
OptimaLink: A MATLAB-Based Code for
Teaching/Learning Precision-Point and
Optimum Synthesis and Simulation of
Mechanisms*

AHMAD SMAILI, NAJI ATALLAH and FIRAS ZEINEDDINE
Mechanical Engineering Department, American University of Beirut, Beirut, Lebanon.
E-mail: asmaili@aub.edu.lb

This paper presents OptimaLink, a MATLAB-based code to facilitate the teaching/learning of
design of mechanisms and intelligent optimization methods. The current version of OptimaLink
accommodates dimensional synthesis, analysis, and animation of four-bar (RRRR) mechanisms.
Dimensional synthesis includes both precision-point and optimum synthesis methods. The paper
begins by introducing the objective function for synthesis of the RRRR mechanism, followed by a
summary of the intelligent search methods coded in OptimaLink, namely Simulated Annealing,
Genetic Algorithm and Tabu Search. OptimaLink's structure and its use are then briefly outlined
and an application example is provided to demonstrate the usefulness of the code. Finally, possible
didactic uses of the code are proposed. Although dedicated to mechanism design, the user can tap
into the optimization algorithms coded in OptimaLink to solve other design problems by coding the
corresponding user-interface module.

INTRODUCTION

THE IMPORTANCE OF mechanisms derives
from their extensive use in a myriad of applications
such as home-tools, toys, automobiles, and
machines. Every mechanical engineering program
includes a course designed to introduce students to
various types of mechanisms. The wide range of
topics to be covered and the limited time available
pose a challenge in terms of providing students
with the necessary modern tools to analyze and
synthesize mechanisms. As such, a simple code
using a familiar programming environment
would enhance course effectiveness and a better
understanding of mechanism design. Additionally,
it is becoming more important for students to learn
how to apply optimization in design at an early
stage.

Mechanism design can utilize general purpose
computer-aided design programs such as ADAMS
[1], Pro/E [2], AutoCAD [3], IDEAS [4], and
Working Model [5] to design mechanisms.
Although powerful, these programs require the
user to have a good grasp of the principles of
mechanism design, something students lack early
on. Packages dedicated to mechanism design such
as LINCAGES (Linkage Interactive Computer
Analysis and Graphical Enhanced Synthesis
Package) [6], SyMec [7], WATT by Heron Tech-
nologies [8], and SAM (Simulation and Analysis

of Mechanisms) by Artas [9] are also available.
Specialized research packages have also emerged
over the past 30 years. The latest is Synthetica [10].
This package is designed for the specification and
analysis of serial and parallel chains and for
synthesis of serial chain mechanisms. Recently,
Cheng and Trang [11] introduced a web-based
Ch (an embeddable C/C++ interpreter with exten-
sions) mechanism toolkit for the analysis and
design of mechanisms. Packages that are dedicated
to mechanism design are limited to precision-posi-
tion synthesis, mainly RRRR and slider-crank
(RRRP) mechanisms, and cannot readily accom-
modate optimization.

OptimaLink has been developed to facilitate the
teaching/learning of mechanism design and the
application of intelligent optimization techniques
using the simulation, graphics, control, and opti-
mization capabilities of MATLAB. In addition to
simulation and animation, OptimaLink provides
for precision-position and optimum synthesis of
RRRR mechanisms; it accommodates three- and
four-precision position synthesis for motion, func-
tion, and path generation tasks using dyadic equa-
tions in complex number forms and the Burmester
theory [12] and it provides for optimum synthesis if
the task requires more than four positions. Opti-
maLink also allows the user to perform kinematic
analysis of a synthesized linkage, to assess its
performance in light of the design objective and
to ensure that the mechanism is free from branch-
ing and order defects. This is essential, because the
mathematical solution on which precision-point* Accepted 2 July 2005.

