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This paper presents an initiative to teach the concept of automated diagnostic systems for Doppler
ultrasound blood flow signals to biomedical engineering students. The approach was based on
illustrative applications that highlight the performance of multilayer perceptron neural networks
(MLPNN) and adaptive neuro-fuzzy inference system (ANFIS). Following a brief description of
the artificial neural networks (ANNs) and ANFIS, applications of the models to the Doppler
signals obtained from ophthalmic artery and internal carotid artery were done by means of a series
of MATLAB functions. The functions involved in the neural network and fuzzy logic toolboxes of
MATLAB can be used to develop automated diagnostic systems for the signal under study. The
authors suggest that the use of MATLAB exercises will assist the students in gaining a better
understanding of the various automated diagnostic systems in blood flow signals.

INTRODUCTION

MEDICAL DIAGNOSTIC decision-support
systems have become an established component
of medical technology. The main concept of the
medical technology is an inductive engine that
learns the decision characteristics of the diseases
and can then be used to diagnose future patients
with uncertain disease states. A number of quant-
itative models including linear discriminant analy-
sis, logistic regression, k nearest neighbor, kernel
density, recursive partitioning, and neural
networks are being used in medical diagnostic
support systems to assist human decision-makers
in disease diagnosis. The simplest methods, linear
discriminant analysis and logistic regression, are
based on parametric models with a minimum
number of parameters to fit. To capture more
complex features of data, a non-parametric
method such as k nearest neighbor or kernel
density is frequently used. If there is a need to
model complex nonlinear features of the data, the
developer resorts to neural networks, such as the
multilayer perceptron (MLP), radial basis function
(RBF), self-organizing map (SOM), mixture-of-
experts neural architecture. Neural networks have
been used in a great number of medical diagnostic
decision-support system applications because of

the belief that they have greater predictive power.
Unfortunately, there is no theory available to
guide an intelligent choice of models based on
the complexity of the diagnostic task. In most
situations, developers are simply picking a single
model that yields satisfactory results, or they are
benchmarking a small subset of models with cross-
validation estimates on test sets [1±3].

Spectral analysis of the Doppler signals
produces information concerning the blood flow
in the arteries [4±7]. However, artificial neural
networks (ANNs) may offer a potentially superior
method of Doppler signal analysis to the spectral
analysis methods. In contrast to the conventional
spectral analysis methods, ANNs not only model
the signal, but also make a decision as to the class
of signal [8±15]. Furthermore, fuzzy set theory
plays an important role in dealing with uncertainty
when making decisions in medical applications.
Therefore, fuzzy sets have attracted the growing
attention and interest in modern information tech-
nology, production techniques, decision making,
pattern recognition, diagnostics, data analysis, etc
[16±18].

Neuro-fuzzy systems are fuzzy systems which
use ANNs theory in order to determine their
properties (fuzzy sets and fuzzy rules) by process-
ing data samples. Neuro-fuzzy systems harness the
power of the two paradigms: fuzzy logic and
ANNs, by utilizing the mathematical properties* Accepted 2 April 2005.
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of ANNs in tuning rule-based fuzzy systems that
approximate the way people process information.
A specific approach in neuro-fuzzy development
is the adaptive neuro-fuzzy inference system
(ANFIS), which has shown significant results in
modeling nonlinear functions. In ANFIS, the
membership function parameters are extracted
from a data set that describes the system behavior.
The ANFIS learns features in the data set and
adjusts the system parameters according to a given
error criterion [19, 20]. Successful implementations
of ANFIS in biomedical engineering have been
reported, for classification [15, 21, 22] and data
analysis [23]. Two selected illustrative applications
among our related studies, which were developed
as automated diagnostic systems for Doppler
ultrasound blood flow signals, are presented in
this paper [12, 15].

In recent years, biomedical engineers have devel-
oped many algorithms and processing techniques
in order to help doctors in the examination of
many different biosignals, and to develop auto-
mated diagnostic systems [1±3]. In this respect,
automated diagnostic systems for Doppler ultra-
sound blood flow signals could be introduced both
in the graduate and undergraduate biomedical
engineering programs. Most engineering students
are introduced to MATLAB and the various
toolboxes at an early stage of their careers in the
general areas of pattern recognition, data classifi-
cation, simulation, nonlinear system identification,
and control. MATLAB is the basic `engine' with
add-on components called toolboxes. MATLAB
and its toolboxes allow students to investigate the
characteristics of the algorithm and easily design
their algorithm with its vast assortment of graphi-
cal, signal modeling, and simulation functions. The
data or signals generated by any component of the
system (software or hardware) can be displayed
and/or saved for subsequent use, such as pattern
recognition or offline signal modeling.

In this paper, a MATLAB-based approach was
proposed and implemented to demonstrate the
concept of automated diagnostic systems for
Doppler ultrasound blood flow signals, one of
the important topics in biomedical engineering.
This approach is the topic performed in the
biomedical instrumentation course in the Electro-
nics and Computer Education Department, Gazi
University. Before delving into the details of how
MATLAB is used as a learning tool, it is necessary
to understand automated diagnostic systems. Then
how MATLAB can be used to reinforce these
concepts are discussed. The results obtained from
the illustrative applications are presented. Educa-
tional contribution of the presented approach is
explained.

THEORETICAL BASIS

Artificial neural networks (ANNs)
ANNs are computational modeling tools

that have recently emerged and found extensive

acceptance in many disciplines for modeling
complex real-world problems. ANNs may be
defined as structures comprised of densely inter-
connected adaptive simple processing elements
(neurons) that are capable of performing massively
parallel computations for data processing and
knowledge representation. The attractiveness of
ANNs comes from the remarkable information
processing characteristics of the biological system
such as nonlinearity, high parallelism, robustness,
fault and failure tolerance, learning, ability to
handle imprecise and fuzzy information, and
their capability to generalize. Artificial models
possessing such characteristics are desirable
because:

. nonlinearity allows better fit to the data;

. noise-insensitivity provides accurate prediction
in the presence of uncertain data and measure-
ment errors;

. high parallelism implies fast processing and
hardware failure-tolerance;

. learning and adaptivity allow the system to
update (modify) its internal structure in response
to changing environment;

. generalization enables application of the model
to unlearned data.

ANNs have been utilized in a variety of appli-
cations ranging from modeling, classification,
pattern recognition and multivariate data analysis
[3, 24].

