
Computer Generated Shapes in Mechanical
Design with MATLAB*

NICHOLAS J. SALAMON
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park,
PA 16802, USA. E-mail: njsalamon@psu.edu

Our undergraduate/graduate course Computer Methods in Engineering Design targets students
who want to do mechanical design. Although we treat basic numerical methods that support design
(solution of simultaneous equations, integration, interpolation), we emphasize curve fitting and
constructions generated by splines, B- splines and BeÂzier curves, then transformations of point
groups (objects), and computer graphics to manipulate objects, and culminate with solid modeling
and simulation when students are in a position to appreciate such sophistication. In this paper we
share our approach to teaching splines: some theory, some concepts important to learning it, key
references, and a time frame for doing it; and touch upon transformations in computer graphics.
We then show off results from student projects. MATLAB is the engine used to render the graphics.

EDUCATIONAL SUMMARY

1. The paper presents excerpts of theory, applica-
tion, MATLAB code and examples from our
course on computer methods for engineering
design.

2. Students in aerospace, mechanical, industrial
engineering and engineering science and mathe-
matics departments have taken this course.

3. The level of this course is third year under-
graduate to graduate in the United States.

4. The mode of presentation is typically lecture
and discussion with computer demonstrations
and practice in the classroom.

5. The course is an elective for all students.
6. The entire course requires 45 hours. The topics

in this paper require 6 hours.
7. Student homework and projects require 3 hours

per hour of lecture.
8. The novel aspects of this paper are: (1) the mix

(and emphasis) of numerical methods topics is
chosen with mechanical design applications in
mind rather than the solution of differential
equations, (2) problems/examples have a
degree of realism and solutions depend upon
creativity of the students and (3) custom
MATLAB code developed from the theory is
used not only to work with and graph data, but
to draw pictures.

9. A single text which covers all the topics in this
course is not available.

INTRODUCTION

TRADITIONAL numerical methods courses in
engineering do not cover computer-aided design;

they prepare students for the solution of differen-
tial and integral equations important for advanced
analysis. Yet equally important are numerical
methods that support synthesis, design and
product development. The objective of our under-
graduate/graduate course Computer Methods in
Engineering Design is to learn the numerical
methods underlying solid modeling and engineer-
ing design. It covers simultaneous equations,
quadrature, rudiments of finite difference and
finite element modeling, spline theory to generate
curves, object transformations and computer
graphics to manipulate objects, solid modeling to
demonstrate and experience useful application of
the methods and, after treatment of vector trans-
formations and eigen problems, dynamic simula-
tions. We are not aware of any textbook that
covers this mix of topics, hence we provide a set
of notes and MATLAB files to go with them [1].
While the obvious learning objective is to penetrate
the black box of professional software, a more
subtle one is to learn numerical methods at the
same time; for example, while learning to manip-
ulate objects, students also learn transformations
and maps in general, hence later easily compre-
hend the eigenvalue problem which we also cover.
The course targets that majority of students in
aerospace, mechanical, industrial engineering and
related disciplines with an applied mind-set who
want to do mechanical design, enjoy working with
computers and love to create graphics. Least one
think that such a course will not appeal to the
better students, we have been surprised to find that
it attracts the creÁme de la creÁmeÐhappily so
because topics like spline theory are not soft
mathematically.

We view solid modeling as the keystone to
modern product development. Once a solid
model is in hand, it enables: finite element stress* Accepted 9 May 2005.

