INTRODUCTION

THE FINAL YEAR Instrumentation Systems
Course, EE35E, at the University of the West
Indies (UWI), concentrates on the performance
aspect of Instrumentation Systems (IS). At this
point in the curriculum, students are already
adequately familiar with the operation of the
components of an ISÐthe transducers, signal
conditioning elements, signal processing elements
and the display elements. EE35E looks at the effect
of each of these elements on the overall IS perfor-
mance. Specifically, characteristics such as signal
to noise ratios, signal bandwidth, quantization
and error rates are discussed, leading to the devel-
opment of an overall system error budget.

In covering the course material, many examples
depicting various instrumentation scenarios are
solved. Most of the problems can be solved with
a calculator and `what-if ' scenarios are explored
with a spreadsheet. However it was recognized that
neither approach was flexible enough to allow an
entire system to be quickly tested and simulated
under conditions where components, inputs, noise
levels and sources, signals, filters characteristics
and so on were changing.

This type of evaluation required an environment
which would allow easy manipulation of para-
meters and components, while simultaneously
permitting complex calculations to be performed.
UWI has had long experience with MATLAB,
especially its use in control system applications.
In addition, students are trained in MATLAB
from their first year and are quite comfortable
with it by the time the final year courses are
taken. One particularly attractive feature of

MATLAB was its Simulink environment, which
provided an intuitive, icon-based work area for
designing and simulating systems. It was therefore
decided to develop a blockset for use with Simu-
link that would support and enhance our IS
teaching.

The following discussion is based on the results
of a project conducted by Mr. Kester Gabriel, a
final year Electrical engineering student at UWI,
over a period of nine months under the supervision
of Mr Fasil Muddeen.

WHAT IS A SIMULINK BLOCKSET?

A Simulink Blockset is a collection of block
libraries, defined later on, grouped according to
specific applications. For example, the Signal
Processing Toolbox contains blocksets specific to
signal processing applicationsÐfilters, transforms,
sources and so on. Also included with most
blocksets are comprehensive help files, examples
and where possible, demos.

In developing the prototype of the IS blockset, it
was decided that as a minimum, the blockset
should contain blocks for typical sensors, differ-
ential and instrumentation amplifiers, filters,
general signal and noise sources, data conversion
blocks and data presentation blocks.

System development
Simulink builds up a system model using objects

called blocks, interconnected by lines [1]. A block
comprises a set of inputs, states and outputs as
shown in Fig. 1. Note that this figure uses some
blocks from the prototype IS blockset. Block
parameters define properties such as the name,
colour, handle or number of ports of the block.* Accepted 2 April 2005.

580

Int. J. Engng Ed. Vol. 21, No. 4, pp. 580±586, 2005 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2005 TEMPUS Publications.

Signals are the values that appear at the output of
the block when a simulation model is run.

At this point, it should be noted that Simulink
handles signal information differently from para-
meter information. Signal values are updated every
time step; there are no MATLAB defined func-
tions to automatically give a parameter the value
of a signal. The mask parameter values are not
updated every time step. They are updated when
the user double-clicks on the block to bring up the
mask interface or when the user selects `OK' or
`Apply' on that interface. The updating of the
mask parameters are event-triggered. Mask para-
meters can also be easily read and set within the
MATLAB workspace using MATLAB defined
functions.

Development of a block
The first step in the development of any block

is to analyse the inputs, outputs and required
functionality for it. If the output is dependent
on input signals, then the block must be imple-
mented as an S-Function. An S-Function is a
computer language description of a Simulink
block and can be written as a MATLAB M-file
or in C, C++, Ada or Fortran [1]. If the output is
dependent on parameters only, then the user may
choose to implement the solution via a block
mask or S-Function. A set of selection criteria is
given in Table 1.

For example, in Fig. 1, the generic amplifier
model has an error performance [2] given by the
following equation:

Fig. 1. Typical Simulink blocks from the IS blockset

Table 1. Criteria for deciding if to implement required functionality as an S-Function or in a Block Mask

Function implemented

Selection criterion In a block mask As an S-function

Any input is a signal
No
M-code does not have real-time access to
the signal data. Signal data from the
previous simulation may be obtained but
a real-time solution was desired.

