
Enhancing an Advanced Engineering
Mechanics Course Using MATLAB
and Simulink*

JAMES B. DABNEY
Systems Engineering Program, University of HoustonÐClear Lake, Houston, Texas.
E-mail: dabney@cl.uh.edu

FATHI H. GHORBEL
Department of Mechanical Engineering, Rice University, Houston, Texas

An advanced engineering mechanics course teaches students to analyze and model a variety of
dynamical systems using Newtonian and Lagrangian mechanics approaches. The modeling task
typically produces nonlinear differential equations that are best solved numerically. In order to
prepare students to competently solve these systems numerically, they must master a suitable
programming environment. This mastery is achieved incrementally throughout the semester. This
paper describes a successful approach to developing the necessary programming skills, culminating
in a course project in which the students model a complex dynamical system and produce a
graphical animation allowing visualization of dynamical behavior. The paper also describes typical
course projects that have been successfully completed by advanced undergraduate and beginning
graduate students.

INTRODUCTION

AN IMPORTANT SKILL in advanced engineer-
ing mechanics is the ability to simulate and visual-
ize system dynamical behavior. Traditionally,
advanced engineering mechanics courses emphas-
ize analysis of kinematics and dynamics, culminat-
ing in formulation of equations of motion in the
form of ordinary differential equations (ODE).
The advanced engineering mechanics course at
Rice University was enhanced via the addition of
numerical simulation using MATLAB and Simu-
link so that the students develop the ability to
correlate system behavior with the equations of
motion. In order to prepare students for their
semester project, which includes a numerical simu-
lation complete with a graphical animation,
MATLAB and Simulink were integrated into the
course throughout the semester.

The use of MATLAB and Simulink in the
engineering curriculum is widespread today.
Many engineering textbooks offer MATLAB and
Simulink exercises. The MathWorks' website
(www.mathworks.com) lists hundreds of engineer-
ing texts that feature MATLAB or Simulink
examples and exercises. There is also an extensive
literature on the use of these tools to augment
engineering courses [1±8]. These references provide
a representative sampling of the various
approaches to exploiting these tools in the curri-
culum. Two main approaches to the use of

MATLAB and Simulink are evident in the litera-
ture.

The first approach is to use MATLAB and
Simulink to develop custom software to allow the
students to experiment with important concepts.
For example, Kezunovic et al. [5] developed a set
of MATLAB tools to demonstrate issues in power
engineering. These tools consist of prebuilt simula-
tions with graphical user interfaces that allow the
students to vary system parameters and observe
behavior. Gomez et al. [3] employ a similar
approach to augmenting an acoustical engineering
course. This software allows the students to easily
synthesize acoustic arrays and plot their behavior.
Johansson and M. Gafvert [7] describe a set of
MATLAB programs to assist students in an intro-
ductory controls class to experiment with linear
systems analysis and design techniques. The
success reported for these tools suggests that they
are significant enhancements to the curriculum.

A second, more advanced, approach to engin-
eering course enhancement is to require the
students to do the programming themselves.
Asemi and Yaz [1] describe the use of MATLAB
and Simulink in a nonlinear systems analysis
course. They observed improved student under-
standing of the course material and increased
student interest in the subject. Asemi and Yaz
also note that there are significant challenges to
integrating the software tools. Among the chal-
lenges are ensuring that students have sufficient
access to the software, teaching the students to use
the software without interfering with the course* Accepted 3 July 2005.

885

Int. J. Engng Ed. Vol. 21, No. 5, pp. 885±895, 2005 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2005 TEMPUS Publications.

material, and making the use of MATLAB and
Simulink integral to the course. Similarly, Adawi
[6] notes that students will lose motivation to use
the software tools unless the MATLAB program-
ming is integrated into the curriculum.