ANNs may be classified in many different ways
according to one or more of their relevant features.
Generally, classification of ANNs may be used on:

1. The function that the ANN is designed to serve
(e.g., pattern association, clustering).

2. The degree (partial/full) of connectivity of the
neurons in the network.

3. The direction of flow of information within the
network (recurrent and nonrecurrent), with
recurrent networks being dynamic systems in
which the state at any given time is dependent
on previous states.

4. The type of learning algorithm, which repre-
sents a set of systematic equations that utilize
the outputs obtained from the network along
with an arbitrary performance measure to
update the internal structure of the ANN.

5. The learning rule (the driving engine of the
learning algorithm).

6. The degree of learning supervision needed for
ANN training.

Supervised learning involves training of an ANN
with the correct answers (i.e., target outputs) being
given for every example, and using the deviation
(error) of the ANN solution from corresponding
target values to determine the required amount by
which each weight should be adjusted (Fig. 1).
Reinforcement learning is supervised, however
the ANN is provided with a critique on correctness
of output rather than the correct answer itself.
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Unsupervised learning does not require a correct
answer for the training examples, however the
network, through exploring the underlying struc-
ture in the data and the correlation between the
various examples, organizes the examples into
clusters (categories) based on their similarity or
dissimilarity (e.g., Kohonen networks). Finally,
the hybrid learning procedure combines supervised
and unsupervised learning [24].

Feedforward neural networks are a basic type of
neural networks capable of approximating generic
classes of functions, including continuous and
integrable ones. An important class of feedforward
neural networks is multilayer perceptron neural
networks (MLPNNs). In the present study, more
emphasis will be given to the MLPNNs as being
the most popular and versatile type of networks.
The MLPNN, which has features such as the
ability to learn and generalize, smaller training
set requirements, fast operation, ease of implemen-
tation and therefore most commonly used neural
network arhitectures, is shown in Fig. 2. As shown
in Fig. 2, a MLPNN consists of:

. an input layer with neurons representing input
variables to the problem;

. an output layer with neurons representing the
dependent variables (what is being modeled);

. one or more hidden layers containing neurons to
help capture the nonlinearity in the data.

The MLPNN is a nonparametric technique for
performing a wide variety of detection and estima-
tion tasks [10±12, 24, 25]. In the MLPNN, each
neuron j in the hidden layer sums its input signals
xi after multiplying them by the strengths of the
respective connection weights wji and computes its
output yj as a function of the sum:

yj � f
ÿX

wji xi

� �1�

where f is transfer function that is necessary to
transform the weighted sum of all signals imping-
ing onto a neuron. The transfer function � f � can

be a simple threshold function, or a sigmoidal,
hyperbolic tangent, or radial basis function.

The sum of squared differences between the
desired and actual values of the output neurons
E is defined as:

E � 1

2

X
j

�ydj ÿ yj�2 �2�

where ydj is the desired value of output neuron j
and yj is the actual output of that neuron. Each
weight wji is adjusted to reduce E as rapidly as
possible. How wji is adjusted depends on the
training algorithm adopted [10±12, 24, 25].

Training algorithms are an integral part of ANN
model development. An appropriate topology may
still fail to give a better model, unless trained by a
suitable training algorithm. A good training algo-
rithm will shorten the training time, while achiev-
ing a better accuracy. Therefore, training process is
an important characteristic of the ANNs, whereby
representative examples of the knowledge are
iteratively presented to the network, so that it
can integrate this knowledge within its structure.
There are a number of training algorithms used to
train a MLPNN and a frequently used one is called
the backpropagation training algorithm. The
backpropagation algorithm, which is based on
searching an error surface using gradient descent
for points with minimum error, is relatively easy to
implement. However, the backpropagation has
some problems for many applications. The algo-
rithm is not guaranteed to find the global mini-
mum of the error function since gradient descent
may get stuck in local minima, where it may
remain indefinitely. In addition to this, long train-
ing sessions are often required in order to find an
acceptable weight solution because of the well
known difficulties inherent in gradient descent
optimization. Therefore, a lot of variations to
improve the convergence of the backpropagation
were proposed such as delta-bar-delta, extended
delta-bar-delta and quick propagation [26±29].

Fig. 1. Supervised learning.
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Optimization methods such as second-order
methods (conjugate gradient, quasi-Newton,
Levenberg-Marquardt) have also been used for
ANN training in recent years. The Levenberg-
Marquardt algorithm combines the best features
of the Gauss-Newton technique and the steepest-
descent algorithm, but avoids many of their limita-
tions. In particular, it generally does not suffer
from the problem of slow convergence [30, 31]. A
number of researchers have carried out compara-
tive studies of MLPNN training algorithms
[32±34]. The results of the studies have illustrated
that the relative performance of algorithms
depends on the problem being used. Therefore, in
the applications the MLPNNs are trained with
different algorithms and the algorithm which
gives the best accuracy is selected.

ANN architectures are derived by trial and error
and the complexity of the neural network is char-
acterized by the number of hidden layers. There is
no general rule for selection of appropriate number
of hidden layers. A neural network with a small
number of neurons may not be sufficiently power-
ful to model a complex function. On the other

hand, a neural network with too many neurons
may lead to overfitting the training sets and lose its
ability to generalize which is the main desired
characteristic of a neural network. The most
popular approach to finding the optimal number
of hidden layers is by trial and error. In some
applications, after several trials the network archi-
tecture which achieved the task in high accuracy
can be determined [10±12].

Adaptive neuro-fuzzy inference system (ANFIS)
The ANFIS is a fuzzy Sugeno model put in the

framework of adaptive systems to facilitate learn-
ing and adaptation [19, 20]. Such a framework
makes the ANFIS modeling more systematic and
less reliant on expert knowledge. To present the
ANFIS architecture, two fuzzy if-then rules based
on a first-order Sugeno model are considered:

Rule 1: If (x is A1) and (y is B1) then
(1f1 � p1x� q1y� r1)

Rule 2: If (x is A2) and (y is B2) then
( f2 � p2x� q2y� r2)

where x and y are the inputs, Ai and Bi are the

Fig. 2. Multilayer peceptron neural network topology.
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fuzzy sets, fi are the outputs within the fuzzy region
specified by the fuzzy rule, pi, qi and ri are the
design parameters that are determined during the
training process. The ANFIS architecture to
implement these two rules is shown in Fig. 3, in
which a circle indicates a fixed node, whereas a
square indicates an adaptive node.