Yes
Signal information read in through the
input, parameter information passed from
mask through the S-Function block.All
inputs are parameters

All inputs are parameters
Yes
Parameter data is easily manipulated in
the mask; the most recent value of the
output parameter is obtained when the
user accesses the mask prompts.

Yes
Parameter information can be passed to
the S-Function and used to drive the
output signal.

The block functionality is dependent on
MATLAB functions eg. Laplace
Transform expression for a filter.

Yes
The mask uses M-code and therefore has
easy access to MATLAB-defined
functions.

Avoid
S-Functions do have the capability to call
some MATLAB functions using the
mexCallMatlab external reference,
however, the preparation of the data for
use in this form makes this option
prohibitive.

Output parameters to be set, for example,
in an edit box in the mask.

Yes
If the output is a parameter, it can be
displayed in the block mask using the
set_param command.

Avoid
There are three possible ways to attempt
this;
1. Using mxSetPrÐdifficult
2. Using _ssSetScnParamÐThis is not

publicly supported and shouldn't be
used,

3. A combination of the set_param and
mexCallMatlab commandsÐPassing
the pointers to the the set_param
command for the actual parameters to
set proved difficult.

The output must be in signal form
No
Signal data cannot be set using MATLAB
functions

Yes
The S-Function allows easy manipulation
of signal data.

The Development of a MATLAB Instrumentation Tutor 581

The variables are defined in Table 2. This equation
was implemented as an S-function.

Simulink workspaces
Four different workspaces are defined in the

MATLAB/Simulink environment. The MATLAB
software is installed over an operating system,
Windows or Linux for example. The variables
defined in the MATLAB workspace, visible in
the workspace window, are completely separate
from the operating system environment, and can
only be accessed using methods provided by
MATLAB. Likewise, the Simulink workspace is
separate from the MATLAB workspace. The
Simulink workspace can be seen when running
the model in the debug mode. Within Simulink,
the Mask workspace is separate from the Block
workspace. Separating the variables into locally
defined workspaces makes the overall software
more efficient, allows repetition of variable
names and allows for control of how each work-
space is accessed.

Figure 2 illustrates the workspaces. MATLAB
provides methods for accessing its different locally
defined workspaces called Callback Functions.
These functions are readily seen if the user creates
a GUI, or passes information between an S-Func-
tion, Simulink block or a block mask.

Figure 3 illustrates some of the typical data
communication that occurs between Simulink
models using a two-model example. The commun-
ication between the models is facilitated through
parameters, signals and callback functions:

. Communicating parameter information. Para-
meter information is passed through what may
be described as the Mask Workspace. Model 2
obtains the block name of Model 1 using the
Port Connectivity struct, and then accesses
Model 1's parameters using the `get_param'
command and the block name.

. Communicating signal information. The user
does not have to implement signal data access
as MATLAB routes the signal data depending
on how the user connects the signal lines. Even
in the S-Function, there are set methods for
accessing the input and output pointers to the
signal data.

. Callback functions. Simulink has to keep track
of several parameters such as block position,
name and connectivity. For the simple six-block
system shown in Fig. 1, the generic amplifier
alone has 193 parameters that fully describe it:
99 parameters for the unmasked S-Function
block, 35 due to the presence of a mask and 59
user-defined prompts. The S-Function contains
callback functions as well as SimStruct macros,
which allow Simulink to reference the required
information and set the block's output signal
data. Each Simulink model and S-function has a
SimStruct associated with it, defining all the
data types contained within the model. The
SimStruct (short for Simulink Struct) [3] is a
large yet well organised construct that contains
the vast amount of information required for
Simulink.