The advanced engineering mechanics course at
Rice University is taught to engineering seniors
and beginning graduate students. The prerequisites
include the sophomore engineering mechanics
course, an introductory programming course, and
the standard engineering mathematics preparation.
The course covers the following topics:

1. Introduction to systems
2. Review of relevant mathematics
3. Three-dimensional kinematics
4. Dynamics of a particle
5. Dynamics of systems of particles
6. Dynamics of rigid bodies (Newtonian

mechanics)
7. Elements of analytical dynamics (Lagrangian

mechanics)
8. Concepts from systems theory

As can be seen from this list of topics, the skills the
students acquire allow them to develop equations
of motion for three-dimensional systems of rigid
bodies. The use of MATLAB and Simulink is
extremely valuable in advanced engineering
mechanics in that it allows students to study the
system behavior corresponding to the equations of
motion. Using graphical animations, the students
gain a qualitative understanding of the behavior
and can correlate that with the numerical results.

This paper illustrates successful approaches to
the two primary challenges to integrating
MATLAB and Simulink into an advanced engin-
eering mechanics course: teaching the students to
use the software and augmenting the course such
that the students build skills and confidence gradu-
ally throughout the semester. The students are
introduced to MATLAB and Simulink early in
the semester via tutorial sessions [9, 10] which
include basic MATLAB programming, solving
ODEs in MATLAB, MATLAB graphics, Simu-
link modeling, and graphical animations in
MATLAB. The next section describes the
MATLAB, Simulink, and graphical animation
tutorials that address the first challenge. Through-
out the semester, homework sets include
MATLAB and Simulink problems of increasing
difficulty, allowing the students to gain proficiency
and confidence. Example assignment problems for
each phase of the course are provided in the
following section. Each student in the course is
required to complete a course project. The projects
are chosen from a set selected to provide a reason-
able level of challenge for advanced undergradu-
ates or beginning graduate students. The projects
involve modeling a dynamical system present in
the dynamic systems laboratory or for which
measured data is available for comparison. Three
example projects, the Rice SPENDULAP, a
human respiration model, and a magnetic levita-

tion experiment, are then described, followed by
the conclusions.

MATLAB/SIMULINK TUTORIAL

Many of the students in this course have some
experience with MATLAB. Rice mechanical en-
gineering undergraduates are introduced to
MATLAB in an introductory engineering
programming course and again in the differential
equations course. MATLAB and Simulink are
available in the computer labs throughout the
campus, providing easy access to the software.
However, few of the students are sufficiently profi-
cient to succeed in modeling complex dynamical
systems and developing graphical animations.
Furthermore, most undergraduates receive their
first exposure to block diagram notation and
Simulink in this course. Therefore, early in the
semester, tutorials are presented to refresh
students' basic MATLAB skills, introduce Simu-
link, and to introduce graphical animations. Both
the MATLAB and Simulink tutorials are offered
as supplemental evening class sessions to accom-
modate availability of instructional laboratories
and avoid reduction of course content.

MATLAB tutorial
The MATLAB tutorial [9] consists of two main

parts. First, the basics of MATLAB programming
are reviewed, including syntax, M-file structure,
and MATLAB data structures. This lecture also
covers basic MATLAB graphics. Next, the
MATLAB ordinary differential equation (ODE)
solvers are introduced. The MATLAB tutorial is
scheduled to coincide with the classroom introduc-
tion of state±space methods. Thus, the ODE
tutorial reinforces the classroom lecture and
provides some practical experience converting
scalar higher-order and coupled systems of ODEs
to state±space form.

MATLAB has grown into a comprehensive
programming environment suitable for a wide
range of engineering problems. Therefore, it is
important when developing a MATLAB tutorial
to focus on a subset of MATLAB features and
capabilities applicable to the problem class at
hand.

The tutorial begins with an introduction to
relevant MATLAB data constructs: vectors,
matrices, structures. The MATLAB language is
rich with additional data constructs, including a
variety of data types (fixed point, single precision,
etc.) and constructs (cell arrays, multidimensional
arrays). We restrict coverage to two-dimensional
matrices and structures using the default double-
precision floating point data type, because we have
found them to be sufficient for the modeling and
simulation task.

The tutorial next addresses basic MATLAB
plotting capabilities (plot command), including
axis labels and titles, but excluding advanced

J. Dabney and F. Ghorbel886

capabilities such as LaTeX characters, MATLAB
Handle Graphics (which is covered in the graphical
animation tutorial), and multidimensional plots.