874

Int. J. Engng Ed. Vol. 21, No. 5, pp. 874±884, 2005 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2005 TEMPUS Publications.

synthesis is based does not always guarantee a
workable mechanism. This is not a problem for
an optimized mechanism, because the objective
function includes constraints that reject a mecha-
nism that does not conform to the motion
requirements. OptimaLink implements several
optimization methods, including the Weighted
Least-Square technique, Simulated Annealing
(SA), Genetic Algorithm (GA), and Tabu Search
(TS) [9±12]. The user can choose to link the GA
and TS methods with a gradient-based search to
drive the solution further toward the global mini-
mum. The optimization methods are coded in such
a way that the user can tap into the modules to
acquire an optimum solution to any design prob-
lem other than mechanism synthesis. All the user
needs to do is construct a proper user interface for
the design problem of interest.

MATLAB is the platform of choice for several
reasons: (1) it is a code familiar to students and
faculty, as it is already available and is used in
many courses to solve a wide range of engineering
problems, including control, communications,
digital signal processing (DSP), optimization,
etc.; (2) it has a vast library of functions dedicated
to numerical computation; (3) it has an extensive
graphics library; (4) it has Graphics User Interface
capability; (5) it has the necessary hooks for
communication with external devices; (6) it has
an extensive set of tool boxes covering a wide
spectrum of engineering problems such as opti-
mization and control; (7) the code can be
compiled to create an executable file that could
run independently of MATLAB.

The following sections present the objective func-
tion and constraints for optimum synthesis of the
RRRR mechanism followed by a brief summary of
the optimization methods. The basic structure of
OptimaLink is then introduced, its menus are
explained, and didactic uses of the code are
discussed. Finally, an example is provided to show

the capabilities of the code. The example synthesizes
a RRRR mechanism for a ten-position path genera-
tion with prescribed timing task using Genetic
Algorithm and Tabu Search with gradient methods.

OPTIMUM SYNTHESIS OF THE 4R
MECHANISM

A generic RRRR mechanism indicating the
notations used hereafter is shown in Fig. 1. A
boldface letter represents a vector quantity. A
vector representing a link is indicated by an upper-
case letter, and the lowercase counterpart denotes
its length. D1±D4 are the position vectors repre-
senting the ground link, drive link, coupler link
and follower link, respectively; H and G are the
vectors representing the coupler link left and right
sides, respectively; and L is the position vector of
the input pivot.

The objective function
The objective function is developed to: (1) mini-

mize the error between the desired trajectories and
that generated by the synthesized mechanism; (2)
satisfy Grashof 's criteria to yield a crank-rocker
mechanism if desired; (3) force the crank to rotate
in one direction to eliminate order problems; (4)
maintain an upper and lower bound on link
lengths; and (5) reject solutions with branching
problems. A solution that violates either condition
(4) or (5) is rejected immediately. The first three
conditions are satisfied by constructing the follow-
ing objective function:

F�r� �
Xn

i�1

��xdi ÿ xgi�2 � �ydi ÿ ygi�2�

� wG � noGrashof � wO � noOrder �1�
r �fD1;D2;D3;D4;H;Gg �2�

The parameters in equations (1) and (2) are as
follows: r is the vector of unknown mechanism
parameters; xdi, ydi and xgi, ygi are the desired and
the generated x- and y- coordinates of the desired
path points; and wC and wG are normalization
weights attached to violating order and Grashof 's
criteria, respectively. These weights reflect how
important the conditions they represent are. In
addition, they act as scaling factors to fix the
order of magnitude of different variables in the
objective function. The noGrashof and noOrder
algorithms are expressed as follows:

if �lmin � lmax > la � lb�
noGrashof � �lmin � lmax ÿ la ÿ lb�2
if �lmin � lb > la � lmax�
noGrashof � �lmin � lb ÿ la ÿ lmax�2
if �lmin � la > lb � lmax�
noGrashof � �lmin � la ÿ lb ÿ lmax�2

�3�

Fig. 1. A 4R linkage showing parameters referred to in the text.