In the first layer, all the nodes are adaptive
nodes. The outputs of layer 1 are the fuzzy
membership grade of the inputs, which are given
by:

O1
i � �Ai

�x� i � 1; 2 �3�
O1

i � �Biÿ2
�y� i � 3; 4 �4�

where �Ai
�x�, �Biÿ2

�y� can adopt any fuzzy
membership function. For example, if the bell
shaped membership function is employed, �Ai

�x�
is given by:

�Ai
�x� � 1

1� xÿ ci

ai

� �2
( )bi

�5�

where ai, bi and ci are the parameters of the
membership function, governing the bell shaped
functions accordingly.

In the second layer, the nodes are fixed nodes.
They are labeled with M, indicating that they
perform as a simple multiplier. The outputs of
this layer can be represented as:

O2
i � wi � �Ai

�x��Bi
�y� i � 1; 2 �6�

which are the so-called firing strengths of the rules.
In the third layer, the nodes are also fixed nodes.

They are labeled with N, indicating that they play
a normalization role to the firing strengths from
the previous layer.

The outputs of this layer can be represented as:

O3
i � wi � wi

w1 � w2
i � 1; 2 �7�

which are the so-called normalized firing strengths.
In the fourth layer, the nodes are adaptive

nodes. The output of each node in this layer is
simply the product of the normalized firing
strength and a first-order polynomial (for a first-
order Sugeno model). Thus, the outputs of this
layer are given by:

O4
i � wi fi � wi�pi x� qi y� ri� i � 1; 2 �8�

In the fifth layer, there is only one single fixed node
labeled with S. This node performs the summation
of all incoming signals. Hence, the overall output
of the model is given by:

O5
i �

X2

i�1

wi fi �

X2

i�1

wi fi

 !
w1 � w2

�9�

It can be observed that there are two adaptive
layers in this ANFIS architecture, namely the first
layer and the fourth layer. In the first layer, there
are three modifiable parameters fai; bi; cig, which
are related to the input membership functions.
These parameters are the so-called premise para-
meters. In the fourth layer, there are also three
modifiable parameters fpi; qi; rig, pertaining to the
first-order polynomial. These parameters are so-
called consequent parameters [19, 20].

The task of the learning algorithm for this
architecture is to tune all the modifiable para-
meters, namely fai; bi; cig and fpi; qi; rig, to make
the ANFIS output match the training data.
When the premise parameters ai, bi and ci of the

Fig. 3. ANFIS architecture.
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membership function are fixed, the output of the
ANFIS model can be written as:

f � w1

w1 � w2
f1 � w2

w1 � w2
f2 �10�

Substituting equation (7) into equation (10) yields:

f � w1 f1 � w2 f2 �11�
Substituting the fuzzy if-then rules into equation
(11), it becomes:

f � w1� p1x� q1y� r1� � w2� p2x� q2 y� r2�
�12�

After rearrangement, the output can be expressed
as:

f � �w1x�p1 � �w1y�q1 � �w1�r1

� �w2x�p2 � �w2y�q2 � �w2�r2 �13�
which is a linear combination of the modifiable
consequent parameters p1, q1, r1, p2, q2 and r2. The
least squares method can be used to identify the
optimal values of these parameters easily. When
the premise parameters are not fixed, the search
space becomes larger and the convergence of the
training becomes slower. A hybrid algorithm
combining the least squares method and the gradi-
ent descent method is adopted to solve this prob-
lem. The hybrid algorithm is composed of a
forward pass and a backward pass. The least
squares method (forward pass) is used to optimize
the consequent parameters with the premise para-
meters fixed. Once the optimal consequent para-
meters are found, the backward pass starts
immediately. The gradient descent method (back-
ward pass) is used to adjust optimally the premise
parameters corresponding to the fuzzy sets in the
input domain. The output of the ANFIS is calcu-
lated by employing the consequent parameters
found in the forward pass. The output error is
used to adapt the premise parameters by means of
a standard backpropagation algorithm. It has been
proven that this hybrid algorithm is highly efficient
in training the ANFIS [19, 20].

ILLUSTRATIVE APPLICATIONS

The data acquisition system used in the illus-
trative applications had five components as shown
in Fig. 4. These are ultrasonic transducer (5 MHz

for internal carotid artery, 10 MHz for ophthalmic
artery), analog Doppler unit, analog tape recorder
(Sony), analog/digital interface board (Sound
Blaster Pro-16 bit), a personal computer with a
printer. The analog Doppler unit was equipped
with imaging facility that made it possible to focus
the sample volume at a desired location. The beam
of ultrasound transfixed the vessel axis at angle of
around 60ë. The output of the analog Doppler unit
was transferred to a PC via a 16-bit sound card on
an analog/digital interface board.

Classification results of automated diagnostic
systems

Performance indicators of automated diagnostic
systems:

. Measuring error: Given a random set of initial
weights, the outputs of the network will be very
different from the desired classifications. As the
network is trained, the weights of the system are
continually adjusted to reduce the difference
between the output of the system and the desired
response. The difference is referred to as the
error and can be measured in different ways.
The most common measurement is the mean
square error (MSE). The MSE is the average of
the squares of the difference between each
output and the desired output. In addition to
MSE, normalized mean squared error (NMSE),
mean absolute error (MAE), minimum absolute
error and maximum absolute error can be used
for the measuring error of the neural network
[10±12].

. Cross validation: Cross validation is a highly
recommended criterion for stopping the training
of a network. During performance analysis of
network, cross validation can be used for deter-
mining the final training. In general, it is known
that a network with enough weights will always
learn the training set better as the number of
iterations is increased. However, neural network
researchers have found that this decrease in the
training set error was not always coupled to
better performance in the test. When the net-
work is trained too much, the network mem-
orizes the training patterns and does not
generalize well. The training holds the key to
an accurate solution, so the criterion to stop
training must be very well described. The aim of
the stop criterion is to maximize the network's
generalization [10±12].

. Classification and regression: Neural networks
are used for both classification and regression.

Fig. 4. Block diagram of the measurement system.
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In classification, the aim is to assign the input
patterns to one of several classes, usually repre-
sented by outputs restricted to lie in the range
from 0 to 1, so that they represent the prob-
ability of class membership. While the classifica-
tion is carried out, a specific pattern is assigned
to a specific class according to the characteristic
features selected for it. In regression, desired
output and actual network output results can
be shown on the same graph and performance of
network can be evaluated in this way [10±12].