There are many approaches for implementing
ODE solutions in MATLAB, and, no doubt,
many approaches to teaching the process. We
have found that, at this academic level, it is adequate
to portray ODE solvers as `̀ black boxes'' and defer
discussion of the details of numerical ODE solution
to other courses. The ODE solvers are presented as
black boxes that take as input ODE and initial
conditions and produce as output functions that
satisfy the ODE and initial conditions. The sche-
matic of solving an ODE is shown in Fig. 1.

The MATLAB ODE solvers can be thought of
as functions that replace the exact solution (a
function that satisfies the ODE) with a table. The
solution structure of Fig. 1 is developed in
MATLAB as a pair of M-files. A function M-file
with a prescribed set of calling arguments (Fig. 2)
comprises the ODE. The remainder of the system
is a script M-file with three parts, as illustrated in
Fig. 3, corresponding to the three sections shown
in Fig. 1. The first part of the script M-file names
the ODE function and specifies initial conditions.
The second part of the script M-file is the invoca-
tion of the solver and consists of a single line of
code which returns the solution function as a table.
The third part of the script M-file does post-
processing, such as plotting the solution table.

The MATLAB ODE solvers all solve vector
first-order ODEs, so it is necessary at this point
to introduce the concept of converting higher-
order scalar and coupled scalar ODEs into first-
order vector ODEs. This concept is presented in
two stages. A second-order ODE representing a
damped spring mass system (Fig. 4) is presented
and used to illustrate the concept. First, the scalar
second-order ODE,

�x � ÿ k

m
xÿ c

m
_x

is presented. Next, the concept of state variables
is briefly introduced, and the equation of motion is
rewritten as a vector first-order ODE after defining
z1 � x, z2 � _x

_z � z2

_z2 � ÿ k

m
z1 ÿ c

m
z2

A pair of M-files implementing the vector ODE
(Figs. 2 and 3) is displayed and discussed in some
detail.

Finally, a two-mass system as shown in Fig. 5 is
used to extend the concept to coupled scalar ODE.
First, the two coupled second-order ODE are written,

�z � ÿ c1

m
� _zÿ _y� ÿ k1

m1
�zÿ y�

�y � ÿ c1

m2
� _yÿ _z� ÿ c2

m2

_yÿ k1

m2
�yÿ z� ÿ k2

m2
y

Then, after defining state variables x1 � z, x1 � _z,
x3 � y, x4 � _y, the equations of motion are written
as the vector first-order ODE

_x1 � x2

_x2 � ÿ c1

m1
�x2 ÿ x4� ÿ k1

m1
�x1 ÿ x3�

_x3 � x4

_x4 � ÿ c1

m2
�x4 ÿ x2� ÿ c2

m2
x4

ÿ k1

m2
�x3 ÿ x1� ÿ k2

m2
x3

Fig. 1. Solving an ODE.

Fig. 2. ODE function M-file.

Fig. 3. ODE script M-file structure.

Enhancing an Advanced Engineering Mechanics Course 887

Fig. 6 displays a function M-file that implements
the set of first-order ODEs and Fig. 7 the corres-
ponding script M-file that solves the system of
ODEs.

Simulink tutorial
The students are introduced early in the semester

to block diagram notation. The Simulink tutorial
[10] begins with a review of block diagram nota-

tion. The same example systems used in the
MATLAB tutorial are used as the basis for the
block diagram discussion. We have found that the
students master Simulink fundamentals rapidly via
hands-on experience. Therefore, the Simulink
tutorial is presented in a computer lab, where
each student can implement the examples during
the class. Thus, at the completion of the tutorial,
the students have already succeeded in building
and running models.

The main steps in the Simulink tutorial are

1. Introduce block diagram notation starting with
primitive linear blocks: gain, sum, derivative,
and integrator. Introduce a first-order scalar
ODE and draw a corresponding block diagram
on the board.

2. Demonstrate starting Simulink and discuss
briefly the structure of the menus and block
libraries.

3. Implement the first-order scalar system using
the basic blocks. At this stage, it is emphasized
that the essence of Simulink modeling is the

Fig. 4. Spring-mass system.

Fig. 5. Two-cart system.

Fig. 6. ODE function M-file for coupled system.