OptimaLink: A MATLAB-Based Code 875

and

Direction � sgn��2 ÿ �1�
��i � �i ÿ �iÿ1; i � 2; . . . ; n

noOrder � 1

4

Xn

2

��sgn���i� ÿDirection� ���i�2
�4�

lmin, lmax, and la and lb are, respectively, the lengths
of the shortest link, longest link, and the other two
links of the mechanism. (�i-�i-1) is the angular
rotation of the drive link from position i-1 to the
position i and sgn(�i-�i-1) represents the direction
of rotation of the drive link. The objective function
of equation (1) can be easily modified by the user
to include mechanical advantage (MA�Output
force/Input force) specifications, affix a lower
limit on the transmission angle, and other specifi-
cation criteria as needed.

The user can define the limits of any variable
(angles, link dimensions, etc.) or choose to hold
any set of variables to specific values or to fall
within a range of values, while requesting the code
to optimize for the other variables. To accomplish
this, the user is prompted to input the relevant
information through two complementary steps: an
input vector called Modify and an input window;
the elements in both have a one-to-one corres-
pondence. The inputs to the Modify vector are
either zeros or nonzeros and the entries to the
input window are values affixed to the associated
parameters. An entry of 0 in the Modify vector
commands the code to fix the value of the asso-
ciated parameter to that provided in the input
window. A nonzero entry to the Modify vector is
used by the code as the upper limit of the asso-
ciated parameter, while the lower limit is the value
provided in the input window. Thus a solution that
includes a link length beyond the desired range is
automatically rejected. While this coding scheme
increases computation time, it facilitates the use of
the same objective function for many optimization
possibilities. The code also provides for changing
the number of iterations as the number of variables
changes.

OPTIMIZATION TECHNIQUES

The complex-number method and the Burmester
theory are implemented in OptimaLink for preci-
sion-position synthesis of RRRR mechanisms. The
theoretical treatment of these techniques is well
documented in the literature and will not be ad-
dressed here [12]. However, the coded global
optimization algorithms are briefly presented.

Although not guaranteed, global search algo-
rithms have a much better chance of converging to
the global minimum, depending on the problem in
hand [13±16]. As stated earlier, SA, GA, and TS
intelligent search methods have been coded in
OptimaLink. The user can opt to link GA and

TS to a gradient algorithm toward the end of the
search. This will enhance efficiency because, as the
search gets closer to the global minimum, conver-
gence becomes very slow. The gradient search
takes the near global solution generated by GA
or TS as an initial guess and further refines it,
moving it ever closer to the global minimum. Due
to space limitation, only a brief review of SA, TS,
and GA will be presented. Interested readers can
refer to [17±19] for details on the application of
these search methods to mechanism design.

Simulated Annealing
Simulated Annealing is a stochastic iterative

optimization technique analogous to the annealing
of metals. The flowchart in Fig. 2 shows the
generic steps of the SA algorithm. If a probe is
heated and then allowed to cool down slowly, it
will reach a minimum energy state in which atoms
rearrange themselves in a crystal lattice.

Temperature allows for random fluctuations of
atoms and cooling will eventually lead to the
lowest energy state. The cost function in an opti-
mization problem represents the state of energy; it
attains a minimum when the energy does also.
Even if a system is close to a local minimum, any
fluctuation may move the search to an even better
minimum.

If a new configuration has lower energy (cost), it
is accepted straight away. If its energy is higher, it
will be accepted probabilistically according to:

p��E� � exp�ÿ�E=T� �5�

Fig. 2. Flowchart for implementing SA.

