
Easy Java Simulations: an Open-Source
Tool to Develop Interactive Virtual
Laboratories Using MATLAB/Simulink*

J. SAÂ NCHEZ, F. ESQUEMBRE, C. MARTIÂN, S. DORMIDO, S. DORMIDO-CANTO, R. D. CANTO,
R. PASTOR and A. URQUIÂA
Department of Computer Sciences and Automatic Control, UNED, C/. Juan del Rosal 16, 28040 Madrid,
Spain. Email: jsanchez@dia.uned.es, fem@um.es

This paper describes the make-up of interactive computer simulations that implement virtual
laboratories in the field of Control Engineering education. We introduce Easy Java Simulations
(EJS), a Java-based tool designed to help control educators with a low profile in programming to
create interactive scientific simulations. This tool can be used on its own, generating stand-alone
Java applications or applets, or in conjunction with MATLAB/Simulink, using them as the internal
engine that describes and solves the model. This tool allows users to develop complete, interactive
simulations in three steps: writing the mathematical model (optionally using MATLAB/Simulink),
building the graphical user interface (GUI) using off-the-shelf graphical elements, and linking the
GUI elements to the variables of the model. In this way, models of control engineering can be
specified either using the programming support provided by EJS or by using MATLAB/Simulink,
which can then be fully controlled from EJS. In this paper we describe this particular feature in
detail, and provide some examples that show the advantages that this tool offers to the world-wide
engineering education community.

INTRODUCTION

RECENT DEVELOPMENTS in computer hard-
ware and software now make it possible to provide
students with interactive programs that can be
considered as midway between regular labs and
lectures and that allow us to display multiple-view
representations of a given dynamic system, and
some of its attributes, on the computer screen [1].
Visualization thus appears naturally in the origins
of automatic control, in the discovery of new
relationships among mathematical objects, and in
the transmission and communication of know-
ledge. These tools, called interactive virtual labs,
can be used to explain basic concepts, to provide
new perspectives on and insights into a problem,
and to illustrate analysis and design topics [2].

However, as a natural consequence of the
enhanced performance and graphical capabilities
of modern computers, the search for interactivity
must also take us a step forward. Nowadays, the
use of the word ``interactivity'' in the design of
automatic control systems means, to many people,
a process of repeating several times a loop whereby
a user introduces some parameters in the software,
runs the algorithms of design, and analyzes and
compares the results graphically in static plots. If
the results are not as expected, the user must enter
new parameters and repeat the execution-analysis
process until (s)he finds a configuration that is

satisfactory. Proceeding in this way, however, it is
difficult for the user to recognize the relationship
between the gradient of change in the results
(usually, the system response in temporal and
frequency domains) and the values of the input
parameters. This perception would be considerably
improved if the user could work with simultaneous
graphical representations of the input parameters
and the model's dynamic properties, and if there
were an instantaneous translation of any modifica-
tion of an input parameter to the system's
response. This situation could then be considered
true interactivity, since a change in the simulation's
parameters has an immediate effect on the differ-
ent views of the system, according to the mathe-
matical relationships that govern the dynamics of
the system. Figs. 1 and 2 present two examples of
introducing interactivity into virtual labs. Fig. 1
shows a virtual lab for testing different control
strategies for a Furuta pendulum. The next figure,
Fig. 2, corresponds to an interesting application
for the study of the theoretical control back-
ground. In such applications, the signals inside a
plot can be dragged by the mouse (thus behaving
as input parameters) and the new values have an
immediate consequence for the other graphical
representations of the system.

Let us now apply our discussion on interactivity
to the real educational world, where the de facto
standard software for instructional purposes is
MATLAB/Simulink. If we try to apply our
concept of interactivity to teaching with* Accepted 2 July 2005.

798

Int. J. Engng Ed. Vol. 21, No. 5, pp. 798±813, 2005 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2005 TEMPUS Publications.

MATLAB/Simulink, we will encounter serious
difficulties, because this software was not designed
to develop graphical applications using this new
approach. The creation of rich graphical interfaces
using only MATLAB/Simulink is not an easy task,
and high programming skills are required to
develop useful applications with even a basic
level of interactivity. When an instructor uses
MATLAB/Simulink, s/he is an expert in the
subject that is to be explained and in the use of

the mathematical facilities of the software to
program algorithms. S/he is also capable of
presenting the results by means of different types
of plots and numerical values. However, control
engineering instructors are not true programmers
and the addition of an extra layer of interactivity
to their MATLAB/Simulink applications would be
very time-consuming. This statement also applies,
even more strongly, to the development of virtual
and remote labs.

Fig. 1. Virtual lab for studying control problems related to the Furuta pendulum.

Fig. 2. Interactive toolbox for analyzing and designing control linear systems.