OVERALL SYSTEM DESIGN

The overall system design was carried out using
a three-tiered approach illustrated in Fig. 4. The
conceptual design began at the middle tier. The
selection process summarised in Table 1, identified
the functionalities implemented in masks or in

"amp � Vos � IosRs � f �Av�VFS

Av;diff

�
���

d�Vos�
dt

��T

� �2

� Vcm

CMRR

� �2

��6:6Vn

�����
fhi

p
�2 � d�Av�

dt
��T � VFS

Av;diff

� �2
" #vuut �1�

Table 2. Description of variables used in Equation (1)

Vos± Input offset voltage
dVos

dtÐTemperature drift coefficient

IosÐInput offset current

VnÐInput referred Noise voltage

f �Av�ÐGain Non±linearity
dAv

dtÐGain temperature drift coefficient

CMRRÐCommon±mode rejection ratio

Ri;cmÐCommon Mode input resistance

Ri;diff ÐDifferential Mode input resistance
Fig. 2. MATLAB Simulink environment.

F. Muddeen and K. Gabriel582

S-Functions. This was a complex process since
information for the output signals of the blocks
may have come from both signal as well as para-
meter data and that the blocks themselves may
eventually be MATLAB S-Functions.

Middle tier design: routing and filtering signals
There were two main components of the middle

tier (the signal workspace). The first component
was responsible for producing the output signal
from the input signal and possibly the input
parameters. This was accomplished using a one-
block S-Function (for example the B-Type Ther-
mocouple) or using a combination of blocks (for
example the Generic Amplifier). The sensors and
signal conditioning models were all bandlimited by
including a first-order, low-pass filter in each. Low
frequency effects were not considered.

Bottom tier design: the S-function
Most of the functionality of an S-function is

devoted to ensuring that the data entering, leaving
and used in processing within the function is
correct, that is of the required type and dimension.
C-MEX S-Functions [4] were written to create the
blockset. MEX files were used since they provided
a large number of available callback functions and
direct access to the SimStructs. The C language
was chosen since engineering students were famil-
iar with it. The first MEX-file was created using
the Automatic S-Function Builder block provided

in the Simulink library. This file was coded in C
and provided an easy template to learn from. The
thermocouple function in Fig. 1 and the amplifier
error budget Equation (3), were implemented using
an S-function written in C.

Top tier: masking the blocks
Having completed the `first-pass' block design at

the signal workspace level, it was then masked. A
mask, as defined in [5], is a custom user interface
for a subsystem that hides the subsystem's
contents, making it appear to the user as an
atomic block with its own icon and parameter
dialog box. Through the Simulink Mask editor,
Fig. 5, the parameter list for the subsystem was
entered, as well as any initialization commands.
Recall that the mask workspace is part of the
Simulink block object model (see Fig. 2) and all
of its parameters and their values are listed as
members of the particular block.

The use of dynamic dialogs for masked blocks
allowed the user to make visible those mask
prompts which were needed and to hide those
which were to be used later. The mask prompts
were grouped in a logical way to increase efficiency
and user comfort. For example, the Generic
Amplifier block had 59 (user-defined) prompts,
54 of which were grouped under six categories:
Amplifier Parameters, Type of Amplifier, Edit
Circuit Impedances, SNR Analysis and Channel
Error Analysis. When the SNR Analysis prompt

Fig. 3. Simulink data communication.

The Development of a MATLAB Instrumentation Tutor 583

was selected for instance, all of the prompts
containing data about the input and output
signal powers as well as the input and output
SNR would become visible. Available screen size
and the type of prompts also limited the number of
visible prompts. For example edit boxes took up
more screen space than checkboxes and popup
windows. A typical 15-inch screen may hold
between 12 and 16 prompts on average.

SYSTEM EVALUATION RESULTS

The prototype Instrumentation Blockset was
tested under several operating conditions to eval-
uate its performance and to compare the results
with those obtained by other techniques such as
manual calculation.

For example, as one of the tests, a system as
shown in Fig. 6 was configured on the Blockset for
the parameter values shown in the diagram. This
was actually a past final examination question of
the type that students of the IS course would be
expected to solve. The question required the
students to be able to calculate several error
values for the depicted circuit, based on compo-
nent and other information given in the question.
The value, for instance would be calculated using
Equation (1). It represents the type of scenario that
a student would be expected to encounter as a real
IS design and evaluation problem. Table 3 presents
a comparison of the results obtained from the IS
blockset with those calculated manually, showing
the close agreement between the two sets of
answers, thus confirming the accuracy of the
blocks developed in this project.