A. Smaili et al.876

In equation (5), p is the Boltzmann probability
(probability that the system will change its current
energy state E by �E), �E is the difference in
energy (cost function) value between the current
solution and the newly generated solution, and T is
temperature. If �E� 0, a random number �2 [0, 1]
is generated from a uniform distribution. If
� � p��E� (Metropolis criteria), then the newly
generated solution is accepted as the current solu-
tion. If not, the current solution is unchanged. The
statistical distribution of energies allows the system
to escape local minima. The current code uses a
geometric cooling schedule, Ti+1� c�Ti. The
default value for the temperature reduction factor
c is 0.9, but it may be adjusted to suit the problem
at hand. As the temperature cools down from its
very hot initial value, the code continuously
updates probabilistic ranges of variables by select-
ing them to be mainly in the high probability
regions, although low probabilities are also
selected to reduce the number of iterations to
achieve a minimal acceptance rate. The range
selection is made according to:

Tnew � Tcurrent ��T�� ÿ 0:5� Tcurrent

Tmelting

� �0:25

�6�

Tnew, Tcurrent, �T , �, and Tmetling, are, respectively,
the newly generated temperature, current tempera-
ture, allowed temperature range, random number
in [0,1], and melting temperature.

Tabu Search
Tabu Search is an iterative dynamic neighbor-

hood search technique characterized by intensive
use of various adaptive memory strategies to
search the solution space of a combinatorial opti-
mization problem until a chosen termination
criterion is satisfied. Depending on the type and
complexity of the problem, TS employs short-term
and/or long-term memories. The essential charac-
teristics of a TS algorithm are summarized in the
flowchart given in Fig. 3. Guided by a properly
formed evaluation function, a crucial step in TS is
to determine how to make a move from a current
solution x to a solution x in the neighborhood N(x).
Short-term memory is employed to prevent a move
to a recently visited solution by maintaining a
Tabu list of moves to most recently examined
solutions. The placing of a move in the Tabu list
is based on recency, frequency, quality, or influ-
ence [13±17].

Long-term memory can be explicit or attribu-
tive. Explicit memory is used to record elite solu-
tions, promising unexplored neighbors of elite
solutions and/or information about solution attri-
butes that change during a move. Attributive
memory is used to guide the search to unexplored,
yet highly promising, regions. Explicit and attri-
butive memories are also used, with intensification
and diversification operators that help conver-
gence. Intensification is applied to intensify the
search in promising regions that have been

recorded in explicit memory. It is also applied to
moves stored in attributive memory to further
enhance the quality of the stored solution. Intensi-
fication is usually applied for a few iterations
followed by applying a diversification strategy,
which encourages the exploration of other regions
during the search.

Genetic Algorithm
Genetic Algorithm can find global optimal solu-

tions to non-linear multimodal functions. In an
analogy with the principles of gene mechanics,
individuals in a population, called phenotypes,
are likened to chromosomes. GA does not deal
directly with the parameters of the problem but
rather with binary or real number codes represent-
ing those parameters. The fitness evaluation (or
cost) function acts as the interface between the GA
and the optimization problem.

To begin the search, an initial population of
solutions is either randomly created or constructed
of solutions derived from a priori knowledge about
the given optimization problem. A population size
of between 30 and 200 constitutes a good compro-
mise [14]; a large population size increases compu-
tation time, but increases the probability of
converging to a global solution. Genetic Algorithm
subjects the phenotypes in a generation through
many operators found in nature. The GA imple-
mented in OptimaLink employs reproduction,
single-point crossover, and mutation. Figure 4

Fig. 3. Flowchart for the Tabu Search gradient algorithm.

OptimaLink: A MATLAB-Based Code 877

shows a flowchart of the GA linked to gradient
search.

Reproduction (selection)
Reproduction is the process of passing a number

of individuals in a generation unaltered to the next
generation. The cost function determines the fitness
of each phenotype to the required performance. A
probability of reproduction, defined as the ratio of
the phenotype's fitness to the sum of fitness values of
all phenotypes in its generation, is assigned to each
phenotype; a phenotype with higher probability has
a higher chance of survival than a lower probability
one. `Roulette wheel' (or proportional) selection is
herein employed to help steer the solution to a
promising area while maintaining population diver-
sity. The number of surviving phenotypes is equal to
the number of phenotypes in a generation. Hence,
several phenotypes whose fitness values are high will
pass to the next generation more than once. Thus,
more copies of these individuals than those whose
fitness values are low are reproduced.