Fig. 7. Script M-file for coupled system.

J. Dabney and F. Ghorbel888

same as the MATLAB ODE approach with
which the students are already familiar. That
is, the block diagram is a graphical representa-
tion of the differential system similar to the
function ODE M-file used in the MATLAB
tutorial, the configuration of the integrator
blocks sets initial conditions, and the Simula-
tion menu on the Simulink toolbar implements
the solver. Finally, the sinks blocks such as
Scope and To Workspace implement the post-
processing part of Fig. 1.

4. Once the class is comfortable with the Simulink
interface, the tutorial continues with the
second-order system, shown in Fig. 4 and
used in the MATLAB ODE tutorial. We pro-
ceed at this point with a recipe for drawing
block diagrams for continuous systems. In the
recipe, we start with an integrator for each
order of the system. So, for the second-order
system, draw two integrators, label, and con-
nect them as shown in Fig. 8. Next, add gain
blocks to compute �x from _x, x, and input (Fig.
9). Finally add the source (input) blocks and
output blocks (Fig. 10). The construction of
this model is a good place to illustrate addi-

tional model-building concepts such as branch-
ing from signal lines and flipping and rotating
blocks.

5. Next, we discuss development of more complex
block diagrams using the two-cart example of
Fig. 5. For this example, we start with the two
second-order ODE. We construct the block
diagram on the board, but do not devote class
time to building the Simulink model. Instead,
we briefly show the model, which is also
included in the class handout [11].

For this class, we have not found it necessary to
cover advanced Simulink concepts such as subsys-
tems and masking, analysis tools (linearization and
trim), callbacks, or S-functions.

Graphical animations
MATLAB and Simulink provide a rich set of

capabilities for producing graphical animations.
Among these are primitive graphics using the
MATLAB plotting commands, the Animation
Toolbox (available for free download from Math-
Works' website), Virtual Reality Toolbox, and
Dials and Gauges Toolbox. The basic MATLAB
plotting commands provide sufficient animation
capability for our course, but some students prefer
the Animation Toolbox.

MATLAB Graphics Animations are also taught
in the computer lab, to allow the students to
implement the example programs during theFig. 8. Draw integrator blocks first.

Fig. 9. Add gain and sum blocks.

Fig. 10. Complete Simulink model.

Enhancing an Advanced Engineering Mechanics Course 889

lecture. Although there are many alternatives for
developing graphical animations, we present a
method that is simple to implement and consistent
with the ODE simulation structure of Fig. 1 in
which the animation is a logical part of the post-
processing segment. The steps are as follows,
starting with the [t, x] output of the solver where
t is the time vector and x the computed state vector
history corresponding to time points t:

1. Initialize the graphical animation, saving han-
dles to the graphical objects

2. Loop through the time points:
a. Compute new object parameters based on

state
b. Set object characteristics
c. Pause briefly (� 0.1 sec) for the image to

update to the new configuration

The animation process is illustrated with a
simple example in which a small square moves in
a circle using the MATLAB code in Fig. 11.

The animation window is shown in Fig. 12. As
the animation loop executes, the small square
follows a circular path. The students enter the
example code during the tutorial and experiment
with changing parameters. Although extremely

simple, this example contains all the elements of
a graphical animation and students typically find it
straightforward to extend the example to the more
complex animations of their course projects.

The Simulink Animation Toolbox contains a
single animation block and supporting MATLAB
functions. The animation toolbox allows students
to develop relatively sophisticated animations
using a simple drawing scheme. The animation
block receives as input a single vector signal.
Using a drawing palette, the figure to be animated
is drawn in the animation workspace. Next, the
properties of the drawing objects are associated
with elements of the block input vector. A simple
example of a pendulum simulation is illustrated in
class (Fig. 13).

BUILDING MATLAB/SIMULINK SKILLS

Many of the homework assignments throughout
the semester include MATLAB or Simulink
problems of increasing difficulty. This section
provides examples of problems used throughout
the course.

Fig. 11. Simple MATLAB animation.

Fig. 12. Simple animation window.

Fig. 13. Animation toolbox pendulum figure.