Easy Java Simulations: An Open-Source Tool 799

Two software products now exist that can help
solve this problem: SysQuake [3] and Easy Java
Simulations [4]. The first is a commercial tool
oriented to the development of interactive applica-
tions using a language fully compatible with
MATLAB. Consequently, MATLAB legacy code
(i.e. M-files) can be reused and benefit from
SysQuake's high graphical capabilities to produce
valuable, interactive instructional control applica-
tions. Additional information on this software can
be found at http://www.calerga.com, and examples
of advanced control applications developed with it
are described in [5±9].

Easy Java Simulations (EJS) is an open source
(free of charge) software tool that helps create
dynamic, interactive scientific simulations in the
Java language. The tool is targeted for both science
students and teachers with basic programming
skills and is therefore very much suited to the
situation one finds in most university classrooms.
Within EJS, simulations are created by specifying a
model for the simulated system and by building a
view that continuously visualizes the state of this
model and that readily responds to user inter-
action. Models can be described in EJS applica-
tions either using its self-contained facilities (ODE
solvers and Java code editors) or Simulink block
diagrams. If using the latter, EJS can wrap the
Simulink model with a Java-made layer of inter-
activity. The final product is a Java application
that efficiently interchanges data (input para-
meters and states variables) with the Simulink
model through MATLAB's workspace (Fig. 3).

The tool can be used as a timely first step for
control educators as a way of adopting an inter-
active-based approach in order to be at the cutting
edge of innovative initiatives in education, such as
the different world-wide open-source initiatives

that physics instructors are currently encountering
[10]. Because of its interest, this paper describes
EJS in more detail and presents two case studies of
the development of control virtual labs.

The paper is organized as follows. First, Easy
Java Simulations are briefly described, with parti-
cular emphasis on the development of control
virtual labs that use MATLAB/Simulink as the
simulation and mathematical engine. The next
section shows an example of this collaboration
between tools to develop a virtual lab on a
magnetic levitator. Then a more advanced virtual
lab is described, the quadruple-tank process, which
also uses Simulink to develop the model. The
paper ends with some conclusions on the combined
use of EJS and MATLAB/Simulink as a way to
foster the use of interactivity in control education,
and, more precisely, the construction of instruc-
tional control virtual labs.

A brief survey of Easy Java Simulations
A quick description of Easy Java Simulations

places it in the category of `̀ code generators''. This
means that users need to provide only the most
relevant core of the simulation's algorithm and the
tool automatically generates all the Java code
needed to create a complete interactive simulation,
including a wide range of sophisticated software
techniques (such as handling computer graphic
routines, communication protocols, multithread-
ing and others). What makes EJS very special
within this category of software is that it has
been conceived by teachers and for teachers, and
for students who are more interested in under-
standing the simulated phenomena than in the
underlying computer-specific aspects.

The tool uses an original simplification of the
successful Model-View-Control software paradigm

Fig. 3. Building a simulation using EJS and MATLAB/Simulink.

J. SaÂnchez et al.800

(MVC), and structures simulations in two main
parts: model and view. The MVC paradigm states
that a simulation is composed of three parts.

1. The model, which describes the phenomenon
under study in terms of:

. variables, which hold the different possible
states of the phenomenon, and

. relationships among these variables (corres-
ponding to the laws that govern the phenom-
enon), expressed by computer algorithms.

2. The control, which defines certain actions that a
user can perform on the simulation.

3. The view, which shows a graphical representa-
tion (either realistic or schematic) of the differ-
ent states that the phenomenon can have.

These three parts are deeply interconnected. The
model obviously affects the view, since a change in
the state of the model must be made graphically
evident to the user. The control affects the model,
because control actions can (and usually do)
modify the value of variables of the model. Finally,
the view affects the model and the control, because
the graphical interface can contain components
that allow the user to modify variables or perform
the predefined actions. As mentioned above, EJS
further simplifies the construction of a simulation
by merging the control, half into the view, half into
the model.

The model is what conveys the scientific part of
the simulation and is thus the responsibility and
the main interest of the user. Control teachers are
used to describing their algorithms in terms of
mathematical equations and to expressing these
using a given computer language, or by means of
high-level tools such as MATLAB/Simulink. The
main target when creating the model of a simula-
tion is to concentrate on the analytical description
of the phenomena, the content, and the accuracy
of the simulation. However, the creation of the
necessary graphical user interface (that is, the view)

is the part of the simulation that demands more
knowledge of advanced programming techniques.
And, to make the situation even worse, the addi-
tion of interactivity to this interface involves
mastering sophisticated software techniques
which demand a big investment of time and effort.

EJS helps its users through both tasks. The tool
provides extensive scaffolding to define the model,
while still retaining the flexibility of a general
programming language, so that it is possible to
specify almost any type of algorithm. This is
pedagogically important, since the process of
learning good control fundamentals consists, to a
great extent, in understanding the basic principles
required to build models.

In order to define the model in EJS, the user
follows a prescribed sequence:

. declare the variables that describe the system;

. initialize these variables to a correct initial state;

. describe how the value of these variables
changes over time; and

. establish how they affect each other when the
user interacts with the system and modifies one
or more of their values.

