
Transition from Simulink to MATLAB
in Real-Time Digital Signal
Processing Education*

WOON S. GAN
School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 6397.
E-mail: ewgan@ntu.edu.sg

SEN M. KUO
Dept. of Electrical Engineering, Northern Illinois University, DeKalb, IL 60115 98, USA

In this paper, we propose a two-level approach for teaching digital signal processing (DSP) from
basic concepts to the level of developing DSP software for real-time implementations on
programmable DSP processors. In our approach, MATLAB and Simulink make the transition
from theory to application easy and enjoyable. We use many interesting DSP demonstrations and
examples for students to `see' the effects of signal processing in Simulink; and then ask students to
`do' hands-on exercises in Simulink and MATLAB. The emphasis of `seeing' and `doing' can
capture the students' attentions, cultivate their interests, and motivate their curiosities. This
effective learning approach also allays fear of DSP that has been previously tagged as too
theoretical and mathematically intensive.

INTRODUCTION

REAL-TIME DSP is now becoming an important
engineering education subject at most colleges and
universities. Because of the fast-growing demands
in consumer, communication and high-end multi-
media products that utilize DSP technologies,
there is a strong motivation to teach more students
and engineers real-time DSP algorithms, imple-
mentations, and applications to meet the increased
challenges from industry. This work is based on
the efforts in conducting a real-time DSP design
course at Nanyang Technological University in
Singapore and Northern Illinois University in the
USA. Continual feedback from students and
faculty members help us to fine-tune the details
of course content, demonstrations, and exercises
presented in this course. In addition, we have
recently compiled these works into the textbook
titled Digital Signal Processors: Architectures,
Implementations and Applications [1] and other
related publications [2±5].

In this paper, we highlight this effective
approach and showcase an example on how to
handle this two-level teaching approach, and how
to effectively use both MATLAB [6] and Simulink
[7]. Several important MATLAB toolboxes, tools,
and Simulink blocksets include Signal Processing
Toolbox [8], Filter Design and Analysis Tool
(FDATool), Signal Processing Tool (SPTool),
Filter Design Toolbox [9] (split into Filter Design
Toolbox [20] and Fixed-Point Toolbox [21] in the

latest MATLAB v7), Fixed-Point Blockset [10]
(called Simulink Fixed Point [22] in the latest
Simulink v6.1), and Signal Processing Blockset
[11] are used in this course. All M-files, Simulink
files, and speech wave files used in this paper are
available on the author's web site: http://eeeweba.
ntu.edu.sg/DSPLab/geg/web.htm. In the second
section, Simulink and its blocksets are used to
demonstrate DSP concepts and its applications.
In this paper, we use a simple finite-impulse
response (FIR) filter as an example for graphic
equalizer applications. Then we show how to write
MATLAB programs for processing signals stored
in data files. We use double-precision floating-
point programs for verifying DSP algorithms
first, and then convert them to fixeded-point
programs using MATLAB built-in and user-writ-
ten functions. This `Simulink-first, MATLAB-
second' process provides a systematic approach
of understanding the DSP principles and real-
time implementations.

USING SIMULINK IN UNDERSTANDING
DSP CONCEPTS

Simulink provides an exploratory and verifica-
tion tool for both floating-point and fixed-point
DSP systems and applications. A simple example
shown in Fig. 1 highlights the implementation of a
3-band graphic equalizer, which consists of three
FIR filters connected in parallel. The first filter is a
lowpass filter with 1 kHz cutoff frequency; the
second filter is a bandpass filter with cutoff* Accepted 2 April 2005.

587

Int. J. Engng Ed. Vol. 21, No. 4, pp. 587±595, 2005 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2005 TEMPUS Publications.

frequencies at 1.2 kHz and 2.8 kHz; and the third
filter is a highpass filter of cutoff frequency at
3 kHz. The sampling rate is 8 kHz and the transi-
tion width is 200 Hz. The passband and stopband
ripples are set to 0.5dB and ±50dB, respectively. In
addition, the equiripple design method is used for
designing the FIR filters. The outputs from these
filters are weighted by a slider gain. Audio signals
are processed by these parallel filters, with differ-
ent gain settings to control the signal strength for
bass, middle, and treble. The audible effects can be
evaluated directly by subjective listening using the

sound input/output (I/O) blocks, and by objective
viewing using the spectrum scopes.