J. Dabney and F. Ghorbel890

Basic MATLAB skills
The first few lectures provide a review of the

mathematics concepts that are important in
advanced dynamics, including a review of linear
algebra. The lectures are supported by a series of
homework assignments that reinforce analytical
solutions with basic MATLAB exercises.

Example 1: Dot Products

Given vectors a
1
, b

1
, c

1
, show that a

r � b
1 � b

1 � a
r
.

Verify the result for a
r � �1; 3; 5�T , b

1 � �2; 1; 3�T
using MATLAB.

Example 2: Matrix Transpose
Given matrices A, B, C, show that �ABC�T �

CT BT AT . Verify the results for

A � 1 3 5
2 1 3

� �
B �

1:5 2
2:5 1
3 2

24 35 C � 1:2
3:1

� �

Example 3: Positive Definiteness
A square matrix A is said to be positive definite

if the scalar quantity x!T
A x!� 0 for all vectors

x
1

of the same order as A, and x!T
A x!� 0 only if

x
1

is a zero vector. Determine by direct computa-

tion whether the matrix

A � 1:5 3
1 4:5

� �
is positive definite. It can be proven that all
eigenvalues of a square matrix have positive real
parts if and only if the matrix is positive definite.
Use MATLAB function eig to verify your analy-
tical result.

Example 4: Matrix Rank
The rank of a matrix is the largest non-singular

submatrix, where we say a matrix is singular if its
determinant is zero. Determine by hand calcula-
tion the rank of the matrix

A �
1 2 3

2:5 2:5 4
2 4 6

24 35
and verify your result using MATLAB command
rank.

Solving ODEs with MATLAB
An important component of an advanced

dynamics course is solving the derived equations
of motion analytically and numerically. This skill

is the primary goal of the MATLAB component of
the course. Homework problems proceed from
simple second-order systems to more complex
higher-order and coupled systems. Examples of
introductory problems and more advanced home-
work problems are presented below.

Example 5
Given the linear second-order time-invariant

system x� x� x � eÿ1, x�0� � 5, x�0� � 0, solve
for x�t� analytically and numerically. Plot the
results of both solutions using MATLAB. Note
that this is a minor extension of the example used
in the MATLAB and Simulink tutorials.

Example 6
The system shown in Fig. 14 (based on problem

6.16 from [12]) consists of two homogeneous links
of mass m, two springs, and a cart of mass M.
Assuming all components other than the cart and
links are massless, derive the equations of motion
using both Newtonian and Lagrangian
approaches. Model the system dynamics using
MATLAB and plot the block location. Dimen-
sions, mass properties, spring constants, and initial
conditions are supplied.

Simulink and animation skills
Simulink exercises are introduced from the

beginning of the course. The first exercises are
simple block diagrams of systems similar to those
described above for MATLAB. As the semester
proceeds, Simulink exercises are included in the
homework assignments and require graphical
animations as well.

Example 7
Consider a disk of radius r rolling in a circular

trough of radius R as shown in Fig. 15 (based on
problem 6.10 from [12]). Derive the equation of
motion of the disk, model the dynamics in Simu-
link, and produce a graphical animation that
resembles Fig. 15. Dimensions, mass properties,
and initial conditions are specified.

Fig. 14. Two-degree-of-freedom system.

Fig. 15. Disk rolling in a trough.

Enhancing an Advanced Engineering Mechanics Course 891

EXAMPLE PROJECTS

Each student is required to complete a course
project that entails modeling a moderately
complex system, deriving equations of motion,
building a simulation in MATLAB or Simulink,
and developing a graphical animation driven by
the simulation. In previous semesters, we experi-
mented with providing broad guidelines for
projects but allowing the students to conceive the
projects on their own. Frequently, the students
selected projects that were either too simple or
too difficult. We have observed consistently
better results and student feedback if they are
provided with a set of candidate systems to
model with clearly specified tasks. The systems
from which the students may choose are either
laboratory apparatuses in the robotics lab or
biological systems for which experimental data is
available. Among the systems offered are the Rice
SPENDULAP spherical pendulum system, a
human respiration model, industrial emulator
[13], a control moment gyroscope apparatus [14],
and a magnetic levitation apparatus [15]. To illus-
trate the projects, the Rice SPENDULAP, human
respiration model, and magnetic levitation system
are described next.