The last two steps consist in translating the math-
ematical equations or physical laws that rule the
phenomenon under study into computer algo-
rithms. Sometimes, though, the actual implemen-
tation of these algorithms can be a difficult task.
For this reason, EJS provides two extra facilities.
The first is a built-in editor and solver for systems
of ordinary differential equations (ODE). The user
writes the equations in a way that is similar to how
s/he would write on a blackboard, and the system
automatically generates the code that numerically
solves the equations using one of several of the
standard algorithms provided (Fig. 4). The editor
also includes support to handle simple state events
of the ODE. The second facility is a connection to
MATLAB/Simulink that lets users design and
solve their models with the help of these tools. In

Fig. 4. Edition panel to write the ODE and select the solver.

Easy Java Simulations: An Open-Source Tool 801

this second case, the model is fully defined by a
Simulink block diagram, and all that is needed is
an M-file that informs EJS about the names of the
MATLAB/Simulink variables so that it can create,
once the final application is generated, a bi-direc-
tional link between the Java-coded interactive
interface (the view) and the Simulink diagram for
the model. Two examples on the use of this option
are further described in the following sections.

In order to help create the view, EJS provides a
set of advanced graphical elements (Fig. 5) that
build on top of both standard Java Swing compo-
nents (containers, buttons, text fields, sliders,
combo boxes, etc.) and on specific scientific two-
and three-dimensional visualization classes from
the Open Source Physics project [10] (particles,
vectors, images, vector and scalar fields, etc.).
These elements can be used in a simple drag-and-
drop way to build the interface. The user just needs
to design the view so that it will offer a visual-
ization of the phenomenon appropriate to the
desired pedagogical goals. In particular, the view
should encourage students to explore the phenom-
enon from different engineering perspectives in
order to gain a better insight into the system.

To complete the view, its different elements have
to be instructed to display on the screen according
to the values of the variables of the model. Every
graphic element of EJS has certain internal values,
called `̀ properties'', that can be customized to
make the element look and behave in a particular
way (change its displayed value, position, size,
etc.). The user can very easily connect the proper-
ties of the graphical elements of the view to the
value of the different variables of the model. Some
of these properties can also be instructed to trigger
user-defined actions (typical routines defined in the
model) when the user interactively changes them.
This procedure, which is called `̀ linking'' the

model and the view, is what turns the simulation
into a dynamic, interactive application. This
mechanism configures a simple, though very effec-
tive, way of designing and building advanced
interactive user interfaces (Fig. 6).

The reason for this is that linking is a two-way
connection. When the variables of the model
change, the view is informed, so that it immedi-
ately displays the new state of the model. In return,
since the view elements have built-in interactive
capabilities, any interaction between the student
and the interface immediately affects the model
variables that have a connection to it. For ex-
ample, let us imagine an EJS simulation of the
control level of a tank. The tank and the water
inside it are represented in the view by means of
two coloured rectangles. If the dimensions of the
tank are modified by dragging with the mouse the
corners of the outer rectangle, the variables repre-
senting the tank width and height in the analytical
model will reflect this change (thus affecting the
dynamics of the system). Similarly, if the water
level changes as a consequence of the model's
evolution, the visible height of the rectangle will
change to display the current water level.

With all the high-level information, which only
the user can provide, EJS takes care of all the low-
level procedures needed to create the final simula-
tion. It will generate the Java code that handles all
the internal tasks, compile it into Java classes, pack
the classes in a compressed file, and end up with a
ready-to-use simulation. Simulations created using
EJS can either be used as stand-alone applications
under different operating systems (for instance, a
.BAT file is provided when running under
Windows) or can be distributed via the Internet
and run as applets within HTML pages (also
generated by EJS) by using any Java-enabled
web browser. The tool also includes a simple

Fig. 5. Library of the graphical elements of EJS.

J. SaÂnchez et al.802

HTML editor to help the teacher enhance the
generated web pages with pedagogical information
and/or instructions for the simulation. At present,
the use of MATLAB/Simulink is not supported
when running simulations as applets, although we
are working on a future model that will allow EJS
to generate distributed applications with Java
interfaces and Simulink models running in differ-
ent computers using the Internet to interchange
information.