After verifying the DSP algorithms using
double-precision floating-point simulations, we
can replace the floating-point FIR filters by
fixed-point filters using the Fixed-Point Blockset
(or Simulink Fixed Point) as shown in Fig. 2. Note
that the audio signal must be converted to fixed-
point data format before passing to the fixed-point
filters. The fixed-point data format used in this
case is the Q.15 format, which is commonly used in
most 16-bit fixed-point DSP processors. The Q.15

Fig. 1. A 3-band graphic equalizer using Simulink blocksets with double-precision floating-point representations.

Fig. 2. A Q.15 graphic equalizer using Simulink with fixed-point blocksets.

W. Gan and S. Kuo588

format uses a sign bit and 15 fractional bits to
represent fractional numbers in the range of ±1 to
1±2±15 in 2s complement format. The Fixed-Point
Blockset (or Simulink Fixed Point) allows students
to easily compare the results of the fixed-point
Q.15 implementations with double-precision
floating-point implementations.

A FixPt GUI block can be used to identify
overflow problems, data types, and scaling factors
at each block in the system shown in Fig. 2. Signal
range in the simulations can be reported, and the
scaling factors of each block can be fine tuned. An
example of this information displayed in the FixPt
GUI block is shown in Fig. 3.

The Simulink allows students to `see' the
changes on-the-fly for new settings, structures,
and algorithms used in the systems. Several modi-
fications are suggested for students to learn more
hands-on experiments:

1. Design FIR filters with the same specifications
using a window or least-square method. Stu-
dents can compare the filter orders required
from different design methods and identify the
method that results in the lowest order. A
suitable window must be chosen in the
window method to meet the given specifica-
tions.

2. Use the equiripple method to tighten the filter
specifications by reducing the passband and
stopband ripples. In addition, a further reduc-
tion of the transition width can be achieved by
increasing the required filter order. This trade-
off is critical since it dictates both memory and

processing resources needed in real-time DSP
processing.

3. Replace all FIR filters with IIR filters that meet
the same frequency specifications. Compare the
computational requirements between the use of
FIR and IIR filters. It is important to ensure
the stability of IIR filters by guaranteeing that
all poles are inside the unit circle. A cascade of
second-order IIR filters must be used to reduce
the sensitivity of finite-wordlength effects for
the fixed-point implementation shown in Fig. 3.

By doing these exercises, students can grasp the
concepts of designing FIR and IIR filters, and use
them in interesting speech/audio applications. A
brief introduction on the theory of FIR and IIR
filters' structures and design techniques is suffi-
cient for asking students to do these hands-on
exercises. Other topics such as spectrum analyzer,
audio effects, and noise reduction applications can
also be easily performed using Simulink. Interested
readers can refer to the reference [1] for more
examples and exercises.

USING MATLAB IN TEACHING REAL-TIME
DSP

There are many advantages in programming
DSP algorithms in MATLAB instead of using C
programs. These include (1) ease of code profiling
(benchmarking), (2) able to use a powerful set of
fixed-point functions from the Filter Design
Toolbox, (3) quick visualization and comparison
of results between fixed- and floating-point

Fig. 3. A display of FixPt GUI obtained by running the Q.15 graphic equalizer.

Transition from Simulink to MATLAB in Real-Time Digital Signal Processing Education 589

implementations, and (4) seamless link between
MATLAB and Simulink. In addition, this first-
level of fixed-point simulation in MATLAB
helps to speed up subsequent code development
in C and assembly languages for real-time DSP
implementations.