Rice SPENDULAP
The Rice SPENDULAP [11, 16] (Fig. 16) is a

spherical pendulum apparatus that is useful for
illustrating a variety of important topics in kine-
matics, dynamics, simulation, and control. The
pendulum is mounted in a rotating frame that is
supported at the top and bottom by bearings
mounted in a cylindrical housing. The pendulum
consists of a steel tube that is threaded on both
ends and attached to a cylindrical aluminum bob
at the bottom. At the top, the pendulum is

attached to a tee that swings on a stainless steel
pivot pin. The pivot pin is mounted in bearings to
the rotating frame. The rotating frame is driven by
a direct-drive direct current motor (in the �
coordinate direction) and the pendulum swings
freely on the pivot pin (in the � coordinate
direction) when the clutch and lift brake are
released.

The SPENDULAP is a two-degree-of-freedom
under-actuated system. Furthermore, the kine-
matics are three-dimensional. The highly nonlinear
dynamics make it a rich source of examples for
topics such as ignorable coordinates, bifurcation,
and limit cycles.

The student tasks are:

1. Model the system dynamics using Newtonian
and Lagrangian approaches.

2. Simulate the system dynamic response using
MATLAB or Simulink for the following cases:
a. For a constant frame angular velocity con-

sistent with an equilibrium pendulum deflec-
tion of 30 degrees, plot pendulum deflection
as a function of time using an initial pendu-
lum deflection of 30 degrees.

b. Repeat using an initial deflection of 45
degrees and explain the differences.

c. Analytically and experimentally, study the
equilibrium at zero pendulum deflection.

3. Design an input torque rule to cause the pen-
dulum to stabilize at a deflection of 30 degrees
and verify the controller using the simulation
and initial deflection of 45 degrees.

4. Develop a graphical animation of the pendulum
using the simulated trajectory. (A typical ani-
mation is shown in Fig. 17.)

5. Compare the numerical results with trajectory
data from the lab apparatus and explain the
differences.

Fig. 16. Rice SPENDLAP.

J. Dabney and F. Ghorbel892

Human respiration model
The human respiration model is based on recent

research results [17] that account for mechanical
and chemical dynamics involved in the exchange of
carbon dioxide and oxygen during breathing. The
students are presented with a simplified candidate
model structure [18] which represents only the
mechanics of air transport into the lungs during
inspiration and from the lungs during expiration.
The physical model is shown in Fig. 18. In this

model, the lungs are characterized by four regions
with characteristics which are dependent on three
state variables, as defined in Table 1.

The four regions are connected, as shown in Fig.
18. They all lie within a single enclosure represent-
ing the thoracic cage. Air transport is driven by the
pressure difference between the intrapleural region
and the atmosphere.

The students are also provided with schematic
diagrams of an electrical equivalent circuit (Fig.
19) and a mechanical equivalent system (Fig. 20).
All parameters of the equivalent systems are
provided as well.

The student tasks are:

1. Using the mechanical equivalent system,
develop equations of motion using the New-
tonian and Lagrangian approaches.

2. Draw a block diagram of the system.
3. Given a set of MATLAB functions for para-

meters Ruaw, RC , PTM , Rs, and PEL and a
MATLAB file containing measured values of
PPL, compute the trajectories of Q, VL, and VC .

4. Develop a graphical animation of Fig. 18.

Fig. 17. SPENDULAP animation example.

Fig. 18. Model representation of airway mechanics.

Fig. 19. Pneumatic-electrical model equivalent.

Fig. 20. Mechanical system analogous to respiration dynamics
model.