915

Int. J. Engng Ed. Vol. 21, No. 5, pp. 915±924, 2005 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2005 TEMPUS Publications.

analysis and engineering design, generation of
technical drawings, rapid prototypes and manu-
facturing control-ware, project management,
rendered illustrations, marketing, and so-forth.
Computer methods that underlie solid modeling
are many, but a principal one is spline theory. In
Computer Methods in Engineering Design, we
spend 15 class-hours learning: (1) the common
splines constructed directly from polynomials
(linear, quadratic and cubic), for a source, see
Chapra and Canale [2]); (2) the B-splines (Basis
splines), but we only use them for curve fitting
because this writer has yet to figure an intuitively
easy way to present NURBS (Natural Uniform
Rational B-Splines) within 3 class-hours, see De
Boor [3] and Cheney and Kincaid [4]; and (3) the
Bernstein polynomials to generate one- and two-
dirmensional BeÂzier curves which, after wrestling
with B-splines, students grasp quickly.

The objective of this paper is three-fold: (1) To
suggest to you an approach to teaching numerical
methods that is attractive to undergraduate engin-
eering students; indeed, assessment reveals that
students have to be reigned in from committing
too much time to the projects; (2) To present
succinctly an easy-to-learn development for
BeÂzier curves and a summary of computer graphics
transformations that pertain to included student
work and (3) To show off some of this work. We
do not discuss assessment, but suffice it to say, this
elective course is fully enrolled and motivates
students to learn. Although we find few students
creative in an artistic sense, most are innovative
and all take pride in their creations.

It should be understood that prerequisite
courses in linear algebra and computer algorithms
and programming are necessary to students'
success. Moreover, although MATLAB is the
programming language used in the course, Math-
ematica would equally serve the purpose.
However, a lower level language, C or Fortran,
could work, but it would thwart efficient imple-
mentation and change the focus of the course
because more detailed programming would be
required.

BEÂ ZIER CURVES

We cover Bernstein polynomials and BeÂzier
curves in 3 class-hours. We chose these topics
over NURBS for three reasons: they are easy to
learn, useful and produce very nice results. Our
intention here is to present only key elements of
development of the theory that we found appeals
to students. Further details can be found in Bucha-
nan and Turner [5]. It should be pointed out that
the class has already covered both common and B-
splines prior to this topic.

Key elements to learning Bernstein polynomials
The Bernstein polynomials are defined in a local,
normalized domain x by:

p�y; x� �
Xn

i�0

n

i

� �
xi�1ÿ x�nÿiy�Xi�

�
Xn

i�0

Bn;iy�Xi�; x 2 �0; 1� �1�

where

n

i

� �
� n!

i!�nÿ i�!
are the binomial coefficients, y is a given `control'
function defined at discrete values over the global
domain X given by Xi � �Xn ÿ X0�i=n� X0 with
the X0;Xn beginning and end values of X, respec-
tively, and

Bn;i � Bn;i�x� � n

i

� �
xi�1ÿ x�nÿ1;

i � 0; 1; 2; . . . n; x 2 �0; 1� �2�
are the Bernstein basis functions.

The interesting feature of (1) is that data is
generated in the normalized domain by y at
equidistant points i=n, but no effort is made to
pass the polynomial p through those points. This is
a small leap for students who have just completed
study of interpolating polynomials which of course
do pass through the data.

The interesting feature of (2) is found by first
noting that the binomial theorem (or distribution)
[6] states thatXn

i�0

n

i

� �
aibnÿi � �a� b�n:

Then indeed if we let a � x and b � 1ÿ x for any
n, the individual terms of a binomial expansion
(probabilities in the distribution) are the Bn;i. For
example, if n � 2,

�x� �1ÿ x��2 � x2 � 2x�1ÿ x� � �1ÿ x�2

� B2;2 � B2;1 � B2;0 �3�
where terms of the center and rightmost expres-
sions match, respectively. Moreover, the sum:Xn

i�0

Bn;i � �x� �1ÿ x��n � 1n � 1 �4�

leads to a partition of unity which students can
relate to also from study of interpolation.