Crossover
The crossoveroperator isapplied followingrepro-

duction to create two new children (individuals)

from two existing individuals (parents). Crossover
mimics meiosis in biological systems; when two
chromosomes undergo meiosis the two chromo-
somes are likely to split and swap parts at some
point. The analogy in GA is that each phenotype is
givenarandomprobabilityofcrossover.Phenotypes
that will undergo this operator are paired together
randomly. The location in the string where the two
chromosomessplitandswapparts isalsodetermined
randomly. An important control parameter is the
frequency of crossover operation or crossover rate
(CR); a low CR decreases the speed of convergence,
whereas a high CR leads to saturation around one
solution.

Mutation
Mutation is employed after crossover to force

the algorithm to search new areas and ensure that
the final solution is the global optimum. Mutation
is a monadic operation where a child string is
produced from a single parent string by flipping
a random bit of a randomly chosen phenotype
(being in binary beforehand), creating in the
process a child of the original phenotype. Muta-
tion provides a generation with unpredictable
solutions that might lead the search to a new
neglected area. Mutation rate (MR) is another
important control parameter. A high MR intro-
duces high diversity but may lead to instability,
whereas a low MR finding a global optimal solu-
tion is difficult.

OptimaLink codes the phenotypes in binary
after reproduction to ease crossover and mutation
operations. The strings of characters are decoded
back after mutation. If desired, the best phenotype
in a generation is provided as an initial solution to
a gradient-based search to drive the solution ever
closer to the global minimum, improving the
accuracy of the solution. The gradient search
results are then used to assess their fulfillment of
the termination criteria set by the code.

OPTIMALINK STRUCTURE

OptimaLink is designed to allow any user to
easily modify the code or add to it as desired. This
explains the clear separation between three sequen-
tial components of the code: the user input/output
(I/O) interface, the solver modules, and the simu-
lator. The user interface is the set of menus,
buttons, pop-up windows, shortcut keys and
other I/O functions that interact with the user.
The solver modules are either precision-point
solvers or optimization solvers. The simulation
option is made a separate entity to facilitate
future improvements such as enhancing graphics
refresh rates, choice of link shapes, choices of
colors and surrounding plot, and other features.

From the operational standpoint, the software is
divided into three levels: I/O, Data Transfer and
Manipulation (DTM), and the Solver level (SOL).
Each level is discussed briefly below. Figure 5

Fig. 4. Flowchart for the Genetic-Gradient Algorithm.

A. Smaili et al.878

shows a block diagram of the structure and opera-
tion of OptimaLink dedicated to RRRR mechan-
ism design.

Input/Output (I/O)
The I/O is a critical component for OptimaLink

to operate properly. Its role is twofold: (1) upon
receiving a command, the I/O acquires the relevant
data, checks its validity and alerts the user if the
data provided is not adequate, and then transfers
the data to the DTM level (discussed next), and (2)
it displays the output results in a coherent and
relevant manner.

To validate the input data, the solver option is
first checked for the set of constraints and condi-
tions it poses on the input. The code then assesses

the user input data and modifies obvious errors or
accepts different inputs for the same set of options.
In the case of ambiguity or erroneous inputs, the
input module prompts the user and returns to the
input window for re-entry of data.

The output is organized to present the results in
an efficient and user-friendly format. A set of
output variables that are common to all solvers
are always provided. Outputs that are task specific,
like Burmester curves, are dealt with separately, so
as not to affect other operations that might follow.
Further details on I/O are presented in the exam-
ples to follow, where I/O is represented in a
broader context.

Data transfer and manipulation (DTM)
The DTM stage is not a separate module in the

code, but rather bits and pieces of code that are
distributed inside functions and subroutines. It
represents the link between the user and the
solver. Its role is to take the raw data provided
by the user and organize it in a manner that suits
the particular solver. In general, the input provided
by the user is directly passed to the solver, but, in
many cases, the solver requires data to be reparti-
tioned into matrices or vectors differently. Some
solvers require a different number of inputs. The
DTM fills the missing inputs. In summary, the
DTM performs two important tasks: (1) it refor-
mats input data according to the solver used, and
(2) it adds missing data or options that are not
transparent to the user.