Table 1. Respiratory model characteristics and state variables

Region Characteristics State variable

Upper supported
airway

Resistance Ruaw Q (mass flow rate)

Collapsible
airway

Resistance RC and
recoil pressure PTM

VC (local volume)

Small airways Resistance Rs VL (lung volume)

Lung (alveolar) Recoil pressure
PEL and constant
resistance RLT

VL

Enhancing an Advanced Engineering Mechanics Course 893

Magnetic levitation model
A third course project is based on a commercial

laboratory apparatus produced by Educational
Control Products, Inc. (ECP) employing the prin-
ciple of magnetic levitation. This project is some-
what more challenging, although the graphical
animation task is less difficult. The apparatus
used is the ECP Model 730 MagLev apparatus
[15]. The apparatus can be configured in a variety
of ways. The most general configuration is a
multiple inputÐmultiple output (MIMO) system
in which two electromagnets (upper and lower)
control the position of a pair of rare earth perma-
nent magnets, as illustrated in Fig. 21.

In the configuration shown in Fig. 21, the
system has two degrees of freedom, which can be
represented as the elevations of the two magnets,
y1 and y2, relative to some datum. There are two
inputs, the control efforts for the lower coil (u1)
and upper coil (u2). The equations of motion are
linear with respect to the control effort terms and
nonlinear with respect to the state variables. The

students are provided with a set of candidate
functions relating the control effort inputs and
state variables to corresponding forces on each
magnet. For example, the force exerted on the
lower magnet by the lower coil is approximately

Fu11
� u1

a�y1 � b�4

where a and b are coefficients to be determined
experimentally.

1. Develop equations of motion of the full MIMO
system using both the Newtonian and Lagran-
gian approaches.

2. Given a set of measurements of steady-state
values of control effort and magnet positions,
compute the force coefficients (a, b, etc.).

3. Linearize the equations of motion about an
equilibrium.

4. Design a feedback control to stabilize the linear
system and demonstrate it using a simulation of
the nonlinear system.

5. Implement the feedback control on the labora-
tory apparatus controller, test it, and explain
the differences between simulation and experi-
mental results.

6. Develop a graphical animation of the magnetic
levitation system resembling Fig. 21.

CONCLUSIONS

In this paper, we have described a successful
approach to enhancing an advanced engineering
mechanics course via the addition of numerical
simulation using MATLAB and Simulink. First,
we described tutorial sessions that introduce the
students to systematic approaches for solving
ODEs using MATLAB and Simulink and techni-
ques for developing graphical animations. Next,
we discussed augmenting homework assignments
with MATLAB and Simulink exercises to gradu-
ally improve student proficiency with the software.
Finally, we described three typical course projects
that involve a laboratory apparatus or experimen-
tal data, increasing the students' confidence in the
techniques they have learned and exposing them to
the reality of modeling uncertainty. The approach
we have described in this paper can be tailored to a
variety of advanced engineering courses involving
dynamical systems.

REFERENCES

1. A Azemi and E. Yaz, Utilizing Simulink and MATLAB in a graduate nonlinear systems analysis
course, 26th Frontier in Education Conference, Salt Lake, Utah (1996), pp. 595±599.

2. A. R. Miller, Applying advanced computer tools to engineering education, International Con-
ference on Engineering Education 1999, Progue, Czech Republic (1999).

3. J. J. Gomez-Alfageme, M. Recuero-Lopez and J. L. Sanchez-Bote, The computer in acoustical
engineering education: An experience, International Conference on Engineering Education 1999,
Progue, Czech Republic (1999).

Fig. 21. Maglev apparatus layout.

J. Dabney and F. Ghorbel894

4. P. Masson and P. Micheau, Teaching mechatronics to mechanical engineers: Five years' experience
at the UniversiteÂ de Sherbrooke, Forum on Mechatronics Education in Canada: Past Experiences
and Future Directions, Waterloo, Canada (2001), pp. 10±13.

5. M. Kezunovic, A. Abur, G. Huang, A. Bose and K. Tomsovic, The role of digital modeling and
simulation in power engineering education, IEEE Transactions on Power Systems, 19(1) (2004),
pp. 64±72.

6. T. W. Adawi, Innovation and Integration in Curriculum and Learning: Results and Experiences from
C-SELT Projects, Center for Digital Media and Higher Education, Chalmers University of
Technology (2003).

7. M. Johansson and M. Gafvert, ICTools: Interactive learning tools for control, Lund Institute of
Technology, Lund, Sweden (1997) (http://www.control.lth.se/~ictools).