Some students understand distributions (and
Buchanan and Turner [5] inform us of Bernstein's
connection with probability theory), but this does
not matter here. What matters is that the general
form of (3), specifically the first equation in (4),
can be used to generate the individual terms of Bn;i;
better yet, we can write these down directly using
Pascal's triangle (or Hui's or Khayam's, depending
upon your allegiance) as shown in Fig. 1 where the

N. Salamon916

constant coefficients in any row follow by
summing previous row coefficients in a particular
fashion and the algebraic terms follow by multi-
plying previous rows by x from the right or (1-x)
from the left; the details of both operations are
easily discerned by inspection of Fig. 1. By using
these formulas and the geometric patterns of
Pascal's triangle, students gain a reasonable
comfort level with Bernstein polynomials and are
readily able to construct BeÂzier polynomials by
hand before programming them to create BeÂzier
curves.

An example using Pascal's triangle
In Fig. 1, we readily perceive from Pascal's

triangle that terms on the left and right diagonals
either vanish or are unity when x � 0 or 1 and that
all inboard terms provide zero contribution at
x � 0 or 1. Clearly then Bernstein polynomials
pass through the endpoints x � 0 and 1. More-
over, from the triangle, we can build directly BeÂzier
curves. For an exercise, students are required to
construct a BeÂzier curve, say from five control
points:

Y � �y�0�; y�1=4�; y�2=4�; y�3=4�; y�1��T �5�
where superscript T denotes the transpose of the
vector and y may, but need not be, a particular
function. To be consistent with Y, we choose from
Fig. 1 the 4th degree set of Bernstein terms:

B4 � ��1ÿ x�4; 4x�1ÿ x�3; 6x2�1ÿ x�2;
4x3�1ÿ x�; x4� �6�

to obtain a cubic polynomial

p�Y ; x� � �B4�fYg �7�
that forms a shape approximating, perhaps
roughly, the control function or points. From
this exercise, students should learn that the shape
p is a poor match to the control shape y. For a
better match, or more importantly, for a selection
of shapes, we must turn to the computer. However,
these `hand' methods have served their purpose:
students learn to construct BeÂzier curves simply
from first principles and learn their properties as
well.

Application: a bicycle seat
For an application of any significance, we turn

to the computer. Students are required to write an
algorithm using the recursion formula

Bn;i�x� � �1ÿ x�Bnÿ1;i�x� � xBnÿ1;iÿ1�x� �8�
to compute Bn;i because it is computationally
efficient. They then modify code provided to
them to generate BeÂzier curves and turn in a
report with a conclusion. Appendix I lists the
MATLAB code to create shapes for a bicycle
seat; it is similar to what students would produce.
The code accesses function bernstein_basis, based
upon (8) and Buchanan and Turner's algorithm [5]
to compute the basis functions and then linear_s-
pline_2 to interpolate values y(x) as needed along
the control curve.

Execution of such code results in Fig. 2 where we
see a series of shapes, the BeÂzier curves, generated
using Bernstein polynomials of degrees 6, 9, 12 and

Fig. 1. Pascal's triangle where n, i denote the row, position of each term starting with 0,0 at the top and ending with 4,4 at the bottom
right. Of course the triangle can continue.

Computer Generated Shapes in Mechanical Design with MATLAB 917

15. We discover that higher degree curves
approach the control curve. But importantly we
learn that this is not the goal. Rather, it is to
generate shapes from a simple sketch (making
artistic craftmanship unnecessary) and from these
to select a shape that meets our design objectives.
Indeed, usually our choice is not the highest degree
curve. In part, it is this understanding that we look
for in students' conclusions.