Solvers (SOL)
Solvers are the MATLAB functions that imple-

ment the specific codes applied to synthesize a

Fig. 5. OptimaLink structure.

Fig. 6. Initial screen loaded upon launching OptimaLink.

OptimaLink: A MATLAB-Based Code 879

RRRR mechanism using the precision-position
and optimization methods described earlier.
Whenever a new feature is to be added to Optima-
Link, the first step is to design the solver, test it,
and use it as a function without the user interface
shell to verify its integrity. Once verified, a DTM
code is customized for the solver and a new input
form associated with it is constructed. If the solver
is tested again and the results do not match the
desired results, the problem is more easily deter-
mined and limited to the pertinent I/O and DTM
parts. This coding scheme results in robust and
independent solvers. It facilitates the addition and
building of a toolbox for 4R linkage design with
minor additional effort.

Operating OptimaLink
Typing `OptimaLink' at the MATLAB prompt

launches OptimaLink and loads the default screen

shown in Fig. 6. There are currently three user
interface menus in OptimaLink: File, Solver and
Quit. There are also shortcut keys: S to simulate
mechanism, D to input a new design, and H for
help. More will be added in future versions.

The File menu includes: the Save command to
save the mechanism task parameters and the link
dimensions for later use as a file in a `.mech'
format; the Open command to load a saved file;
and the Save As command to save a file with a
different name.

The Solver menu shown in Fig. 7 allows the user
to choose the desired synthesis method. Once a
synthesis method is chosen, the user is prompted to
enter the relevant parameters. For three-position,
four-position, least-square, and SA synthesis, the
code requests the user to provide the coupler point
displacements �1j, the crank angular displace-
ments �1j, the follower angular displacements 1j,
and finally the angular rotations of the coupler
link �1j, as the mechanism moves from the first
position to the j-th position (j� 2, 3, . . . , n). These
increments are entered as 1� n MATLAB vectors.
The input window used to enter the parameters for
a four-precision-point synthesis is shown in Fig. 8.
For Weighted Least Square optimization, an addi-
tional weights vector is required and is entered in a
separate window. A synthesis task always results in
the first position of the mechanism.

Once the task parameters are entered, the user is
prompted to provide optimization-specific para-
meters. Figures 9 and 10 show the windows to
enter the parameters required for the GA-Gradient
and TS-Gradient search methods.

APPLICATION EXAMPLE

Tabu Search and Genetic Algorithm with and
without gradient search are applied to the opti-
mum synthesis of a RRRR mechanism. The task
is to move a coupler point along ten positions
in coordination with crank rotations. The task

Fig. 7. Solver menu of OptimaLink (vectors shown correspond to four-point synthesis).

Fig. 8. Typical OptimaLink input window (vectors shown
correspond to four-point synthesis).

A. Smaili et al.880

parameters are given in Table 1. To further the
accuracy of the results, the solution obtained from
Tabu Search or Genetic Algorithm is applied as
the initial solution to a gradient-based search that
drives the solution closer to the global optimum.
The results of the searches are given in Table 2.
Note that the link vectors are expressed in complex
notations. The table compares the solutions
obtained using four different algorithms: Tabu
Search, Tabu-Gradient, Genetic Algorithm, and
Genetic-Gradient.

Tabu and Tabu-Gradient searches were
conducted using a recency based Tabu list of six
entries while searching all the non-Tabu neighbor-
hood of a solution in each iteration. The maximum
number of iterations used for Tabu Search was

84,000, taking about 900 seconds of run time on a
Pentium-III PC. Meanwhile, with a Tabu-Gradi-
ent search solution, the number of iterations was
dramatically reduced to �318 iterations, requiring
a run time of �180 seconds. The average root-
square (RS) error between the desired and gener-
ated coupler point positions is 0.183 for TS and
0.167 for TS-Gradient search solutions.