The first task for students to learn MATLAB
programming is to write an M-file for implement-
ing the 3-band graphic equalizer (presented in
Section 2) based on the floating-point arithmetic.
Profiling of the code efficiency can be performed at
this stage to identify the time-critical sections of
code. Subsequently, students are asked to convert
the floating-point numbers into 16-bit integer
numbers. This important step is required for
converting the floating-point C to fixed-point C
programs. To check for any discrepancy, the fixed-
point results from MATLAB are compared with
that obtained from the Simulink with fixed-point
blocksets.

Writing floating-point M-files
The 3-band graphic equalizer shown in Fig. 1

can be converted to a MATLAB script (M-file).
Many existing signal processing functions from the
Signal Processing Toolbox can be used directly,
and results can be quickly evaluated to verify the
correctness by comparing to the corresponding
Simulink results obtained in the previous section.
The same 16-bit signal samples and the double-
precision filter coefficients derived from the
Simulink given in Fig. 1 are first loaded into the
MATLAB workspace. A MATLAB program is
listed below which gives the MATLAB script of
3-band graphic equalizer using built-in signal
processing functions:

clear all;
%read speech signal . . .
[y,fs,b]=wavread(`Timit1.wav');
%load filters' coefficients . . .
load geq_coeff
%Gain setting of GEQ . . .
gain_lp = 0.1;
gain_bp = 1;
gain_hp = 0.1;
%perform filtering of LPF
out_lp = filter(Num_lp,1,y).
*gain_lp;

%perform filtering of BPF
out_bp = filter(Num_bp,1,y).
*gain_bp;

%perform filtering of HPF
out_hp = filter(Num_hp,1,y).
*gain_hp;

%sum outputs . . .
out_total = out_lp+out_bp+out_hp;
wavwrite(out_total,fs,b,'processed.
wav');

% plot results
figure(1), psd(y); title(`Spectrum
plot of input');

figure(2),psd(out_total);
title(`Spectrum plot of output');

The next step of programming exercises is to
convert the M-file listed above to a C-like program
without using MATLAB built-in functions. For
this purpose, the MATLAB function filter is
replaced by two user-written functions, data-
mov.m and filt.m, as listed below, giving user-
written MATLAB functions for FIR filtering:

function x = datamov(x,ntap,input)
for k = ntap:-1:2
x(k)=x(k-1);
end
x(1)=input;
function out = filt(x,w,ntap,gain)
acc = 0;
for i = 1:1:ntap
acc = w(i)*x(i)+acc;
end
out=acc*gain;

The datamov function listed above refreshes the
signal buffer (tapped-delay-line) when a new input
sample has arrived at the FIR filter. The x, ntap,
and input arguments denote the delay-line vector,
number of coefficients in the filter, and the incom-
ing input sample, respectively. For a sample-by-
sample processing, input is a scalar which repre-
sents the latest data sample. The filt function
performs the multiply-add operations of the FIR
filtering after the signal buffer has been updated.
The input arguments w and gain represent the
filter-coefficient vector and the equalizer gain
that will be applied to the output of the filter. By
writing these two functions, students have a better
understanding on how digital FIR filters can be
implemented in C for the actual DSP processors.

Block FIR filtering can also be written for a
block of incoming data samples at every call of the
block-filter function. A user-written M-file for the
block FIR filtering is listed below as a user-written
MATLAB functions for block FIR filtering;

function [out,x] =
blkfilt(x,w,ntap,blk_size,
binput,gain)

for n = 1:1:blk_size
for k = ntap:-1:2
x(k)=x(k-1);
end
x(1)=binput(n);
acc = 0;
for i = 1:1:ntap
acc = w(i)*x(i)+acc;
end
out(n)=acc*gain;
end

Note that the blkfilt.m function combines the
tapped-delay-line update and the FIR filtering
operations. The major difference between the
blkfilt.m and the combination of datamov.m
and filt.m is that the former takes in a block of
input samples (binput of size blk_size), and
performs FIR filtering over the whole block of
data. The advantage of using block filtering is that

W. Gan and S. Kuo590

a smaller function overhead is incurred when
processing the same number of data samples.
This advantage is also true if we combined data-
mov.m and filt.m into a single function.