A virtual lab for the magnetic levitator system
The system modeled in this section is the ECP

magnetic levitation system (model 730) [11]. Fig. 7
shows the free-body diagram of two suspended
magnets. Each magnet is acted on by forces from
either driver coil, from the other magnet, from
gravity and from friction (modeled as viscous).
The differential equations for both magnets are:

m1�y1 � c1 _y1 � Fm12 � Fu11 ÿ Fu21 ÿmg �1�
m2�y2 � c2 _y2 � Fm12 � Fu22 ÿ Fu12 ÿmg �2�

The magnetic force terms are modeled by [11]:

Fu11 � i1

a�y1 � b�N �3�

Fu12 � i1

a�yc � y2 � b�N �4�

Fu21 � i2

a�yc ÿ y1 � b�N �5�

Fu22 � i2

a�ÿy2 � b�N �6�

Fm12 � c

�y12 � d�N �7�

y12 � yc � y2 ÿ y1 �8�
where a, b, c, d and N are constants which may be
determined by numerical modeling of the magnetic
configuration. In this case, N = 4 and a, b, c and d
have been determined by empirical methods in
order to adjust the simulation and experimental
results. The identification of the parameters of the
model was done by measuring the specific input/
output characteristics of the magnet/coil actuators
and the magnet/magnet interactions as they vary
with relative position. The strong magnetic field
nonlinearity, however, is inherent to this class of
magnetic systems. For most control design
purposes, the upper and lower actuators' charac-
teristics may be assumed to be identical.

The interaction of the two magnets has a
nonlinear force characteristic. When two magnets
are used in the configuration, they are usually
placed with like poles facing each other so that
they repel. When the lower magnet is stationary,
the upper magnet comes to rest in equilibrium
between the upward repulsive magnet force and
downward gravitational force. The magnetic force

Fig. 6. View of an interactive application developed using EJS.

Fig. 7. Free-body diagram of the magnetic levitator.

Easy Java Simulations: An Open-Source Tool 803

characteristic may be measured by adding and
subtracting weight from the upper magnet and
measuring the equilibrium height. Using this
procedure, we obtained the following values for
the parameters: a � 1:65 N, b � 6:2 cm, c � 2:69
Ncm3 y d � 4:2 cm.

Implementation of the magnetic levitator with EJS
and MATLAB/Simulink

When developing this type of simulation, one of
the most important things that the teacher needs to
bear in mind is utilising the correct configuration
of windows and operating controls of the simula-
tion in order to facilitate the student's understand-
ing of the virtual lab. In our case, this view (using
EJS terminology) is divided into several elements,
as displayed in Fig. 8. Because the simulation is to
be used for didactical purposes, it was very impor-
tant for us to provide a visualization that displays
the physical system as realistically as possible, but
that also provides support for graphic tools
commonly used in control (plots, diagrams, input
devices, controllers, etc.). A second requirement
was to provide a set of interactive elements that
could be manipulated by the students to make
changes in a dynamic way during an experiment.
The view is therefore structured in one main
window and three secondary dialog windows.
The main window is located at the left-hand side
of Fig. 8. The big central part of the main window
schematically displays the magnetic levitator and
allows the user to change interactively the set
points by dragging the arrows up and down. The

lower part of the main window is filled with
buttons and check boxes that allow the user to
choose the operating conditions of the system.
With these elements the user can select to:

. Play, pause and reset the simulation.

. Choose the control system mode: manual or
automatic.

. Change the mass of the magnets' (change m).

. Change the magnets' polarity (polarity m#1 and
polarity m#2).

. Select the magnets that will operate the levitator
(upper magnet and/or lower magnet).

The last two options can be used to configure the
virtual lab as a variety of single-input single-output
(SISO) and multi-input multi-output (MIMO)
systems. By using a repulsive force from the
lower coil to levitate a single magnet, an open-
loop stable SISO system is created. Attractive
levitation via the upper coil configures an open-
loop unstable system. Two magnets may be raised
by a single coil to produce a SIMO plant. If two
coils are used, a MIMO plant is produced. These
may be locally stable or unstable, depending on the
selection of the magnets' polarities and the
nominal magnet positions. The plant has inher-
ently strong nonlinearities, due to the natural
properties of magnetic fields. Thus, this virtual
lab provides a dynamically rich test bed for imple-
mentation of introductory and advanced control
methods.

However, the most relevant feature of this
didactical application is that MATLAB/Simulink

Fig. 8. Magnetic levitation virtual lab.

J. SaÂnchez et al.804

is running in the background. Fig. 9 shows the
Simulink block diagram of the magnetic levitator
described in equations 1 to 8 with the modifica-
tions needed for it to be used by EJS.

There are three main steps to using a standard
Simulink block diagram within EJS. The first
consists in making some changes to the original
Simulink model. These changes are necessary
because Simulink models are, obviously, created
to be run within Simulink. But, since the commun-
ication between Simulink and EJS goes through
MATLAB's workspace, we first need to change
the Simulink model so that it sends/receives the
value of some of its variables and parameters to/
from MATLAB's workspace. Fig. 9 shows how
some system parameters of the block diagram have
been adapted to be read from MATLAB's work-
space: magnets' masses, polarities, and parameters
of the magnetic configuration. The block diagram
has also been slightly modified so that it writes the
simulation state in MATLAB's workspace (time
and positions of the two magnets) after every
integration step.