Genetic Algorithm and Genetic-Gradient
searches were conducted using 1000 phenotypes
per generation and probabilities of crossover and
mutation of 0.95 and 0.05, respectively. The GA
solution was found in 765 seconds in the 964th
generation, whereas the GA-Gradient solution
was found in 63.9 seconds in the 38th generation.
The average RS error between the desired and

Fig. 9. OptimaLink input window for GA-Gradient parameters.

Fig. 10. OptimaLink input window for Tabu-Gradient parameters.

OptimaLink: A MATLAB-Based Code 881

generated coupler point positions is .303 and
0.167 for GA and GA-Gradient search solutions,
respectively.

The mechanism with the least RS error is the one
produced by a Genetic-Gradient search (shown in
Fig. 11). The closed coupler curve is the one
generated by the synthesized mechanism, shown
at the first desired position.

DIDACTIC USE OF OPTIMALINK

OptimaLink provides a computer-aided instruc-
tional tool to enhance the teaching/learning of
analysis and synthesis of mechanisms. In a kine-
matics course, the instructor can easily use Opti-
maLink to demonstrate synthesis techniques
discussed in lectures. Answers to `What-If' ques-

Table 1. Desired trajectory pointsPoint

Point xdi ydi �i Point xdi ydi �i

1 1 1.5 08 6 3.5 2 1758
2 1.5 2 358 7 4 1.5 192.58
3 2 2 87.58 8 3.5 1 262.58
4 2.5 2 1058 9 2.5 1 2808
5 3 2 1408 10 1.5 1 3158

Table 2. Solutions obtained from four algorithms

TS TS-Gradient GA GA-Gradient

Parameter D1 0.154ÿ 2.162i ÿ0.523ÿ 3.107i ÿ3.820ÿ 2.459i ÿ0.615ÿ 1.230i
D2 (A) 0.575� 0i 0.577� 0i 0.387� 0i 0.584� 0i
D3 2.092ÿ 2.142i 3.910ÿ 3.106i 2.995ÿ 1.524i 2.982ÿ 1.229i
D4 (D) 2.513� 0.020i 5.010� 0.001i 7.202� 0.935i 4.181� 0.001i
H (B) ÿ1.496ÿ 7.155i ÿ2.014ÿ 8.167i ÿ1.196ÿ 6.982i ÿ2.441ÿ 7.831i
G (C) ÿ3.588ÿ 5.013i ÿ5.924ÿ 5.061i ÿ4.191ÿ 5.458i ÿ5.423ÿ 6.602i
L 1.951� 8.745i 2.014� 9.242i 2.7580� 8.2320i 1.964� 10.000i

RS error 0.183 0.167 0.303 0.167

Fig. 11. The Genetic-Gradient synthesized mechanism showing the desired points and the generated coupler curve.

A. Smaili et al.882

tions on mechanism design issues can be easily
generated to enhance students' understanding of
the subject and allow them to explore their crea-
tivity in many ways. For example, the instructor
may pose questions like: How does slightly chan-
ging the dimension of a link affect the mechanism's
performance? or How does a synthesized mechan-
ism change if any of the task parameters is
modified to accommodate a new design require-
ment? And so on. After students have reflected on
these questions, the instructor can use OptimaLink
to easily implement design changes and quickly
show the results. The code can also be made
available to students to solve homework problems
and investigate various design possibilities.

The optimization algorithms in OptimaLink can
be used to teach optimization through mechanism
design. The same methods can also be used to
generate optimum solutions to other design
problems. To that end, the user can construct a
MATLAB module that implements the objective
function and relevant constraints of the design
problem of interest (e.g. gear train, truss, etc.) and
provide the interface with the algorithm of choice.