COMPUTER GRAPHICS

The rudiments of two-dimensional computer
graphics are taught in 2 class-hours. The goals
are to enable students to manipulate objects on a
computer display and to acquire a general sense of
matrix transformations in preparation for further
study, for examples, translation as the essence of
extrusion in solid modeling and transformations in
eigenproblems taught subsequently. We cover the
basic transformations: translations, rotation about
the origin of coordinates, scaling with respect to the
origin and shear of an object, all of which fit the
form:

O 0 �MO,
x01 x02 . . . x0n
y01 y02 . . . y0n
1 1 . . . 1

264
375

�
m11 m12 m13

m21 m22 m23

0 0 1

264
375 x1 x2 . . . xn

y1 y2 . . . yn

1 1 . . . 1

264
375 �9�

where O,O 0 are sets of points that define the
transformed and original objects, respectively, in
homogeneous coordinates. We also cover rotation
and scaling about a general point and reflections,

all of which can be written as products of the basic
transformations. We point out that it is efficient
computationally to concatenate a sequence of
transformations, e.g., M �M1M2 . . . Mk, and
only then apply the resultant transformation M
to an object O. This development is standard,
hence we go no further here; one choice among
many texts is McMahon and Browne [7] whose
text has an engineering flavor.

Application: a mosaic
An interesting application is the generation of

mosaics. As an example, we have assigned a
mosaic copied from the Al-Hambra in Granada,
Spain, see Fig. 3. To begin, we provide the
coordinates of Shape 1 shown bold in Fig. 3a
and denoted as obj0 in the code in Appendix II.
Then using a code like gt_mosaic, the students
rotate Shape 1 about Point A in Fig. 3a to produce
one complete tile block. (The function gt_rotation
is listed in Appendix IV.) Through a sequence of
translations, a tile panel like that in Fig. 3b is
produced; we don't include code for this, but it is
straight forward. For an ultra-high grade, we
challenge the students to create a mosaic of their
own. In their conclusions, or by inspection of their
creations, it is obvious that they are struck by the
difficulty of doing this.

DESIGN OF A VEHICLE: FRONT VIEW

Students spend 3 to 5 class-hours with profes-
sional computer-aided design software to gain
first-hand experience with applications of much
of the theory taught in the course. However,
prior to working with such software, we assign a
design project in which the above theory and other
topics colligate to make it happen in MATLAB.

Fig. 2. A sequence of BeÂzier curves to design the shape of a bicycle seat based on an approximate control curve.

N. Salamon918

The best of these projects have been designs of
bicycles and automobiles, all in two-dimensions of
course (which makes selection of attractive topics
difficult). Here we present the design of the front
view of a vehicle; most students chose an auto-
mobile.

The result shown in Fig. 4 received the highest
grade in the class. All projects were very good, but
this one illustrates painstaking attention to detail
(note the tread in the tires and the intricate grill). All
curved lines are BeÂzier curves, including the steering
wheel and bottom (contact surface) of the tires. All
objects (lines, shapes, components) are transformed
(rotated, scaled and/or translated) into position.
Except for the steering wheel, only half the object
is generated and then a copy is reflected about the
centerline to produce the whole front view.

Of course we provide some help: (1) in class we
develop together a starter code (Appendix III with
function bezier_curve and gt_translation in
Appendix IV) and (2) we provide a sketch done
by hand on paper to illustrate what is expected.
From that point on, other than some consulting,
the students work on their own.

Related to the automobile are other, more
technical aspects of the course. For example,
suspension of the chassis is related to vibrations
and eigenproblems. One semester things moved
along so well we were able to program mass
vibrations into a movie in MATLAB. Thus we
try to tie as many topics as we can together in
order to show their inter-relation and demonstrate
the importance of computer methods in engineer-
ing.

(b)

Fig. 3. Mosaic tiles copied from the Al-Hambra, Granada, Spain: (a) A single tile block formed by rotating copies of Shape 1 (bold
lines) counter-clockwise around Point A three times; (b) a tile panel formed by translating blocks into tangent positions.

(a)

Computer Generated Shapes in Mechanical Design with MATLAB 919

CONCLUSION

This paper is based upon the proposition that
the mathematical fundamentals underlying
computer methods in design are important to
engineers. Students learn the rudiments of gener-
ating curved shapes and the usefulness of mathe-
matics to numerically design objects. In learning
these methods, students also learn fundamental
numerical methods, however the course is not
traditional; for example, we only treat the finite
difference modeling and solution of differential
equations in one dimension as an application for
solution of simultaneous equations.

