
Instructional Use of MATLAB Software
Components for Computational Structural
Engineering Applications*

PETR KRYSL and ABHISHEK TRIVEDI
Jacobs School of Engineering, University of California San Diego, 9500 Gilman Dr., Mail code 0085 La
Jolla, CA 92093-0085, USA. E-mail: pkrysl@ucsd.edu

Object oriented MATLAB software components that have been developed for and used in
instruction of computational structural engineering are described. It is shown that the object
orientation leads to elegant and concise implementations, which helps promote learning and
understanding of the subject at the level of the algorithms.

INTRODUCTION

USING OPEN SOFTWARE tools for instruction
of computational methods to engineering students,
not only graduate, but also undergraduate
students, seems to be making a lot of sense. To
become truly expert, the students need hands-on
practice. Black-box type software may provide
some needed experience, but the tired old joke
about a monkey that had been taught which
buttons to press to get a banana should ring in
our ears. Knowledge of how to operate a tool
GUI must not be considered a replacement for
the understanding of the guts of the tool. Tools
that the students may inspect in depth, preferably
at the source code level, are ideally positioned as
instructional tools at all levels of university
instruction.

We describe some experiences with instructional
software that has been written for and used in
some courses taught in the Department of Struc-
tural Engineering at the UCSD. These courses
span from the introduction to numerical and
graphical tools (SE102), numerical methods in
engineering (SE121), and finite element analysis
(SE131) at the undergraduate level, to advanced
nonlinear finite element analysis at the graduate
level. Importantly, we are also able to report
experiences obtained with these tools in the setting
of undergraduate research in the scope of the
Faculty Mentor Program at UCSD. Four students
have developed MATLAB tools and used them in
research in the past three years.

Example 1. Compute the mass and stiffness
matrices for the pre-stressed cable:

% L = length [m]
% n = number of nodes in the interior
% T0 = prestressing force [N]
% mu = mass density [kg/m]

function [M,K] = cablemats(L, n, T0, mu)
h=L/(n+1);
M = mu * h * eye(n,n);
aux = -ones(n,n) + 3*eye(n,n);
K = (T0/h) * triu(tril(aux,1),-1);

Some of these tools are self-contained library
routines (the likes of LU and QR factorizations),
some are ad hoc programs (optimization of the
period of oscillation of a nonlinear pendulum or
dynamics of pre-stressed cables), and some are
comprehensive object oriented toolkits for engin-
eering models of continua (mechanics of solids,
heat conduction, rigid body dynamics). All of these
tools are pure MATLAB, with particular attention
to the intended use in instruction. We go to great
lengths to ensure that sound software engineering
practices are never abandoned.

MATLAB AS EXPLORATORY TOOL

MATLAB is quite well suited to the classroom.
The interactive nature lends itself well to explora-
tion, and its expressiveness, and completeness of
the overall computational environment is a distinct
benefit compared to languages like Fortran or
C++. Thus, for instance we may express the
lumped-mass discretization of a pre-stressed cable
in a few lines (Example 1), integrate the resulting
ODE's with the centered difference (Newmark)
time-stepper (Example 2), and plot the results in
a sophisticated way (Example 3: surface of trans-
versal displacement for an off-center plucked
prestressed string). All of this in just a few lines,
even while observing good software engineering
practices. Non-negligible is also the ability to
inspect the workings of the code by running in
the debugger, since it any point all the MATLAB
sophistication is available, be it running numerical
algorithms or visualization.* Accepted 30 May 2005.

778

Int. J. Engng Ed. Vol. 21, No. 5, pp. 778±783, 2005 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2005 TEMPUS Publications.

Example 2. Explicit Newmark integrator for linear
second-order systems (in our case cable vibration):

% M = mass matrix
% K = stiffness matrix
% C = damping matrix
% V0 = initial deflection (column

vector) [m]
% V0v = initial velocity (column vector)

[m/s]
% dt = time step [s]
% nsteps = number of steps to take [ND]
function [ts,ys] = dampode_expl_newm