The reading of the values from MATLAB's
workspace variables is done by including
`̀ MATLAB function'' blocks in the diagram to
evaluate variables and/or expressions. Fig. 10a
shows a Simulink block in which an expression

using MATLAB variables is evaluated to generate
one of the magnetic forces. To write the model
state back into MATLAB's workspace after each
integration step, it is necessary to include a `̀ To
workspace'' block in the diagram for each of the
variables in the state vector of the model. As an
example, Fig. 10b shows the block used to send the
position of magnet 1 (variable y1) back to the
workspace.

A second difference to a standard bock diagram
comes from the fact that Simulink models are
usually played and paused by the user through
Simulink's user interface. Hence, the model must
be changed so that it stops after every integration
step. For this, it is necessary to include in the
model diagram one ``MATLAB function'' block
with the MATLAB command `̀ set_param (gcs,
`SimulationCommand', `Pause')``. In this way,
EJS can control exactly when the model needs to
play.

The second step needed to connect the Simulink
model with EJS is the creation of a simple M-file.
This file provides EJS with basic information
about the model and about the variables and
parameters that can be accessed through
MATLAB's workspace. Fig. 11 shows an extract
from the file that we created for this example.

The syntax for this text file is rather simple.

Fig. 9. Modified Simulink block diagrams.

Easy Java Simulations: An Open-Source Tool 805

What enables EJS to read and access these vari-
ables is the special comment at the end of each line.
This comment always starts with the keyword
`̀ EJS'' immediately after the comment character
`̀ %''. The keyword must be followed by one of the
following words: Model, Variable, or Para-
meter.

. Model is used to tell EJS the name of the
Simulink file that describes the model.

. Variable provides EJS with a description of a
variable of the Simulink model. A variable can
be declared to be accessible for reading, writing
or both. If no modifier is indicated, the variable
can be freely accessed and EJS will synchronize
its value with the associated EJS variable before
and after every integration step of Simulink, as,
for example, happens with the positions of the
magnets (variables y1 and y2). If declared as
InputOnly, however, EJS will understand that
the variable is not to be changed by the Simulink
model and will always force its value to what-
ever it is within EJS. In our example, the masses
(variables m1 and m2) and the control actions
(u1 and u2) are input-only variables that will be
set by the user through the simulation interface.
Finally, if declared as OutputOnly, EJS will
read the variable after every integration step of

the Simulink model is run, but it will not try to
change its value in the Simulink model. For
instance, the time variable of the model is read
only since it is the result of Simulink execution
after each integration step.

. Parameter declares variables that are defined
inside Simulink blocks. Ejs makes no distinction
between variables and parameters for computa-
tional use. However, for technical reasons, the
comment for a parameter must include informa-
tion about the Simulink block or menu in which
the parameter is defined and the function of this
parameter within the block. In our example, the
integration step dt is declared to be the general
(that is, not defined within any block) parameter
maxstep, since it is located in a dialog panel of
the menu Parameters located in the Simulink
menu Simulation.

The third and final step in this process consists of
connecting the variables of the EJS model with
MATLAB's workspace variables (which are in
turn associated with variables of the Simulink
model). Fig. 12 shows the variables in EJS for
our example and how they are connected to
MATLAB's variables. Notice that we have
chosen similar (if not identical) names for both
sets of variables.

(a)

(b)

Fig. 10. Source and sink blocks to communicate MATLAB's workspace and Simulink.

Fig. 11. Extract from the file levitator.m, used to connect Simulink and EJS.

J. SaÂnchez et al.806

To make the connection between EJS and
MATLAB/Simulink it is necessary to open a
page of external variables in the EJS application
(Fig. 12a). In this page it is necessary to introduce
into the External File text field the path to the
information M-file previously created for the levi-
tator. Now, whenever you create an EJS variable
and right-click on it, you will be given a window
with a list of the MATLAB variables to which you
can connect your EJS variable (Fig. 12b). By
clicking on any of these variables, the connection
between the EJS variable and the MATLAB vari-
able will be automatically established. Establishing
a connection means exactly that: a) the value of the
EJS variable will be pushed to the variable of the
model before running Simulink, and b) the EJS

variable will be given back whatever value the
Simulink variable has after the model has run
one integration step.
Our Simulink model is now ready to be used. EJS
will run the Simulink model whenever we insert the
Java sentence

external.step (1);

in a page of the evolution section (the main loop)
of EJS (Fig. 13). A call to this method has the
following effects:

1. The value of every EJS variable that is con-
nected to a MATLAB variable (except those
declared as OutputOnly) is pushed to the
Simulink model.

(b)

(a)

Fig. 12. EJS page of variables showing the connection to MATLAB's variables.

Fig. 13. Evolution page of the EJS to control an external model running in MATLAB/Simulink.

Easy Java Simulations: An Open-Source Tool 807

2. The Simulink model is run exactly one integra-
tion step.

3. The value of all MATLAB variables that are
connected to EJS variables (except those
declared as InputOnly) are retrieved from
the Simulink model.