FEATURES OF THE IS BLOCKSET

The following blocks have so far been
developed:

Fig. 4.

Fig. 5. Generic amplifier mask editor views.

F. Muddeen and K. Gabriel584

. sensorsÐthermocouples and a strain gauge;

. signal conditioningÐresistance bridge, differen-
tial amplifier and instrumentation amplifier;

. signal processingÐ2-pole and 3-pole Butter-
worth filters;

. A to D blocksÐa sample and hold block.

The Uniform Encoder and Decoder blocks (origin-
ally from the Simulink DSP blockset) were
included in the new IS blockset and adjusted to
add information relevant to the Instrumentation
course. Most of the blocks in the Instrumentation
Tutor blockset were of a generic nature since
obtaining the correct functionality was the most
important goal at this stage of the system devel-
opment. Changing the generic amplifier into an
INA106 differential amplifier, for example, will
only be a matter of setting the amplifier parameters
such as voltage offset and disabling the edit boxes
so that the user cannot change those parameters.

Help and demo files, along with tutorials, have
been developed and included in the appropriate
MATLAB directories. These files include examples
and instrumentation theory from the IS course so
that it forms a possible self-tutoring environment
for engineering students. A student seeking help
for a particular block may access the help files

using all the methods provided for the default
MATLAB blocks. A comprehensive manual on
the development of the blockset has been written
and is being edited.

CONCLUSION

The initial evaluation of the MATLAB Instru-
mentation Tutor has proven that it can facilitate
the solving of problems at the level of the IS course
material, including past final examination ques-
tions and that the models used are performing
correctly. The next development stage is to include
a full range of datasheet specifications for the
various devices and sensors to enable real-world
modelling of instrumentation systems. In this
regard a series of lab exercises is being developed
to make full use of this blockset and other Simu-
link capabilities. These lab exercises will also serve
to evaluate the usefulness of the Tutor as an
educational tool.

AcknowledgementsÐWe would like to especially thank Alejan-
dra Villegas of Mathworks for the guidance and advice pro-
vided on MATLAB and Simulink during the course of this
project.

REFERENCES

1. Simulink: Writing S-Functions, 3rd Edn., The Mathworks (2002).
2. P. H .Garrett, Multisensor Instrumentation 6� Design, John Wiley & Sons, Inc (2002).
3. Matlab Release 13 Help: Writing S-Functions, The Mathworks.

Fig. 6. Typical instrumentation systems examination question.

Table 3. Parameters calculated for the analysis of Fig. 6.

Parameter Hand calculated output Actual output

"amp;RTI 17.819�V 17.819�V
"amp;RTI % 0.089095% 0.089095%
"SNR;coh % 7:5000� 10ÿ3 % 7:4999� 10ÿ3 %
"SNR;in 1:7778� 10ÿ4 1:7778� 10ÿ4

"SNR;out 1:7778� 10ÿ8 1:7778� 10ÿ8

"channel 0:2394% 0.2394%
"filter 0.0000% 0.0018%
"channel 0.2394% 0.2412%

The Development of a MATLAB Instrumentation Tutor 585

4. www.mathworks.com/access/helpdesk/help/techdoc/apiref/apiref.html
5. Matlab Release 13 Help: Using Simulink: Creating Masked Subsystems, The Mathworks.
6. S. L. Pfleeger, Software Engineering Theory and Practice, 2nd Edn., Prentice-Hall Inc. (2001).

Fasil Muddeen is a lecturer in instrumentation and signal processing at the University of the
West Indies Department of Electrical and Computer Engineering in Trinidad. He has
several years experience in standards laboratory operation, instrumentation and electronic
calibration. His current research interests are in low cost embedded instrumentation and
acoustic signal processing.

Kester Gabriel is a recent graduate of the University of the West Indies Department of
Electrical and Computer Engineering in Trinidad in Electrical Engineering. This paper was
based on work done in his final year project at UWI in 2003±2004.

F. Muddeen and K. Gabriel586