. Confusion matrix: A confusion matrix is a
simple methodology for displaying the classifi-
cation results of a network. The confusion
matrix is defined by labeling the desired classi-
fication on the rows and the actual network
outputs on the columns. For each exemplar, a
1 is added to the cell entry defined by desired
classification and the actual network outputs.
Since the actual network outputs and the desired
classification wanted to be the same, the ideal
situation is to have all the exemplars end up on
the diagonal cells of the matrix (the diagonal
that connects the upper-left corner to the lower
right) [10±12].

. Specificity, sensitivity, and receiver operating
characteristic curve analysis: The simplest classi-
fication problem is that of separating one-
dimensional feature vectors into two groups. In
this situation the only choice that needs to be
made is where to locate the decision threshold. If
there is no overlap between the magnitudes of
the vectors obtained from patients belonging to
the two classes, the threshold can simply be
chosen to separate the classes completely. In
general, the results from the two classes do
overlap and so depending on where the thresh-
old is placed some signals from normal subjects
will be adjudged abnormal and/or some signals
from abnormals will be adjudged normal. The
best choice of threshold will then depend on a
number of factors. There are three important

measures of the performance of a diagnostic
test; specificity, sensitivity, and total classifica-
tion accuracy which are defined as:

. Specificity: number of true negative decisions/
number of actually negative cases

. Sensitivity: number of true positive decisions/
number of actually positive cases

. Total classification accuracy: number of correct
decisions/total number of cases. A true positive
decision occurs when the positive detection of
the network coincided with a positive detection
of the physician. A true negative decision occurs
when both the network and the physician sug-
gested the absence of a positive detection. These
measures are dependent since they are both
affected by the position of the decision threshold
and as the threshold is moved to increase sensi-
tivity, so specificity decreases. Receiver operat-
ing characteristic (ROC) curve is one of the best
method of evaluating the performance of a test
and defining an appropriate decision threshold.
The best choice of threshold will then depend on
a number of factors including the consequences
of making both types of false classification (false
positive and false negative) and the prevalence
of disease in the target population [10±12].

. Correlation coefficient: The size of MSE can be
used to determine how well the network output
fits the desired output, but it may not reflect
whether the two sets of data move in the same
direction. The correlation coefficient (r) solves
this problem. The correlation coefficient is lim-
ited with the range [±1, 1]. When rÿ 1 there is a
perfect positive linear correlation between net-
work output and desired output, which means
that they vary by the same amount. When
r � ÿ1 there is a perfectly linear negative corre-
lation between network output and desired
output, that means they vary in opposite ways
(when network output increases, desired output
decreases by the same amount). When r � 0
there is no correlation between network output

Fig. 5. Training and cross-validation MSE curves of the MLPNN.

Teaching Automated Diagnostic Systems for Doppler Ultrasound Blood Flow Signals using MATLAB 655



and desired output (the variables are called
uncorrelated). Intermediate values describe
partial correlations [10±12].

MLPNN for detection of ophthalmic arterial
doppler signals with Behcet disease.

In the first illustrative application, the MLPNN
employing delta-bar-delta training algorithm was
used for the interpretation of the ophthalmic
artery Doppler waveforms [12]. The MLPNN for
detection the presence of ocular Behcet disease was
implemented by using the Neural Network Tool-
box of MATLAB. In order to determine the
MLPNN inputs spectral analysis of the ophthal-
mic arterial Doppler signals was performed using
the least squares autoregressive method. The
MLPNN employing delta-bar-delta was trained
with the training set, cross-validated with the
cross-validation set and checked with the test set.
In Fig. 5, the error in training set and the cross-
validation set is shown on the same graph. The
values of minimum MSE and final MSE during
training and cross-validation are given in Table 1.
As it is seen from Table 1, training was done in
4200 epochs since the cross-validation error began
to rise at 4200 epochs. Training of the MLPNN
was determined as successful owing to MSE

(Fig. 5) converged to a small constant approxi-
mately zero in 4200 epochs.

Classification results of the MLPNN were
displayed by a confusion matrix. According to
confusion matrix, 1 healthy subject was classified
incorrectly by the MLPNN as a subject suffering
from ocular Behcet disease and 2 subjects suffering
from ocular Behcet disease were classified as
healthy subjects. Confusion matrix:

Output result

Desired result Healthy Behcet disease

Healthy 27 2
Behcet disease 1 30

The values of the specificity, sensitivity, and
total classification accuracy are given in Table 2.
The MLPNN classified healthy subjects and
subjects suffering from ocular Behcet disease with
an accuracy of 96.43% and 93.75%, respectively.
The healthy subjects and subjects suffering from
ocular Behcet disease were classified with an
accuracy of 95.00%. The performance of a test
can be evaluated by plotting a ROC curve for the
test. A good test (curve in Fig. 6) is one for which

Table 1. The values of minimum and final MSE during
training and cross-validation

Best networks Training Cross validation

Epoch number 4200 4200
Minimum MSE 0.000256223 0.000360517
Final MSE 0.000256223 0.000360517

Table 2. The values of statistical parameters of the MLPNN

Statistical parameters Values

Specificity 96.43%
Sensitivity 93.75%
Total classification accuracy 95.00%

Fig. 6. ROC curve.
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sensitivity rises rapidly and 1-specificity hardly
increases at all until sensitivity becomes high.
ROC curve which is shown in Fig. 6 represents
the MLPNN performance on the test file. The
values of performance evaluation parameters of
the presented MLPNN are given for healthy
subjects and subjects suffering from ocular
Behcet disease in Table 3. The results of perfor-
mance evaluation and statistical measures, showed
that the MLPNN employing delta-bar-delta train-
ing algorithm was effective to detect the ophthal-
mic arterial Doppler signals with Behcet disease
[12].

ANFIS for analysis of internal carotid arterial
doppler signals

In the second illustrative application, a new
approach based on ANFIS was presented for the
detection of internal carotid artery stenosis and
occlusion [15]. Three ANFIS classifiers were used
to detect internal carotid artery conditions
(normal, stenosis and occlusion) when two
features, resistivity and pulsatility indices (RI and
PI), defining changes of internal carotid arterial
Doppler waveforms were used as inputs. The
ANFIS classifiers were implemented by using the
Fuzzy Logic Toolbox of MATLAB. We trained
the three ANFIS classifiers since there were three
possible outcomes of the diagnosis of internal
carotid artery conditions (normal, stenosis and
occlusion). Each of the ANFIS classifier was
trained so that they are likely to be more accurate
for one type of internal carotid artery condition
than the other conditions.