(M, K, C, V0, V0v, dt, nsteps)
n=length(M);
ts=zeros(nsteps,1);
ys=zeros(2*n,nsteps); % init output
Vj = V0; % initial displacement
Vjv = V0v; % initial velocity
Vja = M \ (-K * Vj---C * Vjv); % initial

acceleration
t=0;
for j=1:nsteps

ts(j) = t; ys(:,j)=[Vj; Vjv]; % output
Vj1 = Vj + dt * Vjv + ((dt^2)/2) * Vja; %

update displacement
Vj1a = M \ (-K * Vj1-C * (Vj1-Vj)/dt);

% compute acceleration
Vj1v = Vjv + (dt/2) * (Vja + Vj1a); %

update velocity
Vj = Vj1; Vjv = Vj1v; Vja = Vj1a; % swap
t = t + dt;

end
ts(nsteps+1) = t; ys(:,nsteps+1)=[Vj;

Vjv]; % output

Simple computational tools may be designed in the
form of a collection of small, self-contained units
that together constitute a library. However, this
often leads to the use of the array as the only data
structure. Browsing through the legions of text-
books that deal with numerical algorithms imple-
mented in MATLAB one might think that was the
`MATLAB way'. From a software engineering
point of view that is not very appealing, and not
surprisingly there is anecdotal evidence that
students eventually find out why they dislike
rummaging through poorly written software, no
matter how sophisticated and elegant the algo-
rithms it implements.

Example 3. Plot the motion of the cable as a
surface in 3-D space-time:

function cablehistsurf(ts,ys)
nsteps=length(ts); n=round(size(ys,1)/

2); vs=[0*ys(1,:); ys(1:n,:);
0*ys(1,:)];

surf(ts,(1:n+2),vs, `FaceColor',
`interp','EdgeColor', `none');

hold on; camlight headlight ;
contour3(ts,(1:n+2),vs, 10, `k-');

OBJECT-ORIENTED COMPUTATIONAL
TOOLS IN MATLAB?

Many engineering students nowadays learn C++
or Java as freshmen, which exposes them to object-

based ideas in the form of classes with data
abstraction and data encapsulation, polymorph-
ism, and inheritance. It is hardly necessary to
belabor the advantages that such an approach to
programming contributes to engineering education
(an object-oriented approach seems in many cases
natural and often appeals more to human cogni-
tion than other methodologies), even though it
bears emphasis that the object-oriented approach
is just one of several alternatives.

MATLAB has incorporated object-oriented
concepts as an addition to its core strengths. For
instance the graphical user interface and visual-
ization capabilities are accessible from the Java
programming language, and the instances of
figures and other components may be treated as
objects. MATLAB's object-oriented features have
been recently applied to very sophisticated math-
ematical modeling [9], and to challenging simula-
tions on a fairly large scale with multiple coupled
partial differential equation models [8].

This paper does not intend to provide an intro-
duction to object-oriented programming with
MATLAB. For reference and additional informa-
tion please refer to MATLAB online technical
documentation [6]; for a gentle introduction see
[7]. However, several technical issues have a bear-
ing on the subject of instructional use. Perhaps the
trickiest problem is related to the way MATLAB
passes arguments: in MATLAB, there is no
passing of variables by reference. When writing
methods that update an object, you must pass back
the updated object and use an assignment state-
ment. For instance, this call to the set method
updates the name field of the object A and returns
the updated object:

A = set(A,'name','John Doe');

Unfortunately, that is rather counterintuitive,
especially to students that are used to C++ or
Java, where the actions on objects are explicitly
allowed to change the state of the object. As an
alternative, one could use the mechanism of assign-
ing objects in the name space of the caller. (This is
not recommended as a rule, since the practice of
modifying the caller's data is dangerous.) The
assignin function may be used to emulate the
change of the state as a side effect. The methods
called on objects needs to invoke the assignin
function as:

assignin(`caller',self_name(self),self);

to achieve the desired change in the object state to
propagate to the environment of the caller of the
method. This is the approach used in the
MATLAB object-oriented tool Hexcomp [1]. For
historical reasons, the finite element toolkit
FEALAB described below does not use this
mechanism, and the first technique detailed
above of assigning the object returned by a
method to propagate the change of state is used.
However, the second approach using assignin is
under consideration as an alternative to which the

Instructional Use of MATLAB Software Components for Structural Engineering 779

whole toolkit may be adapted at some point as it is
closer to what the students expect, given their
grounding in C++ and Java.