We can now operate EJS in the standard way in
order to build our desired view and to link it to the
variables of the model in a form that suits our
pedagogical needs. Fig. 14a shows the tree repre-
sentation of the view elements that we chose for
our view (see also Fig. 8). As an example, Fig. 14b
displays the table of properties for the graphical
element mass2, which allows users to resize
magnet 2 and change its mass. Fig. 14c shows
how a Java method called ChangeMass2 is
linked to the `̀ On Drag'' action of this graphical
object. In this way, when the user drags the object
the magnet will be resized and the Java method will
be invoked to compute the new value of the
magnet mass according to its current dimensions.

Finally, it is worth noting that EJS is capable of
running more than one Simulink model from
within one single simulation. This is simply done
by creating two or more separate pages of vari-
ables, each with a different M-file, and connecting
EJS variables to the corresponding MATLAB
variables. When the system runs, EJS will take
care of opening as many MATLAB sessions as are
needed and of managing all connections.

An advanced virtual lab: the quadruple-tank
process

Our second example of an EJS/MATLAB appli-
cation is the quadruple-tank process. Originally
introduced by Johansson [12], it has received
great attention because it presents interesting
properties in both control education and research.
The quadruple-tank exhibits complex dynamics in
an elegant way. Such dynamic characteristics

include interactions and a transmission zero loca-
tion that can be tuned in operation. With adequate
tuning, this system presents non-minimum-phase
behavior that arises due to the multivariable
nature of the problem. For this reason, the quad-
ruple-tank has been used to show the results of
different control strategies and as an educational
tool in teaching advanced multivariable control
techniques. Although the setup is simple, the
process can still illustrate interesting multivariable
phenomena. The process flowsheet is displayed in
Fig. 15. The target is to control the levels h1 and h2
in the lower two tanks with two pumps. The
process inputs are the voltages, v1 and v2, applied
to the pumps.

The differential equations representing the mass
balances in this quadruple-tank process are:

dh1

dt
�ÿ a1

s1�h1�
������������
2gjh1j

p
� a3

s1�h1�
������������
2gjh3j

p
� 1k1v1

s1�h1�
dh2

dt
�ÿ a2

s2�h2�
������������
2gjh2j

p
� a4

s2�h2�
������������
2gjh4j

p
� 2k2v2

s2�h2�
dh3

dt
�ÿ a3

s3�h3�
������������
2gjh3j

p
� �1ÿ 2�k2v2

s3�h3� ÿ kd1d1

s3�h3�
dh4

dt
�ÿ a4

s4�h4�
������������
2gjh4j

p
� �1ÿ 1�k1v1

s4�h4� ÿ kd2d2

s4�h4� �9�

Fig. 14. Elements for the view of the magnetic levitator.

J. SaÂnchez et al.808

where hi is the liquid level in tank i; ai is the outlet
cross-sectional area of tank i; si(hi) is the cross-
sectional area of tank i; vj is the speed setting of
pump j, with the corresponding gain kj; j is the
portion of the flow that goes into the upper tank
from pump j; and d1 and d2 are flow disturbances
from tank 3 and tank 4 respectively, with corres-
ponding gains kd1 and kd2. The process manipu-
lated inputs are v1 and v2 (speed settings to the
pumps) and the measured outputs are y1 and y2

(voltages from level measurement devices). The
measured level signals are assumed to be propor-

tional to the true level; i.e., y1 � km1h1 and y2 �
km2h2. The level sensors are calibrated so that km1�
km2 � 1.

This process exhibits interacting multivariable
dynamics, because each of the pumps affects both
of the outputs. The linearized model of the quad-
ruple-tank process has a multivariable zero, which
can be located in either the left or the right half-
plane by simply adjusting the throttle valves 1 and
2. Johansson showed that the inverse response
(non-minimum phase) occurs when 0 < 1+ 2 < 1
and minimum phase for 1 < 1 + 2 � 2. The valve

Fig. 15. Schematic view of the quadruple-tank process.

Fig. 16. View of the quadruple-tank virtual lab.

Easy Java Simulations: An Open-Source Tool 809

settings will give the overall system entirely differ-
ent behavior from a multivariable control view-
point. Unmeasured disturbances can be applied by
pumping water out of the top tanks and into the
lower reservoir. This exposes students to distur-
bances rejection as well as reference tracking.

Implementation of the quadruple-tank with EJS
and MATLAB/Simulink

The main window of the EJS application for this
example can be seen at the left-hand side of Fig.
16. Schematically displayed in its upper part are
the four tanks and the set of dripping holes, pipes,
pumps and valves that configure the system. We
tried to make this first image as self-explanatory as
possible. The black arrows indicate the set points
of the lower tanks, those under control. These set
points can be changed interactively by dragging
the arrows up and down. The lower part of the
main window is occupied by primary controls that
let the user specify how the system should run.
With the left-hand column of buttons, the user can
perform the following actions:

. Play, pause and reset the simulation.

. Select to run the nonlinear or linear models (or
both) for the system.