As we have mentioned in our previous study

[11], it is difficult to separate the normal, stenosis
and occlusion subjects using the values of the RI
and PI. Since there is a considerable overlap in the
RI and PI values of normal, stenosis and occlusion
groups, 129 points of the logarithm of the internal
carotid artery Doppler spectrum were used as the
MLPNN inputs in our previous study [11].
However, fuzzy set theory plays an important
role in dealing with uncertainty when making
decisions in medical applications. Therefore, we
chose fuzzy logic in this application due to the
uncertainty in internal carotid arterial Doppler
signals classification, which is a result of imprecise
boundaries between RI and PI values of normal,
stenosis and occlusion groups. Using fuzzy logic
enabled us to use the uncertainty in the classifier
design and consequently to increase the credibility
of the system output. We trained the fourth
ANFIS classifier to combine the predictions of
the three ANFIS classifiers. The outputs of the
three ANFIS classifiers were used as the inputs of
the fourth ANFIS classifier. Since the number of
inputs used in the ANFIS model was much less
than the number of inputs used in the MLPNN
presented in our previous study [11], the response
time of ANFIS model was much less than that of
the MLPNN.

Figure 7 shows the fuzzy rule architecture of
each ANFIS using a generalized bell-shaped
membership function defined in Equation (5).
There are a total of 27 fuzzy rules in the architec-
ture. Figure 8 shows the fuzzy rule architecture of
the combining ANFIS classifier (the fourth
ANFIS classifier) using a generalized bell-shaped
membership function. There are a total of 30 fuzzy
rules in the architecture. Membership function
of each input parameter was divided into three
regions, namely, small, medium, and large. Matlab
function, gbellmf (generalized bell curve
membership function), was used to generate
membership functions. The examination of initial
and final membership functions indicates that
there are considerable changes in the final
membership functions of RI (input 1) and PI
(input 2). Figure 9 shows the initial and final
membership functions of the RI values using the
generalized bell-shaped membership function. This

Table 3. The values of performance evaluation parameters

Performance
Result

(healthy)
Result (ocular
Behcet disease)

MSE 0.003565628 0.003710403
NMSE 0.315698741 0.372141745
MAE 0.095475511 0.099590421
Minimum absolute error 0.007361279 0.007595658
Maximum absolute error 0.918734692 0.921097517
r 0.946251742 0.924021453
Percent correct 96.42857361 93.75011523

Fig. 7. Fuzzy rule architecture of the three ANFIS classifiers. System ANFIS: 2 inputs, 1 output, 27 rules.
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analysis was done since the amount of changes in
the final membership functions of inputs indicates
the impact of inputs on the detection of output.
Based on the analysis of membership functions, it
can be mentioned that both RI and PI values have
considerable impact on the detection of internal
carotid artery stenosis and occlusion.

Classification results of the ANFIS model
were displayed by a confusion matrix. The confu-
sion matrix showing the classification results of the
ANFIS model is given below. According to the
confusion matrix, 1 normal subject was classified
incorrectly by the ANFIS model as a subject
suffering from stenosis, 1 subject suffering from
stenosis was classified as a normal subject, 1
subject suffering from occlusion was classified as
a subject suffering from stenosis. The test perfor-
mance of the ANFIS model was determined by the
computation of the statistical parameters. The
values of the statistical parameters are given in
Table 4. As it is seen from Table 4, the ANFIS
model classified normal subjects and subjects
suffering from stenosis and occlusion with an
accuracy of 96.43%, 96.77%, 96.55%, respectively.
The normal subjects, subjects suffering from steno-
sis and occlusion, were classified with an accuracy
of 96.59%. The correct classification rates of the
standalone neural network (MLPNN) presented in
our previous study [11] were 95.24% for normal
subjects, 91.30% for subjects suffering from steno-
sis and 91.67% for subjects suffering from occlu-
sion. The total classification accuracy of the
standalone neural network was 92.65%. Thus, the
accuracy rates of the ANFIS model presented for
this application were found to be higher than that
of the standalone neural network model.

Fig. 9. (a) Initial and (b) final generalized bell shaped member-
ship function of input 1 (RI).

Table 4. The values of statistical parameters of the ANFIS
model

Statistical parameters Values

Specificity 96.43%
Sensitivity (stenosis) 96.77%
Sensitivity (occlusion) 96.55%
Total classification accuracy 96.59%

Fig. 8. Fuzzy rule architecture of the combining ANFIS (the fourth ANFIS classifier). System ANFIS: 3 inputs, 1 output, 30 rules.
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These results indicate that the proposed ANFIS
model has some potential in detecting internal
carotid artery stenosis and occlusion [15]. Confu-
sion matrix:

Output result

Desired result Normal Stenosis Occlusion

Normal 27 1 0
Stenosis 1 30 1
Occlusion 0 0 28

NEURAL NETWORK TOOLBOX OF
MATLAB

We introduced the students to the basic func-
tions of the Neural Network Toolbox of
MATLAB. Command window of MATLAB
taken from students' projects related with neural
network analysis of Doppler ultrasound blood
flow signals is presented in Fig. 10. The Neural
Network Toolbox extends the MATLAB comput-
ing environment to provide tools for the design,

implementation, visualization and simulation of
neural networks [35]. Neural networks are
uniquely powerful tools in applications where
formal analysis would be difficult or impossible,
such as pattern recognition and nonlinear system
identification and control. The Neural Network
Toolbox provides comprehensive support for
many proven network paradigms, as well as a
graphical user interface (GUI) that allows the
students to design and manage their networks.
The toolbox's modular, open, and extensible
design simplifies the creation of customized func-
tions and networks. Because neural networks
require intensive matrix computations, MATLAB
provides a natural framework for rapidly imple-
menting neural networks and for studying their
behavior and application.

Neural network toolbox GUI
This tool lets the students import potentially

large and complex data sets. The GUI also
allows the students to create, initialize, train,
simulate and manage their networks. Simple
graphical representations allow the students to
visualize and understand network architecture.

Fig. 10. Command window of MATLAB taken from students' projects related with neural network analysis of Doppler ultrasound
blood flow signals
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Supervised networks
Supervised neural networks are trained to

produce desired outputs in response to example
inputs, making them particularly well suited for
modeling and controlling dynamic systems, classi-
fying noisy data and predicting future events. The
Neural Network Toolbox supports the following
supervised networks:

. Feed-forward networks have one-way connec-
tions from input to output layers. They are
commonly used for prediction, pattern recogni-
tion, and nonlinear function fitting. Supported
feed-forward networks include feed-forward
backpropagation, cascade-forward backpropa-
gation, feed-forward input-delay backpropaga-
tion, linear, and perceptron networks.