Another troublesome issue may be encountered
when designing abstract data structures.
MATLAB does not allow for storage of actual
pointers, and that would make design of complex
data structures more challenging [7]. However, in
our applications we have not actually encountered
a situation which could not be resolved with the
available technical facilities of the language.

Example 4. Code to plot the stress tensor ellip-
soids at the quadrature points:

clf;
gm1=graphics_model(. . .

make_graphics_reps(feb, geom, u,
`gcells'));

draw(gm1, `dataidx', 3, `scale', 100000,
. . .

'displace_by', [1 2 3], `facecolor',
`none')

gm2=graphics_model(. . .
make_graphics_reps(feb, geom, u,

`integration_points'));
draw(gm2, `dataidx', 5, . . .
'scale', [100000 100000 100000 0.2],

`displace_by', [1 2 3])

FINITE ELEMENT ANALYSIS TOOLKIT:
FEALAB

Some ideas from our research made it success-
fully into our instructional software (Example 4
and Fig. 1). Thus, for instance the concept of a
field is used in our adaptive finite element research
tools [2]. Field is an abstraction used in virtually all
finite element continuum mechanics models, where
it represents the unknown quantities such as
temperatures, dislocation densities, displacements
or velocities, etc. In FEALAB it became an actual
class, with a number of methods that take care of
operations such as numbering of equations, appli-
cation of essential boundary conditions, scatter
and gather of values, and so on (Example 5 and
Fig. 2). Even the geometry itself is represented as a
field, which makes formulation of geometrically
nonlinear algorithms quite straightforward. Use of
such an abstract construct would seem hopelessly
advanced for undergraduate classes, but surpris-
ingly it is possible to achieve a high rate of
acceptance when this concept is represented
graphically in the form of a table that allows
only such modifications that preserve consistency
of the entries.

Inheritance is used extensively for the finite
elements as geometry cells (gcell) that support
essentially only geometrical calculations: calcula-
tion of the basis functions and their derivatives in
the form of parametric derivatives, or spatial
derivatives with respect to some geometry field.
There is an abstract base class (in the parlance of
C++) whose purpose is essentially to define a
protocol that the finite elements need to support,

and the pure virtual functions of the protocol are
then implemented in the derived classes.

Example 5. Combine the eigenvector with this
magnitude into another field:

W=clone(u,'w'); % make a copy of u
gm1=graphics_model(make_graphics_reps

(feb, geom, w, `gcells'));
w = scatter_sysvec(w, W(:,2)); % mode

number 2
v = get(w,'values');
wmag = field(`wmag', 1, get(w,'nfens'));
wmag = scatter(wmag, . . .
1:get(wmag,'nfens'), . . .
sqrt(v(:,1).^2+v(:,2).^2+v

(:,3).^2));
wwmag = combine(w,wmag); % combine

eigenvector with its magnitude
gm2=graphics_model(make_graphics_

reps(feb, geom, wwmag, `gcells'));
draw(gm1, `dataidx', 3, `scale', 0,

`displace_by', [1 2 3], `facecolor',
`none')

draw(gm2, `dataidx', 4, `scale', 1,
`displace_by', [1 2 3], `facecolor',
`interp')

APPLICATIONS

We shall give some examples of the use of the
MATLAB software framework in structural
analysis classroom applications.

Fig. 1. Plot of the stress tensor ellipsoids at the quadrature
points.

Fig. 2. Plot the free-vibration mode.

P. Krysl and A. Trivedi780

Calculation of element stiffness matrices
One of the most attractive attributes of

MATLAB code is its succinctness. For instance,
the stiffness matrix for linear elastic stress analysis
is expressed as:

K e �
�

Ve

BT D B dV �1�

where B is the strain displacement matrix, D is the
property matrix (material stiffness), and V is the
element volume. Equation (1) may be approxi-
mated with numerical quadrature as:

K e �
Xn

i�1

wiB
T �ji�D�ji�B�ji�J�ji� �2�

where ji is the location of the quadrature point in
the parametric coordinates, J is the Jacobian of the
map from the parametric coordinates to the physi-
cal space, and wi is the quadrature point weight.
This may be expressed in very compact form in
MATLAB as shown in Example 6. In the first two
lines the connectivity of the element and the
coordinates of the nodes are collected into local
variables. Ndermat_param calculates the deriva-
tives of the basis functions with respect to the
parametric coordinates, and Ndermat_spatial
converts these into spatial derivatives using the
isoparametric interpolation concept. In particular,
note that the spatial coordinates are retrieved from
the geometry field, geom, which makes it straight-
forward to compute the derivatives in various
configurations. The concept of using a geometry
field is surprisingly easy to explain to the students,
and leads naturally to better understanding of the
concepts of total and updated Lagrangean and
Eulerian formulations of nonlinear kinematics.