. Choose whether to control the system manually
(M) or automatically (A).

. Select, in the case of automatic control, whether
to use a P or PI controller (this can easily be
extended to other types of controllers).

A detailed explanation about the possibilities of
this control application can be found at [13].
However, in that work, the application was fully
developed using EJS. In this paper, the four-tank
application presented simulates the nonlinear part
of the model using a Simulink block diagram, and
the linear model and the view have been
programmed under EJS.

The process required to create such a hybrid
application is similar to the one used for the
magnetic levitator example. For the first step of
this process, we first had to implement the
nonlinear differential equations corresponding to
the tanks (Equations 9) in a Simulink file (Fig. 17a

Fig. 17. Simulink subsystems of tank 1 and the PID controllers.

Fig. 18. Extract of the M-file fourtanks.m to connect Simulink and EJS.

J. SaÂnchez et al.810

shows the Simulink subsystem of tank 1). We also
created an M-function for the PID controller used
to control the tank levels and included this M-
function in two Simulink blocks connected to the
nonlinear models of tanks 1 and 2. Fig. 17b shows
the diagram of the Simulink subsystem used to
implement the manual and automatic control
system; the PID M-function is included in the
PID1 and PID2 blocks, which are used to compute
the control signals v1 and v2 (the voltages of the
two pumps); two switch blocks, named Switch1
and Switch2, allow us to select automatic or
manual control, depending on the value of a
MATLAB variable, auto, that can be interac-
tively changed using EJS view. In this way, when
the user selects automatic control in the graphical
view, the values of the control signals v1 and v2
are computed and the two PID blocks are selected
to drive the Simulink subsystems for tanks 1 and 2
respectively; however, when the control is manual,
the values of the variables v1 and v2 are set
directly by the user and sent to the MATLAB
workspace, from which the Simulink blocks, v1
and v2, read and pass them to the subsystems for
tanks 1 and 2 .

We also needed to adapt the block diagram for
interaction with EJS. The mechanism for this is
similar to that used for the magnetic levitator
example and requires the introduction of enough
source and sink blocks as needed to exchange
information between Simulink and MATLAB's
workspace.

The second step of the process was to create the
M-file to inform EJS about accessible MATLAB
variables. Fig. 18 shows an extract of the text file
used for this example.

The third and final step was to open this file
from EJS and to connect MATLAB variables with
EJS variables. Fig. 19a shows how EJS variables
are connected to the MATLAB variables defined
in this M-file.

Once all this was done, we could introduce a
simple sentence in the form ``_external.-
step(1);'' in one of EJS's evolution pages to
instruct Simulink to run the block diagram once.
This way, at every evolution step of EJS, the two

models (the linear and the nonlinear) advance in a
synchronized way, generating the state of the
system. Note that both models share the same
user interface: the nonlinear model developed in
Simulink, and the linear model written using the
features of EJS to define and solve differential
equations. The use of different models within the
same application is completely transparent to the
user. EJS generates the necessary Java code to
exchange the information between MATLAB
and EJS variables.

CONCLUSION

Using computer simulations in an instructional
context usually implies using computers to build
models of real-world phenomena in order to help
students grasp the fundamentals of the behavior of
complex systems. Interacting with an instructional
simulation can enable learners to gain better en-
gineering understanding of a real system, process
or phenomenon through exploring, testing hypoth-
eses, and discovering explanations for the mechan-
isms and processes. Furthermore, students have an
excellent opportunity to `̀ experiment'' with their
own ideas in terms of engineering design by simple
interaction with the tool. Not only can interactive
virtual labs be effective in presenting engineering
concepts in the classroom, they also can be bene-
ficial in extending students' experience in analysis
and design assignments. This invitation to creativ-
ity can be most useful when it comes to specialized
control engineering student projects.

In this context, many control educators would
be more willing to use interactive simulations in
their lectures and labs if they had a set of tools that
would facilitate their development. An obvious
way to achieve this is to select one of the well-
known software packages in the control engineer-
ing field, such as MATLAB/Simulink, and to
provide a tool that would wrap models with the
necessary layers of interactivity without demand-
ing a deep knowledge of computer programming.
From the point of view of MATLAB's users, the
benefits of this approximation is twofold: it lets

Fig. 19 (a). Variable page illustrating the link between some EJS and MATLAB variables. (b) Evolution page showing the EJS
instruction to order Simulink runs one step of simulation.

Easy Java Simulations: An Open-Source Tool 811

them reuse all the MATLAB legacy code and also
takes advantage of their experience in the use of
this de facto standard.

This paper shows two examples of the type of
control applications that have been created using
Easy Java Simulations, a software tool that helps
create, in a very easy way, dynamic and interactive
scientific simulations in the Java language. In the
view of the two final developments, it is clear that
EJS takes a step forward in the use of interactivity
and MATLAB in an instructional environment. A
more detailed explanation of the development of
EJS applications using MATLAB/Simulink can be

found in the EJS documentation. The software
package and the examples shown in this paper
are available for free at http://fem.um.es/EJS.