. Radial basis networks provide an alternative fast
method for designing nonlinear feed-forward
networks. Supported variations include general-
ized regression and probabilistic neural net-
works.

. Recurrent networks use feedback to recognize
both spatial and temporal patterns. Supported
recurrent networks include Elman and Hopfield.

. Learning vector quantization (LVQ) is a power-
ful method for classifying patterns that are not
linearly separable. LVQ allows the students to
specify class boundaries and the granularity of
classification.

In this section, we want to present the description
of the MLPNN (Fig. 2) which is the most
commonly used neural network with the back-
propagation algorithm. Each input is weighted
with an appropriate w. The sum of the weighted
inputs forms the input to the transfer function f .
Neurons may use any differentiable transfer func-
tion f to generate their output. MLPNNs often use
the log-sigmoid transfer function logsig, which
is shown in Fig. 11(a). The function logsig
generates outputs between 0 and 1 as the neuron's
net input goes from negative to positive infinity.

Alternatively, MLPNNs may use the tan-
sigmoid transfer function tansig, which is
shown in Fig. 11(b). Occasionally, the linear trans-
fer function purelin is used in backpropagation
networks (Fig. 11(c) ). If the last layer of a
MLPNN has sigmoid neurons, then the outputs
of the network are limited to a small range. If
linear output neurons are used the network
outputs can take on any value. In backpropagation
it is important to be able to calculate the deriva-
tives of any transfer functions used. Each of the
transfer functions above, tansig, logsig, and
purelin, have a corresponding derivative func-
tion: dtansig, dlogsig and dpurelin.

Unsupervised networks
Unsupervised neural networks are trained by

letting the network continually adjust itself to
new inputs. They find relationship within data as
it is presented and can automatically define classi-
fication schemes. The Neural Network Toolbox

supports two types of self-organizing unsupervised
networks:

1. Competitive layers recognize and group similar
input vectors. By using these groups, the net-
work automatically sorts the input categories.

2. Self-organizing maps learn to classify input
vectors according to similarity. Unlike compe-
titive layers, they also preserve the topology of
the input vectors, assigning nearby inputs to
nearby categories.

Fig. 11. Transfer functions: (a) log-sigmoid transfer function,
(b) tan-sigmoid transfer function, (c) linear transfer function.
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SUPPORTED TRAINING AND LEARNING
FUNCTIONS

Training and learning functions are mathema-
tical procedures used to automatically adjust the
network's weights and biases. The training func-
tion dictates a global algorithm that affects all the
weights and biases of a given network. The learn-
ing function can be applied to individual weights
and biases within a network. Supported training
and learning functions are presented in Tables 5
and 6, respectively.

Creating a network
The first step in training a feedforward network

is to create the network object. The function
newff creates a trainable feedforward network.
It requires four inputs and returns the network
object. The first input is an R� 2 matrix of
minimum and maximum values for each of the R
elements of the input vector. The second input is
an array containing the sizes of each layer. The
third input is a cell array containing the names of
the transfer functions to be used in each layer. The
final input contains the name of the training
function to be used. For example, the following
command will create a two-layer network. There
will be one input vector with two elements, three
neurons in the first layer and one neuron in the
second (output) layer. The transfer function in the
first layer will be tan-sigmoid, and the output layer
transfer function will be linear. The values for the
first element of the input vector will range between
±1 and 2, the values of the second element of the
input vector will range between 0 and 5, and the
training function will be traingd:

net=newff([-1 2; 0 5], [3, 1],
{`tansig','purelin'},'traingd');

This command creates the network object and also
initializes the weights and biases of the network;
therefore the network is ready for training. There
are times when the students may wish to re-
initialize the weights, or to perform a custom
initialization. The details of the initialization
process is explained below.

Initializing weights
Before training a feedforward network, the

weights and biases must be initialized. The initial
weights and biases are created with the command
init. This function takes a network object as
input and returns a network object with all weights
and biases initialized. Here is how a network is
initialized:

net=init(net);

The specific technique which is used to initialize
a given network will depend on how the
network parameters net.initFcn and
net.layers{i}. initFcn are set. The para-
meter net.initFcn is used to determine the
overall initialization function for the network.
The default initialization function for the feedfor-
ward network is initlay, which allows each
layer to use its own initialization function. With
this setting for net.initFcn, the parameters
net.layers{i}.initFcn are used to deter-
mine the initialization method for each layer. For
feedforward networks there are two different
layer initialization methods which are normally
used: initwb and initnw. The initwb function
causes the initialization to revert to the individual
initialization parameters for each weight
matrix (net.inputWeights{i,j}.initFcn)
and bias. For the feedforward networks the
weight initialization is usually set to rands,
which sets weights to random values between ±1
and 1. It is normally used when the layer transfer
function is linear. The function initnw is
normally used for layers of feedforward networks
where the transfer function is sigmoid. It generates
initial weight and bias values for a layer so that the

Table 5. Supported training functions

Function Purpose

trainb Batch training with weight and bias learning
rules

trainbfg BFGS quasi-Newton backpropagation
trainbr Bayesian regularization
trainc Cyclical order incremental update
traincgb Powell-Beale conjugate gradient

backpropagation
traincgf Fletcher-Powell conjugate gradient

backpropagation
traincgp Polak-Ribiere conjugate gradient

backpropagation
traingd Gradient descent backpropagation
traingda Gradient descent with adaptive learning rate

(lr) backpropagation
traingdm Gradient descent with momentum

backpropagation
traingdx Gradient descent with momentum & adaptive

lr backpropagation
trainlm Levenberg-Marquardt backpropagation
trainoss One step secant backpropagation
trainr Random order incremental update
trainrp Resilient backpropagation (Rprop)
trains Sequential order incremental update
trainscg Scaled conjugate gradient backpropagation

Table 6. Supported learning functions

Function Purpose

learncon Conscience bias learning function
learngd Gradient descent weight/bias learning

function
learngdm Gradient descent with momentum weight/bias

learning function
learnh Hebb weight learning function
learnhd Hebb with decay weight learning rule
learnis Instar weight learning function
learnk Kohonen weight learning function
learnlv1 LVQ1 weight learning function
learnlv2 LVQ2 weight learning function
learnos Outstar weight learning function
learnp Perceptron weight and bias learning function
learnpn Normalized perceptron weight and bias

learning function
learnsom Self-organizing map weight learning function
learnwh Widrow-Hoff weight and bias learning rule
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active regions of the layer's neurons will be distrib-
uted roughly evenly over the input space. It has
several advantages over purely random weights
and biases: (1) few neurons are wasted (since the
active regions of all the neurons are in the input
space), (2) training works faster (since each area of
the input space has active neuron regions).