Note that Ndermat_param, Ndermat_spa-
tial, and Blmat are methods defined on the
various types of finite elements (hexahedra, tetra-
hedra, linear, quadratic, . . .) and are dispatched
dynamically which leads to natural dynamic poly-
morphism. Thus, the loop in Example 6 is valid for
any isoparametric element type. The call to
tangent_moduli is another example of dynamic
dispatch, this time on the material object. Note
that the material state is passed along for unifor-
mity even though the material is linearly elastic as
advertised above.

Example 6.

conn = get(gcells(i), 'conn'); %
connectivity

x = gather(geom, conn, 'values',
'noreshape'); % coordinates of nodes

Ke = zeros(dim*nfens); % element
stiffness matrix

for j=1:npts_per_gcell % Loop over all
integration points

Nder = Ndermat_param (gcells(i),
pc(j,:));%parametric derivatives

[Nspatialder,J] = Ndermat_spatial
(gcells(i), Nder, x);% xyz der

B = Blmat (gcells(i), Nspatialder);
% strain-displacement matrix

D = tangent_moduli
(mat, matstates{i,j},
eye(3,3), eye(3,3),... Lagrangean');

Ke = Ke + w(j)*B'*D*B *J;
end

Development of material models
Formulation and development of complex mate-

rial models is at the heart of computational solid
and structural mechanics. The MATLAB software
framework FEALAB supports these activities by
providing a set of classes that represent material
state. In nonlinear calculations, the material
update is a crucial operation. Example 7 shows
the code for the material state update for a hyper
elastic neo-Hookean material type. The method is
actually defined for a material, and the material
state ms is passed in as an argument. The update is
deformation driven (the deformation gradients at
the beginning of the timestep and at the end of the
timestep are passed as arguments). The updated
material state and the calculated stress are returned
as output. This abstraction allows us to formulate
simple MATLAB drivers that test material models
by supplying manufactured deformation gradients
and compare calculated stress to expected values of
stress. Students find this way of programming the
material state update easier to understand than
conventionally coded material routines because the
parcel of information that needs to be understood
in one lump is very compact.

Example 7. Method for updating the state of the
neo-Hookean hyperelastic material:

function [stress, newms] = update
(self, ms, F1, F, stress_type)

E = self.E; nu = self.nu;
lambda = E * nu / (1 + nu) / (1-2*(nu)); mu =

E / (2 * (1 + nu));
b=F1*F1'; % Finger deformation tensor
J=det(F1);
sigma = mu/J * (b-eye(3,3)) + lambda

*log(J)/J * eye(3,3);
switch stress_type
case `2ndPK'
invF1=inv(F1);
stress = stress_tensor_to_6_vector

(self.mater,J * invF1*sigma*invF1');
otherwise
stress = stress_tensor_to_6_vector

(self.mater,sigma);
end
C=F1'*F1; % Green deformation tensor
ms.strain_energy = mu/2*(trace(C)-3)-

mu*log(J) + lambda/2*(log(J))^2;
newms = ms;
return;

Exploration of mass lumping
Example 8. Calculation of element mass

matrices and assembly of the system mass matrix:

M = sparse_sysmat;
M = start (M, get(u, `neqns'));
ems = mass(feb, geom, u);
M = assemble (M, ems);
M = finish (M);

Instructional Use of MATLAB Software Components for Structural Engineering 781

Example 9. Calculation of element mass
matrices conversion into lumped mass matrices,
and assembly of the system mass matrix:

M = sparse_sysmat;
M = start (M, get(u, 'neqns'));
ems = mass(feb, geom, u);
for i=1:length(ems)

Me=get(ems(i),'mat');
% get as consistent element mass matrix

ems(i)=set(ems(i),'mat',
diag(sum(Me))); % store as lumped
element

mass matrix
end
M = assemble (M, ems);
M = finish (M);