Profiling of the MATLAB code can be executed
simply by clicking on Start (an icon at the bottom-
left of Matlab command window)!MATLAB!
Profiler, follow by typing the name of M-file to be
run in the pop-up window. Compared to the
sample-by-sample processing approach, the block
filtering technique reduces the number of times the
function is called, thus reducing execution time.
For example, more than 6 times faster can be
achieved when a block of 32 samples is used.
However, careful pointer and memory manage-
ment is required for the block filtering approach.
In addition, the latency of obtaining output sample
is longer when compared to the sample-by-sample
processing.

It is noted that MATLAB code can be executed
faster if the program is written in a vector form or
using array operations. However, in order to write
a program which has closer resemblance to the
actual C code, we use `for-loop' in DSP program-
ming. In addition, function overloading is also
available in MATLAB for implementing the
same function that takes in different data types.
This useful feature allows users to investigate the
effects of using different floating- and fixed-point
arithmetic. In the following section, fixed-point
MATLAB code is written to illustrate the actual
fixed-point arithmetic being performed on real
fixed-point DSP processors.

Writing fixed-point M-file
In the 16-bit fixed-point FIR filtering, filter

coefficients and data samples are multiplied and
the products are accumulated to generate the filter
output. It is important to note that multiplication
of two 16-bit numbers results in a 32-bit product,
thus requiring 32-bit memory to store the result.
Therefore, a typical accumulator in 16-bit DSP
processors must be at least 32 bits. The final 32-bit
result is rounded (or truncated) for storing in 16-
bit memory. Figure 4 shows the block diagram of a
typical multiply-add functional blocks in 16-bit
fixed-point DSP processors. In order to prevent
arithmetic overflow, certain techniques are
normally employed. For example, increase the
number of bits for the accumulator. These addi-
tional bits are known as the guard bits. The second
method is to saturate the overflowed output to its

maximum or minimum value. However, the most
effective technique is to scale the signals at differ-
ent nodes of the system to guarantee that the
amplitude of signal is less than one.

A Q.15 fixed-point graphic equalizer can be
written in MATLAB as listed below for the 3-
band graphic equalizer using Q.15 format:

%M-file for performing 16-bit Q.15
fixed-point graphic EQ

clear all;close all;
%read speech signal . . .
[y,fs,b]=wavread(`Timit1.wav');
y_int = round(32768*y./max(abs(y)));
%load filters' coefficients . . .
load geq_coeff
Num_lp_int = round(32768*Num_lp);
Num_bp_int = round(32768*Num_bp);
Num_hp_int = round(32768*Num_hp);
%Gain setting of GEQ . . .
gain_lp_int = 3277; %0.1;
gain_bp_int = 32767; %0.99;
gain_hp_int = 3277; %0.1;
%perform filtering of LPF
out_lp_int = round(filter
(Num_lp_int,1,y_int)/32768);

out_lp_q15 = round((out_lp_int.
*gain_lp_int)/32768);

%perform filtering of BPF
out_bp_int = round(filter
(Num_bp_int,1,y_int)/32768);

out_bp_q15 = round((out_bp_int.
*gain_bp_int)/32768);

%perform filtering of HPF
out_hp_int = round(filter
(Num_hp_int,1,y_int)/32768);

out_hp_q15 = round((out_hp_int.
*gain_hp_int)/32768);

%sum outputs . . .
out_total_q15 =
out_lp_q15+out_bp_q15+out_hp_q15;

out_total_q15 = out_total_q15/32768;
%Check for overflow . . .and use
saturation mode . . .

max_pos = 1±2^-15;
max_min = -1;
ind_pos = find(out_total_q15 >
max_pos);

out_total_q15(ind_pos) = max_pos;
ind_min = find(out_total_q15 < -1);
out_total_q15(ind_min) = max_min;
wavwrite(out_total_q15
,fs,b,'processed.wav');

Fig. 4. Block diagram of the multiply-accumulate functional block in DSP processor.