CONCLUSIONS

This paper presented OptimaLink, a MATLAB-
based code for the teaching/learning of analysis
and dimensional synthesis of RRRR mechanisms.
The code accommodates precision-point synthesis
using the complex-number method and the Burme-
ster theory, and intelligent optimum synthesis
methods using the Simulated Annealing, Genetic
Algorithm, and Tabu Search optimization techni-
ques, in addition to the Least Square, Weighted
Least Square, and Gradient methods. The objec-
tive function and constraints for optimum synth-
esis of the RRRR mechanism were introduced and
a brief summary of the optimization methods was
presented. The basic structure and menus of Opti-
maLink were then explained and a ten-position
synthesis example was provided. Finally, didactic
uses of the code were discussed. OptimaLink will
evolve ultimately to become an educational pack-
age for the analysis, synthesis and control of
various mechanical systems including linkages,
cam-followers, gear drives, screw drives, tendon
drives, and Geneva wheels.

REFERENCES

1. Mechanical Dynamics, http://www.adams.com/.
2. Parametric Technology Corporation, http://www.ptc.com/.
3. AutoDesk Inc., http://www.autodesk.com/.
4. Structural Dynamics Research Corporation, http://www.sdrc.com/.
5. Knowledge Revolution, http://www.krev.com/.
6. N. Yu, A. Erdman and B. Byers, LINCAGES 2000: Latest development and case study, Proc.

ASME Design Engineering Technical Conferences, DETC2002/MECH-34375 (2002).
7. SyMech Inc, http://www.symech.com/.
8. Heron Technologies, http://www.heron-technologies.com/.
9. ARTAS, http://www.artas.nl/.

10. A. Perez, H. J. Su and M. McCarthy, Synthetica 2.0: Software for the synthesis of constrained
serial chains, Proc. ASME Design Engineering Technical Conferences, DETC2004±57524 (2004).

11. H. H. Cheng and D. T. Trang, Web-based mechanism design and analysis, Proc. ASME Design
Engineering Technical Conferences, DETC2004±57594 (2004).

12. G. Sandor and A. Erdman, Design of Mechanism, Vol. II, Prentice-Hall (1984).
13. P. M. Pardalos and M. G. C. Resende, Handbook of Applied Optimization, Oxford University Press

(2002).
14. D. T. Pham and D. Karaboga, Intelligent Optimization Techniques, Springer (2000).
15. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipe, the Art of

Scientific Computing, Cambridge University Press (1989).
16. F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers (1997).
17. I. Ulah and S. Kota, Optimal synthesis of mechanisms for path generation using Fourier

descriptors and global search methods, ASME J. Mechanical Design, 119 (1997), pp. 504±510.
18. Kunjur and S. Krishnamurty, Genetic algorithms in mechanism synthesis, J. Applied Mechanisms

and Robotics, 4(2) (1997), pp. 8±24.
19. A. Smaili and N. Attalah, A Tabu search-based optimization technique for synthesis of

mechanisms, Proc. ASME DETC 2004, 96-DETC2004±57420 (2004).

Ahmad Smaili has served on the Mechanical Engineering Faculties at Mississippi State
University (1987±1991) and Tennessee Technological University (1991±1999). Currently, he
is an Associate Professor of Mechanical Engineering at the American University of Beirut.
His teaching interests are in the area of design and mechatronics. His research interests are
in the areas of mechanisms, vibration control, and robotics.

Naji Atallah graduated from the American University of Beirut with a Bachelor of
Engineering degree in 2002 and a Master's degree in 2004, both in Mechanical Engineering.

OptimaLink: A MATLAB-Based Code 883

Currently, he is a design engineer at Petrofac International Limited, UAE. His research
interests are in the areas of mechanisms, mechatronics, and heuristic optimization
techniques.

Firas Zeineddine graduated from the American University of Beirut with a Bachelor of
Engineering degree in 2001 and Master's degree in 2003, both in Mechanical Engineering.
Currently, he is a design engineer at Extreme Pops, Lebanon. His research interests are in
the areas of mechanisms, mechatronics, and computer vision.

A. Smaili et al.884