One innovative feature of this course is that
students draw their own creations mathematically.

Although learning the math is difficult, we find
that design applications appeal to students and
motivate them to learn. Indeed they take pride in
their `products', but sometimes get so involved
they spend too much time doing intricate details.
Despite their very good work and attention to
detail, engineering students lack artistic creativity;
their designs for the most part mimic those of
others. Perhaps this is but an early step in learning.

AcknowledgmentsÐSupport from The Leonhard Center for the
Enhancement of Engineering Education at Penn State through
NSF Grant EEC 99±73002 is gratefully acknowledged. I thank
Gary Schubert, artist, for supplying the Al-Hambra mosaic and
Wensheng Yu for help with MATLAB codes. And I apologize
to all students whose excellent work could not be included here.

REFERENCES

1. N. J. Salamon (2002). http://www.esm.psu.edu/courses/emch407/njs/ default.html
2. Steven C. Chapra and Raymond P. Canale, Numerical Methods for Engineers, McGraw-Hill, New

York (1988).
3. Carl De Boor, A Practical Guide to Splines, rev. ed., Vol. 27 of Applied Mathematical Sciences

Series, Springer-Verlag, New York (2001).
4. W. Cheney and D. Kincaid Numerical Mathematics and Computing, 3rd ed., Brooks/Cole Publish-

ing Co. (1994).

Fig. 4. Front of a commercial sports car, complements of Sunny Siu (Spring, 2004).

N. Salamon920

5. James L. Buchanan and Peter R. Turner Numerical Methods and Analysis, McGraw-Hill, New
York (1992).

6. CRC Standard Mathematical Tables, 15th edition, The Chemical Rubber Company, Cleveland
(1967).

7. Chris McMahon and Jimmie Browne, CADCAM: Principles, Practice, and Manufacturing
Management, Addison-Wesley, Reading (1998).

APPENDIX I: BEÂ ZIER CURVES

function bezier_bikeSeat
% Application: Bezier curve using Bernstein basis polynomials to
% to create the shape of a bicycle seat
% Wensheng Yu and NJ Salamon, Feb 2001
% Revised: 20 June 2004, NJS
xp=[0.0 0.05 0.20 0.80 0.85 0.95 1.0]; % Set control point data
yp=[0.0 0.40 0.35 0.35 0.50 1.00 0.0];
np=length(xp);
figure;
n2=41; % Set the number of plot points between data
x=linspace(0.0,1.0,n2);
p=x; % This just sets up the `size' of poly p

nlow = 6; ninc = 3; % <------ Set range of Bernstein degrees
nhigh = nlow + ninc*3;
for n = nlow:ninc:nhigh; % n = degree of Bernstein functions
np1=n+1;
x1=linspace(0.0,1.0,np1); % Compute control x-points and. . .
y1=linear_spline_2(xp,yp,x1); % . . . interpolate for y-points
for i=1:n2;
xx=x(i);
b1=bernstein_basis(n,xx); % We supply this function
p(i)=y1*b1'; % Compute Bezier curve for each degree n

end;
if n==nlow;
plot(x,p,'k:'); % Plot the poly's
hold;

elseif n==nlow + ninc*1;
plot(x,p,'k-.');

elseif n==nlow + ninc*2;
plot(x,p,'k--');

elseif n==nlow + ninc*3;
plot(x,p,'k-');

end;
end;

for i=1:np;
plot(xp(i),yp(i),'ko'); % Plot the control points
if i<np;
xp1=[xp(i) xp(i+1)];
yp1=[yp(i) yp(i+1)];
plot(xp1,yp1,'k'); % Plot control curve segments

end;
end;

axis([0 1 -0.5 1]);
grid;

function f = linear_spline_2(x,y,xx)
% LINEAR_SPLINE_2 linear spline returns y(xx) by using a linear spline
% between points x where x, xx and y are vectors.
n=length(x);
nxx=length(xx);