Transition from Simulink to MATLAB in Real-Time Digital Signal Processing Education 591

%plot results . . .
figure(1), psd(y); title(`Spectrum
plot of input');

figure(2), psd(out_total_q15);
title(`Spectrum plot of output');

figure(3), plot(out_total_q15);
title(`Time-domain plot for output
signal');

The above listing shows a need to convert Q.15
numbers to the equivalent 16-bit integer numbers.
This is because the Q.15 fractional data is not a
standard data type in C or assembly code, which
uses the integer (int) data. This conversion can be
carried out by multiplying the Q.15 numbers
within the range of �1 (excluding +1) with a
scalar of 32,768. The resulting integers can then
be used in C or assembly programs for the fixed-
point processors. A detailed description of the
fixed-point arithmetic can be found in [1].
To convert the final results back from the
integer format to the equivalent Q.15 fractional
numbers, they need to be divided by 32,768. These

operations are illustrated in the fixed-point
MATLAB code listing preceding. As explained
earlier, an additional step is required to check for
possible overflow of data, and saturation mode
is implemented in the code. Any positive or
negative overflow is clipped to its maximum
positive and negative number of +1±2±15 and
±1, respectively.

Filter Design Toolbox also allows users to
specify the required data formats. For example,
to represent the filter coefficients, input, and all its
operations using Q.15 format, the following quan-
tized object needs to be defined:

q = quantizer(`fix',[16,15],
'round','saturate'); % Q.15 format

The input arguments `fix' [16, 15], `round',
`saturate' represent fixed-point format using
16-bit wordlength with 1 sign bit and 15 fractional
bits. All arithmetic results are rounded, and the
saturation mode is used. The double-precision
floating-point coefficients can then be converted

Fig. 5. Spectra of filter output using Q.15 and Q.7 formats.

Fig. 6. Time domain plots of filter output using Q.7 and Q.15 formats.

W. Gan and S. Kuo592

to their Q.15 equivalents by executing the follow-
ing MATLAB commands:

Num_lp_qfilt =
qfilt(`fir',{Num_lp},q);

Num_bp_qfilt =
qfilt(`fir',{Num_bp},q);

Num_hp_qfilt =
qfilt(`fir',{Num_hp},q);

The quantized FIR filtering can be computed as
follows:

out_lp_qfilt =
filter(Num_lp_qfilt,y).
*quantize(q,gain_lp);

Here, the filter function is an overloaded function
that takes in the quantized coefficients, and the
quantize function quantizes the gain to the quan-
tized object q. Figures 5 and 6 show the power
spectra and time-domain waveforms of the filter
output using Q.7 and Q.15 formats.

The Q.7 format is an 8-bit word which consists
of 1 sign bit and 7 fractional bits. Therefore, it can
be seen from Fig. 5 that the power spectrum plot
using Q.7 arithmetic cannot be below ±52dB. As
shown in Fig. 6, the smallest magnitude that can be
represented in Q.7 format is 2±7� 0.0078125; while
that using Q.15 format is 2±15� 0.000030517. A
more stringent FIR filter design specification (such
as stopband attenuations and ripples) can also
bring out the differences between fixed-point
Q-formats and floating-point implementations.

In order to assess how well the students have
grasped the concepts of designing and implement-
ing digital filter, students are tasked to complete a
series of exercises that tests their understanding. In
addition, the students would also been asked to
investigate on some fixed-point programming
issues. We grade the students based on a Q&A
session and a written report. Some of the exercises
include:

. Design a 10-octave-band graphic equalizer to
cover the audio signal with frequency up to
20 kHz.

. Use a multirate filter for implementing the gra-
phic equalizer.

. Replace the FIR filters with IIR filters and
determine their design advantages and pro-
blems.

. Use the MATLAB C-compiler to compile the
M-files into C codes that can be run on PC. The
compiled C code can also be ported to different
DSP processor platforms.

EXTENSION TO REAL-TIME
IMPLEMENTATION USING MATLAB/

SIMULINK

There are several important extensions that
enhance the real-time DSP programming features
of MATLAB/Simulink tools. They include:

1. Embedded Target for Texas Instruments (TI)
C2000 DSP [12], which generates code for
control systems on C2000 processors.