Mass lumping techniques have a way of affecting
results for vibration and wave propagation
problems in solid and structural dynamics.
FEALAB provides a mechanism for calculation
of element and system matrices that is amenable to
easy-to-understand explorations of the effects of
mass lumping. Example 8 shows code to assemble
the consistent mass matrix. The first two lines
initialize the system mass matrix as an empty
sparse matrix, and the last line essentially gives
the mass matrix the chance to finalize its state
before it gets used. The third and fourth lines carry
out the calculation of the element mass matrices,
and the assembly of these elements matrices into
the system matrix. Therefore, the FEALAB
Toolkit does not need to provide a specialized
method for the calculation of lumped mass
matrices, since all the element mass matrices are
available for modification. Example 9 demon-
strates how the lumping of the mass matrices
may be effected by the row-sum technique.

CONCLUSIONS

We have described some of our efforts aimed at
providing undergraduate and graduate students
with tools for numerical experimentation, and in
particular for hands-on exploration of simulation
tools for finite element solid and structural analysis.
The object-oriented approach has proven to be
successful at doling out the information that needs
to be digested in small, easily understandable
packages. Student feedback shows this quite clearly.

MATLAB proved to be a good tool for the
intended use, especially due to its interactivity and
completeness of the computational environment.
The brevity with which matrix operations may be
expressed is particularly helpful.

When designing object-oriented software
whose primary goal is to facilitate understanding
in MATLAB, we have to deal with one or two
troublesome aspects. In particular, the MATLAB
way of passing arguments forces the designer to
use non-obvious tricks to propagate the change of
state of objects affected by method invocations.
That makes for trouble, as we have experienced
with our students who have often had to struggle,
especially on the undergraduate level where
students typically come equipped with fresh know-
ledge of C++ or Java.

We never worry about computational ineffi-
ciency here. The problems that may be solved
with the described MATLAB finite element
toolkit are really small (typically several hundred
equations), but large-scale computation was
never the goal. We have always aimed at creating
software for experimentation and interactive
exploration.

REFERENCES

1. P. Krysl, W. T. Ramroth, L. K. Stewart and R. J. Asaro, Finite element modelling of fiber
reinforced polymer sandwich panels exposed to heat, Int. J. Numerical Methods in Engineering,
61(1), 2004, 49±68.

2. Petr Krysl, Abhishek Trivedi and Baozhi Zhu, Object-oriented hierarchical mesh refinement with
CHARMS, Int. J. Numerical Methods in Engineering, 60(8), 2004, pp. 1401±1424.

3. L. Endres and P. Krysl, Octasection-based refinement of finite element approximations on
tetrahedral meshes that guarantees shape quality, Int. J. Numerical Methods in Engineering,
59(1), 2004, pp. 69±82.

4. P. Hammon and P. Krysl Implementation of a general mesh refinement technique, CTU Reports,
Czech Technical University in Prague, 1, Vol. 7 (2003), pp. 57±70.

5. P. Krysl, E. Grinspun and P. SchroÈder, Natural hierarchical refinement for finite element methods,
Int. J. Numerical Methods in Engineering, 56(8), 2003, pp. 1109±1124.

6. MATLAB documentation on the Web. http://www.mathworks.com/access/helpdesk/help/help-
desk.html

7. Peter Webb and Gregory V. Wilson, MATLAB as a Scripting Language. A simple way to do
powerful things, Dr. Dobb's Journal, January 1999.

8. FEMLAB, multiphysics modeling (2003). www.comsol.com
9. Diffman, an object oriented MATLAB toolbox for solving differential equations on manifolds

(2003). www.ii.uib.no/diffman/

Petr Krysl is an associate professor at the University of California, San Diego. He holds a
Ph.D. in Theoretical and Applied Mechanics 1993, and M.Sc. in Statics and dynamics of
structures 1987, both from the Czech Technical University in Prague. Petr Krysl teaches

P. Krysl and A. Trivedi782

mechanics, numerical mathematics, and structural analysis courses, and does research in
various areas of computational mechanics.

Abhishek Trivedi is a Ph.D. student at the University of California, San Diego, and
contributed to this work as teaching assistant for the undergraduate course SE131
`̀ Finite element analysis'' which uses the described MATLAB tools.

Instructional Use of MATLAB Software Components for Structural Engineering 783