%for any xx(j) out of range, stop the program
if (xx(1)<x(1)) | (xx(nxx)>x(n));
error(`out of x range!');

end;

Computer Generated Shapes in Mechanical Design with MATLAB 921

%loop for all the xx(j) points
for j = 1:nxx;

%for each xx(j), try to find which data interval it belongs
x1=xx(j);
for i = 1:n-1;
if (x1>=x(i)) & (x1<=x(i+1));

m=i;
break;

end;
end;

%calculate y(xx(j))
f(j) = y(m)*(x1-x(m+1))/(x(m)-x(m+1))...
+y(m+1)*(x1-x(m))/(x(m+1)-x(m));

end;

function b = bernstein_basis(n,xx)
%BERNSTEIN_BASIS returns values of Bernstein basis polynomials....
%Bn,i(xx),n >= 1 at xx
% b is a vector of length n+1, b(i+1)=Bn,i(xx), i=0,1,..,n;
% Wensheng Yu and NJ Salamon, Feb 2001; Revised Mar 2002: NJS

if ((xx<0.0) | (xx>1.0));
error(`xx out of range in function `bernstein_basis'!');

end
xx_1=1.0-xx;
b=1:n+1; % sets b(1)=1 and index to [1,n+1], not [0,n];

% other values of b overwritten below.
for i=1:n; %starting from B_1,1, building Bn,i from Bn-1,i;
b(i+1)=xx*b(i);
for j=i-1:-1:1;
b(j+1)=xx_1*b(j+1)+xx*b(j);

end;
b(1)=xx_1*b(1);

end;

APPENDIX II: GRANADA MOSAIC

function gt_mosaic
% Generate a single Al-Hambra tile block
% Wensheng Yu and NJ Salamon, Feb 2001
% Revised: 20 June 2004, NJS

n=1;
obj0=[-1 .1125 0 .5392 1 .5392 0 .1125 -1; . . .

-1 -.5392 0 .1125 -1 -2.1125 -2 -1.4608 -1];
objrow3=ones(1,length(obj0)); obj0=[obj0;objrow3];
figure; plot(obj0(1,:),obj0(2,:)); hold;

% rotation to create one tile block
xr=0;yr=0;
obj1=gt_rotation(90,1)*obj0; plot(obj1(1,:),obj1(2,:),'b');
obj2=gt_rotation(180,1)*obj0; plot(obj2(1,:),obj2(2,:),'b');
obj3=gt_rotation(270,1)*obj0; plot(obj3(1,:),obj3(2,:),'b');

APPENDIX III: AUTO FRONT

function autoFront
% Plot the front view of an auto using translation, rotation,
% scaling, reflection, and concatenations and import shapes
% from spline and/or Bezier functions.
% Scheme: Do one half of symmetric features, then reflect
% these w.r.t. the y-axis. Add unsymmetric features.
% Origin of coordinates is centered at bottom of bumper.
% Author: NJ Salamon, 10 Apr 04

%input paramters;

N. Salamon922

% Set the stage
road = [[-3.5, 3.5]; [-.5, -.5]];
plotobj(road);
axis([-4, 4, -1, 4]);

% Roof line
xp = [0.0 1.5 2.3 2.4]; % Set this
yp = [3.5 3.5 3.5 1.8]; % Set this
degree = 8;
roof_line = bezier_curve(xp, yp, degree);
plotobj(roof_line);

% Fender line
xp = [.50 .75 1.2 1.8]; % fender line
yp = [1.5 1.8 1.2 1.25];
degree = 3;
fender_line = bezier_curve(xp, yp, degree);
fender_line = xy2homo(fender_line);
mrot = gt_rotation(90, 1, 1.8, 1.25);
fender_line = mrot*fender_line;
mtrans = gt_translation(2.4--1.8, 1.8--1.25);
fender_line = mtrans*fender_line;
plotobj(fender_line);