2. Embedded Target for TI C6000 DSP [13],
which performs real-time prototyping and
system deployment on C6000 processors.

3. Real-Time Workshop Embedded Coder [14],
which generates production code for embedded
systems.

4. MATLAB Link for Code Composer [15], which
verifies and validates embedded software on
Texas Instruments' C2000, C5000, C6000,
OMAP, and TMS470 processors.

5. Embedded targets for Infineon's [16] and
Motorola's [17] microcontrollers.

The main feature of these tools is that efficient
working C code can be generated directly from the
Simulink design. This greatly speeds up the devel-
opment of DSP applications. Continual improve-
ments on these tools will lead to the generation of
more efficient code, in terms of memory, speed,
and power consumption. The latest product, Real-
Time Workshop Embedded Coder, enables users
to generate, test, and deploy C code for used in
real-time embedded systems. In addition, it allows
hand-written C code to be added into the Simulink
system for simulation and code generation for
stand-alone applications.

These latest toolboxes are useful educational
tools to illustrate the real-time applications as
they are being designed, and are powerful research
platforms for verifying the DSP algorithms.
However, for generating more efficient code,
fine-tuning, low-level programming, and using
optimized library functions from the chip manu-
facturer are still needed for embedded DSP
applications.

Another trend in the latest tool development is
the integration of MATLAB environment with the
code development software from the DSP chip
vendors. For example, the MATLAB Link for
Code Composer allows transfer of data between
MATLAB and Texas Instruments' DSP proces-
sors. Data can also be acquired from the I/O
channels of the DSP board to the MATLAB for
further analysis.

In addition to programmable DSP processors,
field programmable gate array (FPGA) is becom-
ing an attractive platform for many DSP based
systems. This is because FPGA provides a reconfi-
gurable solution for implementing DSP applica-
tions, and normally has a higher processing power
than programmable DSP processors for some
specific applications. In the latest MATLAB
version 7, a new product, called Filter Design
HDL Coder [23] for programming the FPGA is
released. Many FPGA developers, such as Alterra
[18] and Xilinx [19], have introduced DSP builder
or system generator that integrate DSP algorithm
development, simulation, and verification capabil-
ities of MATLAB and Simulink with their system-
level design tools.

Transition from Simulink to MATLAB in Real-Time Digital Signal Processing Education 593

These signal processing design tools will create
additional dimension to the teaching and learning
of real-time DSP. More advanced and complex
applications can now be introduced to bring
students closer to the real-world products (for
example, MP3 players, Bluetooth communication
systems, video streaming for Internet, etc.) that
they are familiar with. Some of these examples can
also be found in the MATLAB Central under the
file exchange website: http://www.mathworks.com/
matlabcentral/fileexchange/loadCategory.do

CONCLUSIONS

The two-stage `Simulink-first, MATLAB-
second' approach eases the learning of theoretical

and real-time DSP, and also makes the learning
process more enjoyable. It provides an all-in-one
platform for transferring data between Simulink
and MATLAB, using filter design and fixed-point
functions, and obtaining graphical plots for analy-
sis. These powerful tools and extensions allow
students to transit from concept to reality, which
is an important differentiable factor for universi-
ties focusing on training practical-oriented engi-
neers. For more information on a complete step-
by-step approach in developing DSP software,
readers can refer to many examples listed in [1].

AcknowledgmentsÐThis paper originated from the work carried
out in the School of EEE at NTU and the EE Department at
NIU. It is based on the book titled `Digital Signal Processors:
Algorithms, Implementations, and Applications,' published by
the authors.