The initialization function init is called by
newff, therefore the network is automatically
initialized with the default parameters when it is
created, and init does not have to be called
separately. However, the user may want to re-
initialize the weights and biases, or to use a specific
method of initialization. For example, in the
network that we just created, using newff, the
default initialization for the first layer would be
initnw. If we wanted to re-initialize the weights
and biases in the first layer using the rands
function, we would issue the following commands:

net.layers{1}.initFcn=
`initwb';

net.inputWeights{1,1}.initFcn=`-
rands';

net.biases{1,1}.initFcn=`rands';
net.biases{2,1}.initFcn=`rands';
net=init(net);

Simulink support
Once a network has been created and trained, it

can be easily incorporated into Simulink models. A
simple command (gensim) automatically gener-
ates network simulation blocks for use with Simu-
link. This feature also makes it possible for the
students to view their networks graphically [35].
Here is how a Simulink block for neural network
simulation is generated:

gensim(net,st)

This command creates a Simulink system contain-
ing a block which simulates neural network net.
The command takes these inputs: net = Neural
network; st = Sample time (default = 1) and
creates a Simulink system containing a block
which simulates neural network net with a
sampling time of st. If net has no input or
layer delays, net.numInputDelays and
net.numLayerDelays are both 0; then you
can use ±1 for st to get a continuously sampling
network. An example is given below:

net=newff([0 1], [5 1]);
gensim(net)

Pre- and post-processing functions
Pre-processing the network inputs and targets

improves the efficiency of neural network training.
Post-processing enables detailed analysis of
network performance. The Neural Network
Toolbox provides the following pre- and post-
processing functions:

. Principal component analysis reduces the
dimensions of the input vectors

. Post-training analysis performs a regression ana-
lysis between the network response and the
corresponding targets.

. Scale minimum and maximum scales inputs and
targets so that they fall in the range [±1,1].

. Scale mean and standard deviation normalizes
the mean and standard deviation of the training
set.

Improving generalization
Improving the network's ability to generalize

helps prevent overfitting, a common problem in
neural network design. Overfitting occurs when a
network has memorized the training set but has
not learned to generalize to new inputs. Overfitting
produces a relatively small error on the training set
but will produce a much larger error when new
data is presented to the network. The Neural
Network Toolbox provides two solutions to
improve generalization:

. Regularization modifies the network's perfor-
mance function, the measure of error that the
training process minimizes. By changing it to
include the size of the weights and biases, train-
ing produces a network that not only performs
well with the training data, but produces
smoother behavior when presented with new
data.

. Early stopping is a technique that uses two
different data sets: the training set, which is
used to update the weights and biases, and the
validation set, which is used to stop training
when the network begins to overfit the data [35].

FUZZY LOGIC TOOLBOX OF MATLAB

Fuzzy logic has two different meanings. In a
narrow sense, fuzzy logic is a logical system, which
is an extension of multivalued logic. But in a wider
senseÐwhich is in predominant use todayÐfuzzy
logic is almost synonymous with the theory of
fuzzy sets, a theory which relates to classes of
objects with unsharp boundaries in which member-
ship is a matter of degree. The Fuzzy Logic Tool-
box is a collection of functions built on the
MATLAB numeric computing environment [36].
The toolbox provides three categories of tools:

. command line functions;

. graphical interactive tools;

. Simulink blocks and examples.

The first category of tools is made up of functions
that you can call from the command line or from
your own applications. Secondly, the toolbox
provides a number of interactive tools that let
you access many of the functions through a
GUI. The brief descriptions of the GUI tools,
membership functions and advanced techniques
are presented in Tables 7±9, respectively. The
third category of tools is a set of blocks for use
with the Simulink simulation software. These are
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specifically designed for high speed fuzzy logic
inference in the Simulink environment. In order
to build your own fuzzy simulink models you can
use the Fuzzy Logic Controller block in the Fuzzy
Logic Toolbox library, which you can open either
by selecting Fuzzy Logic Toolbox in the Simulink
Library Browser, or by typing fuzblock at the
MATLAB prompt. This command opens a Simu-
link library that contains two Simulink blocks you
can use:

. The Fuzzy Logic Controller

. The Fuzzy Logic Controller With Rule Viewer.
This block forces the Rule Viewer to pop open
during a Simulink simulation [36].

A trend which is growing in visibility relates to the
use of fuzzy logic in combination with neurocom-
puting. More generally, fuzzy logic and neurocom-
puting may be viewed as the principal constituents
of what might be called soft computing. Unlike the
traditional, hard computing, soft computing is
aimed at an accommodation with the pervasive
imprecision of the real world. The guiding prin-
ciple of soft computing is: exploit the tolerance for
imprecision, uncertainty, and partial truth to

achieve tractability, robustness, and low solution
cost. Among various combinations of methodolo-
gies in soft computing, the one which has highest
visibility at this juncture is that of fuzzy logic and
neurocomputing, leading to so-called neuro-fuzzy
systems. Within fuzzy logic, such systems play a
particularly important role in the introduction of
rules from observations. An effective method
developed by Jang [19, 20] for this purpose is
called ANFIS. This method is an important
component of the Fuzzy Logic Toolbox [36].
Command window of MATLAB taken from
students' projects related with ANFIS implemen-
ted for Doppler ultrasound blood flow signals is
presented in Fig. 12.