Finally, we would like to emphasize that under
no circumstances should instructors forget that
their ultimate goal is to arouse students' curiosity
to discover, question, and wonder. Interactivity is
one of the inherent ways for human beings to
perform this.

AcknowledgementsÐThis work has been supported by the
Spanish CICYT under grant DPI2001-1012 and DPI2004-
01804.

REFERENCES

1. S. Dormido, The role of interactivity in control learning (Plenary Lecture), IFAC Symposium on
Advances Control Education ACE'03, Oulu, Finland, June 2003.

2. S. Dormido, Control learning: Present and future, Annual Reviews in Control, 28 (2004), pp. 115±
136.

3. Y. Piguet, SysQuake: User Manual, Calerga (1999).
4. E. Esquembre, Easy Java Simulations: A software tool to create scientific simulations in Java,

Comp. Phys. Comm. (2002). See also http://fem.um.es/Ejs.
5. S. Dormido, J. Aranda, J. M. DõÂaz and S. Dormido-Canto, Interactive educational environment

for design by QFT methodology, Proceedings of 5th International Symposium on Quantitative
Feedback Theory and Robust Frequency Domain Methods, pp. 223±230, Pamplona (August 2001).

6. S. Dormido, F. Gordillo, S. Dormido-Canto and J. Aracil, An interactive tool for introductory
nonlinear control systems education, IFAC World Congress b `02, Barcelona, July 2002.

7. P. Albertos, J. Salt, S. Dormido and A. Cuenca, An interactive simulation tool for the study of
multirate sampled data systems, IFAC Symposium on Advances Control Education ACE `03,
Oulu, Finland, June 2003.

8. S. Dormido, M. Berenguel, S. Dormido-Canto and F. RodrõÂguez, Interactive learning of
introductory constrained generalized predictive control, IFAC Symposium on Advances Control
Education ACE `03, Oulu, Finland, June 2003.

9. N. Tan, D. Atherton and S. Dormido, Systems with variable parameters: Classical control
extensions for undergraduates, IFAC Symposium on Advances Control Education ACE `03,
Oulu, Finland, June 2003.

10. W. Christian, The open source physics project (http://www.opensourcephysics.org).
11. ECP Educational Control Products, Magnetic Levitation System, manual for model 730 (1999).
12. K. H. Johansson, The quadruple-tank process: A multivariable laboratory process with an

adjustable zero, IEEE Trans. on Control Systems Technology, 8(3) (2000), pp. 456±465.
13. S. Dormido and F. Esquembre, The Quadruple-Tank Process: An Interactive Tool for Control

Education, Proceedings of the European Control Conference, Cambridge, UK (2003).

JoseÂ SaÂnchez received his Computer Sciences degree from Madrid Polytechnic University in
1994 and his Ph.D. from UNED in 2001. Since 1993, he has been working at UNED's
Department of Computer Sciences and Automatic Control as an Associate Professor.

Francisco Esquembre was born in Alicante (1963) and received a Ph.D. in Mathematics in
June 1991 from the University of Murcia, Spain, where he has worked since 1986, holding a
permanent job as an Associate Professor from 1994.

SebastiaÂn Dormido received his Physics degree from Madrid Complutense University (1968)
and his Ph.D. from Country Vasque University (1971). In 1981, he was appointed Professor
of Control Engineering at UNED. He has supervised 25 Ph.D. theses and co-authored
more than 150 conference papers and 100 journal papers. Since 2002 he has been President
of the Spanish Association of Automatic Control, CEA-IFAC. His scientific activity
includes various subjects in the control engineering field: computer control of industrial
processes, model-based predictive control, robust control, modeling and simulation of
hybrid systems and control education with special emphasis on remotes and virtual labs.

J. SaÂnchez et al.812

Carla Martin received her M.Sc. in Electrical Engineering in 2001 from University
Complutense of Madrid. She is currently completing her doctorate studies at UNED,
Spain.

S. Dormido-Canto received his M.Sc. in Electronic Engineering in 1994 from the ICAI and
his Ph.D. in 2001 from UNED. Since 1994, he has been working at UNED's Department of
Computer Sciences and Automatic Control as an Assistant Professor.

R. D. Dormido received her M.Sc. in Physics in 1994 from University Complutense of
Madrid and her Ph.D. in 2001 from UNED. Since 1994, she has been working at UNED's
Department of Computer Sciences and Automatic Control as an Assistant Professor.

R. Pastor received his M.Sc. in Physics in 1994 from University Complutense of Madrid. He
is currently completing his doctorate studies at UNED, Spain.

A. UrquõÂa received his M.Sc. in Physics in 1992 from University Complutense of Madrid
and his Ph.D. in 2000 from UNED. Currently he is working as an associate professor at
UNED, Spain.

Easy Java Simulations: An Open-Source Tool 813