REFERENCES

1. S. M. Kuo and W. S. Gan, Digital Signal Processors, Upper Saddle River, NJ: Prentice-Hall, 2004.
2. S. M. Kuo and B. H. Lee, Real-Time Digital Signal Processing, Chichester, NY: John Wiley &

Sons, 2001.
3. S. M. Kuo and G. D. Miller, An innovative course emphasizing real-time digital signal processing

applications, IEEE Trans. Education, 39(2) May 1996, pp. 109±113.
4. W. S. Gan, et. al., Rapid prototyping system for teaching real-time digital signal processing, IEEE

Trans. Education, 43(1) Feb. 2000, pp. 19±24.
5. W. S. Gan, Teaching and learning the hows and whys of real-time digital signal processing, IEEE

Trans. Education, 45(4) Nov. 2002, pp. 336±343.
6. The MathWorks, MATLAB User's Guide, Version 6.5.1, 2004.
7. The MathWorks, Simulink User's Guide, Version 5.1, 2004.
8. The MathWorks, Signal Processing Toolbox User's Guide, Version 6, 2003.
9. The MathWorks, Filter Design Toolbox User's Guide, Version 2.5, 2003.

10. The MathWorks, Fixed-Point Blockset User's Guide, Version 4, 2003.
11. The MathWorks, DSP Blockset User's Guide, Version 5, 2003.
12. The MathWorks, Embedded Target for the TI TMS320C2000TM DSP Platform Version 1, 2003.
13. The MathWorks, Embedded Target for the TI TMS320C6000TM DSP Platform, Version 1, 2002.
14. The MathWorks, Real-Time Workshop1 Embedded Coder User's Guide, Version 3, 2003.
15. The MathWorks, MATLAB Link for Code Composer Studio Development Tools User's Guide,

Version 1.3, 2003
16. The MathWorks, Embedded Target for Infineon C1661 Microcontrollers User's Guide, Version 1,

2002.
17. The MathWorks, Embedded Target for Motorola MPC555 User's Guide, Version 1, 2002.
18. Alterra, FPGAs Provide Reconfigurable DSP Solutions, white paper, August 2002, www.alter-

a.com.
19. Xilinx Inc., System Generation for DSP, brochure, 2002, www.xilinx.com.
20. The MathWorks, Filter Design Toolbox User's Guide, Version 3, 2004
21. The MathWorks, Fixed-Point Toolbox User's Guide, Version 1, 2004.
22. The MathWorks, Simulink Fixed Point User's Guide, Version 5, 2004.
23. The MathWorks, Filter Design HDL Coder User's Guide, Version 1, 2004.

Woon-Seng Gan received his B.Eng. (1st Class Hons) and Ph.D. degrees, both in Electrical
and Electronic Engineering from the University of Strathclyde, UK in 1989 and 1993
respectively. He joined the School of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore as a Lecturer and Senior Lecturer in 1993 and 1998
respectively. Currently, he is an Associate Professor. He teaches several undergraduate,
postgraduate and industry courses on Digital Signal Processing and Real-Time Signal
Processing Implementation. His research interests include adaptive signal processing,
psycho-acoustical signal processing and real-time digital signal processing. is a Senior
Member of IEEE, Member of Audio Engineering Society and Professional Engineers of
Singapore. He has recently co-authored the book Digital Signal Processors: Architectures,
Implementations, and Applications, Prentice-Hall 2005.

Sen M. Kuo received the B.S. degree from National Taiwan Normal University, in1976 and
the MS and Ph.D. degrees from the University of New Mexico, in 1983 and 1985,

W. Gan and S. Kuo594

respectively. He is currently a Professor and Chair in the Department of Electrical
Engineering, Northern Illinois University, DeKalb, IL. In 1993, he was with Texas
Instruments, Houston, TX. He is the leading author of three books: Active Noise Control
Systems (Wiley, 1996), Real-Time Digital Signal Processing (Wiley, 2001), and Digital
Signal Processors (Prentice-Hall, 2005). He served as a consultant to several companies on
developments of real-time DSP applications such adaptive echo cancelers. He holds seven
US patents, and has published over 150 technical papers. His research focuses on active
noise and vibration control, real-time DSP applications, adaptive echo and noise cancella-
tion, digital audio applications, and digital communications. Prof. Kuo received the IEEE
first-place transactions (Consumer Electronics) paper award in 1993, and the faculty-of-
year award in 2001 for accomplishments in research and scholarly area.

Transition from Simulink to MATLAB in Real-Time Digital Signal Processing Education 595