In this section, we discuss the use of the function
anfis and the ANFIS Editor GUI in the Fuzzy
Logic Toolbox. These tools apply fuzzy inference
techniques to data modeling. The basic idea behind
these neuro-adaptive learning techniques is very
simple. These techniques provide a method for the
fuzzy modeling procedure to learn information
about a data set, in order to compute the member-
ship function parameters that best allow the asso-
ciated fuzzy inference system (FIS) to track the

Fig. 12. Command window of MATLAB taken from students' projects related with ANFIS implemented for Doppler ultrasound
blood flow signals.
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given input/output data. This learning method
works similarly to that of neural networks. The
parameters associated with the membership func-
tions will change through the learning process. The
computation of these parameters (or their adjust-
ment) is facilitated by a gradient vector, which
provides a measure of how well the FIS is model-
ing the input/output data for a given set of para-
meters. Once the gradient vector is obtained, any
of several optimization routines could be applied
in order to adjust the parameters so as to reduce
some error measure (usually defined by the sum of
the squared difference between actual and desired
outputs). The anfis function uses either back-
propagation or a combination of least squares
estimation and backpropagation for membership
function parameter estimation. The Fuzzy Logic
Toolbox function that accomplishes this member-
ship function parameter adjustment is called
anfis. This function can be accessed either
from the command line, or through the ANFIS
Editor GUI. Since the functionality of the
command line function anfis and the ANFIS
Editor GUI are similar, they are used somewhat
interchangeably in this discussion. The ANFIS
Editor GUI is shown in Fig. 13. From this GUI
the students can:

. Load data (training, testing, and checking) by
selecting appropriate radio buttons in the Load
data portion of the GUI and then selecting Load

Data. The loaded data is plotted on the plot
region.

. Generate an initial FIS model or load an initial
FIS model using the options in the Generate FIS
portion of the GUI.

. View the FIS model structure once an initial FIS
has been generated or loaded by selecting the
Structure button.

. Choose the FIS model parameter optimization
method: backpropagation or a mixture of back-
propagation and least squires (hybrid method).

. Choose the number of training epochs and the
training error tolerance.

. Train the FIS model by selecting the Train Now
button. This training adjusts the membership
function parameters and plots the training
(and/or checking data) error plot(s) in the plot
region.

. View the FIS model output versus the training,
checking, or testing data output by selecting the
Test Now button. This function plots the test
data against the FIS output in the plot region
[36].

EDUCATIONAL CONTRIBUTION

The main goal of the tool was the development
of an educational platform allowing students to
improve their knowledge about new trends in
neural networks and ANFIS. The key features of

Fig. 13. ANFIS Editor GUI.
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the Neural Network and Fuzzy Logic Toolboxes
of MATLAB are listed below:

. GUI for creating, training, and simulating their
neural networks.

. Support for the most commonly used supervised
and unsupervised network architectures.

. A comprehensive set of training and learning
functions.

. A suite of Simulink blocks, as well as documen-
tation and demonstrations of control-system
applications.

. Automatic generation of Simulink models from
neural network objects.

. Modular network representation, allowing an
unlimited number of input sets, layers, and net-
work interconnections.

. Pre- and post-processing functions for improv-
ing network training and assessing network
performance.

. Routines for improving generalization.

. Visualization functions for viewing network per-
formance.

. Fuzzy logic is tolerant of imprecise data. The
students can create a fuzzy system to match any
set of input-output data. This process is made
particularly easy by adaptive techniques like
ANFIS, which are available in the Fuzzy Logic
Toolbox.

During the last week of the semester, students were
asked to comment on the problems they faced in
this course. A number of suggestions were made.
Several features have been taken into account:

. The students are asked to use the Neural Net-
work and Fuzzy Logic Toolboxes of MATLAB.
Students not only save time by calling these M-
files but also have time to explore other practical
issues. By analyzing the functions of the tool-
boxes, students are given a good platform on
which they can learn how to write their own
optimized functions. From the feedback, stu-
dents benefited most by working with these
efficient programming templates.

. The system allows students to apply fundamen-
tal techniques for Doppler ultrasound blood
flow signals. The main goal is to let students
gain confidence before attempting to develop
automated diagnostic systems for the signal
under study. These projects are also open-
ended, allowing students to broaden the assign-
ment and good students will attempt these parts
and gain extra bonus marks.

. Evidence from the feedback demonstrates that
most students expressed their strong support
and keenness in working on these projects.
Some students who had a good project involve-
ment experience stay on for their graduate
study.

CONCLUSION

The objective of this paper is to provide a
preliminary understanding of ANNs, ANFIS clas-
sifiers and answer the why and when these compu-
tational tools are needed, the motivation behind
their development, the various learning rules and
ANN types, computations involved, design consid-
erations, application to real-world problems,
advantages and limitations. Such understanding
is essential for making efficient use of their
features. A theoretical basis of developing auto-
mated diagnostic systems was presented starting
with the basic equations and performing applica-
tions of these methods to the arterial Doppler
signals. The MLPNNs and ANFIS classifiers
were used to classify the arterial Doppler signals
which were given as illustrative examples. The
intent of classification of the Doppler ultrasound
blood flow signals was to serve as an introduction
to the use of the neural networks and ANFIS and
thus motivate their teaching with the help of
MATLAB in the classroom. We emphasized the
performance characteristics of the neural network
models and ANFIS classifiers for applications to

Table 7. GUI Tools

Function Purpose

anfisedit ANFIS editor GUI
fuzzy Basic fuzzy inference system (FIS) editor
mfedit Membership function editor
ruleedit Rule editor and parser
ruleview Rule viewer and fuzzy inference diagram
surfview Output surface viewer

Table 8. Membership functions

Function Purpose

dsigmf Difference of two sigmoid membership
functions

gauss2mf Two-sided Gaussian curve membership
function

gaussmf Gaussian curve membership function
gbellmf Generalized bell curve membership

function
pimf Pi-shaped curve membership function
psigmf Product of two sigmoidal membership

functions
smf S-shaped curve membership function
sigmf Sigmoid curve membership function
trapmf Trapezoidal membership function
trimf Triangular membership function
zmf Z-shaped curve membership function

Table 9. Advanced techniques

Function Purpose

anfis Training routine for a Sugeno-type FIS
fcm Find clusters with fuzzy c-means (FCM)

clustering
genfis1 Generate FIS matrix using grid method
genfis2 Generate FIS matrix using subtractive

clustering
subclust Find cluster centers with subtractive

clustering

Teaching Automated Diagnostic Systems for Doppler Ultrasound Blood Flow Signals using MATLAB 665



the arterial Doppler signals. The drawn results
can be helpful to the students. However, model-
ing their own signals with various neural network
architectures and ANFIS classifiers will be better
because the performance characteristics of the
classifiers can vary according to the signal
under study. MATLAB was introduced in this
concept because of its ease in building mathema-
tical functions and its powerful graphical user
interface for displaying the results. The students

can undertake the projects related with develop-
ing automated diagnostic systems as a part of
their homework assignments, making it easy to
visualize the intricacies and understand the rela-
tionship between the different parameters
involved in the models. Our experience has
shown that this teaching platform and methodol-
ogy have clearly heightened students' interest in
the learning of neural network models, ANFIS
and their applications.
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