8. E. Yaz and Azemi, Utilizing MATLAB in Two Graduate Electrical Engineering Courses, Proceed-
ings of the 25th Frontiers in Education Conference (1995).

9. J. B. Dabney, Course notes for introduction to MATLAB, Rice University, Houston, Texas
(http://nas.cl.uh.edu/dabney/Mech501RefsPage/MatlabTutorial.pdf).

10. J. B. Dabney, Course notes for Simulink tutorial, Rice University, Houston, Texas (http://
nas.cl.uh.edu/dabney/Mech501RefsPage/smlkntro.pdf).

11. F. H. Ghorbel and J. B. Dabney, A spherical pendulum system to teach key concepts in kinematics,
dynamics, control, and simulation, IEEE Transactions on Education (HTML format-special CD-
ROM issue), 42(4) (1999).

12. L. Meirovitch, Introduction to Dynamics and Control, John Wiley and Sons (1985).
13. Industrial Emulator/Servo Trainer Instructor's Manual, Educational Control Products Inc., Wood-

land Hills, California (1995).
14. Control Moment Gyroscope Instructor's Manual, Educational Control Products Inc., Woodland

Hills, California (1999).
15. Magnetic Levitation System Instructor's Manual, Educational Control Products Inc., Woodland

Hills, California (1999).
16. J. B. Dabney, F. H. Ghorbel and J. McCune, Web-based control of the Rice SPENDULAP,

International Journal of Engineering Education, 19(3) (2003), pp. 478±486.
17. A. Athanasiades, F. H. Ghorbel, J. W. Clark Jr., S. C. Niranjan, J. Olansen, J. B. Zwischenberger

and A. Bidani, Energy analysis of a nonlinear human lung model, Journal of Biological Systems,
8(2) (2000), pp. 115±139.

18. F. H. Ghorbel, Respiratory dynamics project handbook, Rice University, Houston, Texas (http://
nas.cl.uh.edu/dabney/Mech501RefsPage/Respiration.pdf).

James B. Dabney is an Assistant Professor of Systems Engineering at University of
HoustonÐClear Lake, Houston, Texas, where he directs the Systems Engineering
Laboratory. His research interests include mechatronics, dynamics, and control, robotics,
and aircraft trajectory optimization. Dr. Dabney received the B.Sc. degree in Mechanical
Engineering from Virginia Tech in 1974, the M.Sc. degree in Process Monitoring and
Control from University of HoustonÐClear Lake, and the Ph.D. degree in Mechanical
Engineering from Rice University in 1998. He is an Associate Member of IEEE, ASME,
and AIAA and a Member of INCOSE. He is past editor of the ASME Dynamic Systems
and Control Newsletter and Associate Editor for the IEEE Control Systems Society
Conference Editorial Board.

Fathi H. Ghorbel is an Associate Professor at the Department of Mechanical Engineering
and the Department of Bioengineering at Rice University, Houston, Texas, where he is also
the Director of the Dynamic Systems & Control Laboratory, and the Robotics Laboratory,
and Co-Director of the Biomedical Systems and Instrumentation Lab. His research is in the
areas of systems and control theory, robotics, and biomedical engineering systems. Dr.
Ghorbel received a B.Sc. degree with honors from the Pennsylvania State University in
1985, an M.Sc. from Carnegie-Mellon University in 1987, and a Ph.D. from the University
of Illinois at Urbana-Champaign in 1991, all in Mechanical Engineering. Dr. Ghorbel is a
Member of the ASME, a Senior Member of the IEEE, a member of Sigma Xi, IFAC,
SIAM, IASTED, ASEE, and past President of the Tunisian Scientific Society (TSS). He is a
Founding Member and Member of the Board of Directors of the Arab Science and
Technology Foundation (ASTF). He is a recipient of the medal of ``Order of National
Merit in the field of education and sciences'' by order of the President of Tunisia. He is an
Associate Editor for the IEEE Transactions on Control Systems Technology, an Associate
Editor for the ASME Journal of Dynamic Systems, Measurement, and Control, an
Associate Editor for the IEEE Control Systems Society Conference Editorial Board, and
a past Associate Editor for the International Journal of Robotics and Automation.

Enhancing an Advanced Engineering Mechanics Course 895