% Bumper
% Simple bumper to test adding another object onto the same plot
xp = [0.0 2.3 2.3 0.0];
yp = [0.0 0.0 0.5 0.5];
bumper = [xp;yp]; % Needs a rounded end
plotobj(bumper);

% ------------- FUNCTIONS -------------
function datahomo = xy2homo(xydata)
n = length(xydata(1,:));
datahomo = [xydata; ones(1,n)];

function plotobj(obj)
plot (obj(1,:),obj(2,:));
grid;
hold on;

APPENDIX IV: OTHER REFERENCED FUNCTIONS

function m=gt_rotation(theta,deg,xr,yr)
% GT_ROTATION(THETA,DEG,XR,YR) rotates point A to point B thru
% angle theta around center of rotation, point (xr,yr)
% The transformation matrix R(theta,xr,yr) takes the form
%
% cos(theta) -sin(theta) xr*(1-cos(theta))+yr*sin(theta)
% sin(theta) cos(theta) yr*(1-cos(theta))-xr*sin(theta)
% 0 0 1

%
% THETA is inradians by default; if DEG is present, a non-zero
% value means THETA is in degrees; if xr,yr are not present,
% the rotation is around the coordinate origin;
% Author: Wen-Shen Yu and NJ Salamon, 2001

if nargin==1;
deg=0; xr=0; yr=0;

elseif nargin==2;
xr=0; yr=0;

elseif nargin~=4;
error(`number of input arguments wrong for gt_rotation!');

end;

if deg~=0;
theta=theta*pi/180;

end;

Computer Generated Shapes in Mechanical Design with MATLAB 923

ct=cos(theta);st=sin(theta);
m=[ct -st xr*(1-ct)+yr*st; st ct yr*(1-ct)-xr*st; 0 0 1];

function m=gt_translation(tx,ty)
% GT_TRANSLATION(TX,TY) translates point A to point B by a
% displacement of (tx,ty)
% The transformation matrix T(tx,ty) takes the form
%
% 1 0 tx
% 0 1 ty
% 0 0 1
%
% Note: gt_ stands fot Geometrical Transformation
% Author: Wen-Shen Yu and NJ Salamon, 2001

m=[1 0 tx; 0 1 ty; 0 0 1];

function curve = bezier_curve(xp, yp, degree)
% Generates plot points for drawing shapes
% Author: njs, 1 Apr 04

% Set the control points and the degree range for Bezier curves
% xp = [0.0 1.5 2.3 2.4]; % Set this
% yp = [3.5 3.5 3.5 1.8]; % Set this
% xp = [0.0 1.5 2.0 2.1 2.2 2.35 2.4]; % Set this
% yp = [3.5 3.5 3.8 5.0 4.7 4.5 1.8]; % Set this
% degree = 3; % Set this
npts = 21; % Set this
np = length(xp);
xn = linspace(0.0,1.0,npts); % xn = normal coord's.
aa = xp(1); bb = xp(np);
xc = (bb - aa).*xn + aa; % xc = actual coord's
y = xn;
n = degree;
np1 = n+1;
x1 = linspace(xp(1), xp(np), np1);
y1 = linear_spline_2(xp,yp,x1); % Insure correct no. of control pts
for i = 1:npts;
xx = xn(i);
b1 = bernstein_basis(n,xx);
y(i) = y1*b1';
end

curve = [xc; y];

Nicholas J. Salamon, Ph.D. (Northwestern University, USA) has been a professor at Penn
State since 1985. Prior to that he was associate professor at West Virginia University and
assistant professor at the U. of WisconsinÐMilwaukee. He has taught mechanics of
materials at both the introductory and advanced level off and on since 1975 and does
research in stress analysis of materials and structures with the emphasis on computer
analysis. His hobby is hiding away in the forests of Nittany Lion country.

N. Salamon924

