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A real-time control laboratory is presented here. The experiments are based on a non-linear plant
and are oriented to undergraduate courses on digital control and intelligent control. The strategies
proposed are both classical and intelligent techniques. Thus, the students can compare, on the real
plant, the results obtained with both approaches. The control problem is to eliminate the load
oscillations in a transport crane. To solve this problem the students will apply a classical state
feedback controller and then will improve this algorithm with intelligent techniques based on neural
networks (NN) and fuzzy logic (FL). The experiments are carried out on a low-cost scale
prototype.
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INTRODUCTION

IN THE CONTEXT of control engineering, the
theoretical concepts sometimes reach such a degree
of complexity that the students have problems
following the lectures. In these circumstances, a
well-planned laboratory is crucial to complement
the theoretical lectures. In this way, the control
concepts are reinforced and, at the same time,
students have to deal with problems derived from
the implementation of the control algorithms in
real systems: such as application of A/D and D/A
converters, control actions in real-time, systems
constraints on commands, etc.

This paper presents some experiments for under-
graduate courses on digital control and intelligent
control. The first three experiments are oriented to
complement the theoretical lectures of a digital
control course. Before the students take this
course on digital control, they have attended a
previous one on linear systems: Laplace transform
theory, time and frequency response, stability,
etc. In the digital control course, topics such as
Z-transform theory, digital filtering, state feedback
control and pole-placement control are studied.
Thus, with the proposed experiments they have
the opportunity to see in practice some of the
methods explained in the lectures, such as data
acquisition and actuation issues, selection of
sampling rate and state feedback control. The
second set of experiments is oriented to an intelli-
gent control course. The program of this course is
basically neurocontrol, fuzzy control and real-time
expert systems. With the proposed experiments,
students can gain practice with intelligent tools
based on neural networks and fuzzy logic. They
can also observe the advantages and disadvantages

of both classical and intelligent techniques. The
training of the students is completed with a module
on advanced control, where stochastic, predictive
and optimal control is studied. For this subject, a
complete laboratory is also proposed in [1] and [2].

To implement the different strategies, a non-
linear system with four degrees of freedom is
considered. The plant, which is very typical in
the process industry, is an overhead crane [3]. Its
task is to transport containers between two points
on a plane. Due to the acceleration of the crab, the
load mass suffers oscillations along the trajectory.
These oscillations are especially undesirable at the
arrival. The control problem will be focused on
eliminating these oscillations. The laboratory is
provided with a low-cost scale model of an over-
head crane. In this prototype the students can
check the proposed algorithms.

The first experiment proposed is to validate the
model of the real plant. To do this, the students
will make a set of open-loop experiments to
compare the real-time results with the simulated
ones and to verify whether the model parameters
are correct. Then, they implement a control strat-
egy based on state variable feedback (SVF). The
controller parameters are calculated by means of
the pole placement method. They can also be
computed solving a linear quadratic optimization
problem. In these experiments, an adequate choice
of the closed-loop poles in the pole placement
controller, or of the cost function matrices in the
optimal controller, is critical in order to get good
results.

As an alternative to these classical strategies, an
intelligent subsystem is added to the controller. It
consists of a neural network (NN) that provides
the adequate values for the controller parameters
in order to optimize the system response. This
operation is performed on-line. Finally, the* Accepted 19 December 2004.
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design of a controller based on fuzzy logic (FL) is
proposed. In view of the growing success of these
strategies [4], which are applied in many industrial
fields, it is important for the students to under-
stand their methodology. This does not seem
difficult, since the fuzzy controllers build the
control rules according to linguistic reasoning. In
this paper, the main design phases are described
and application to the prototype is performed.

OVERVIEW OF INTELLIGENT
TECHNIQUES

Neural networks basics
Artificial neural networks are mathematical

algorithms designed using the biological principles
of brain activities. Basically, a NN performs a
mapping between an input space and an output
space. The objective is to train the network, in such
a way that, when an input is applied, the network
produces the desirable response. Learning is
accomplished by adjusting the interconnecting
weights in response to training data sets. In this
work the NN used are the most common family of
feed-forward networks: the multilayer perceptron
(MLP). An MLP is based on cascading neurones in
layers. The MLP is trained with the backpropaga-
tion algorithm to adjust the weights of the net.
This well-known algorithm uses a gradient descent
technique [5]. The objective is to change the
weights of the network in order to minimize a
criterion function of the form:

J � 1

2

XNL

q�1

�dq�x� ÿ vLq�x��2 �1�

where L is the number of layers of the network, NL

is the number of nodes in layer l, x is the training
sample, vLq is the q-th output of the network and
dq(x) is the desired response of the q-th output.
That is, the aim is to minimize the error between
the output of the net and a pre-specified value.
Because all the nodes in all the layers of the
network contribute to the output vLq, it is neces-
sary to update all these weights to minimize J. To
accomplish this objective, the gradient descent
method states that the weights must be updated
in each iteration according to

wl; j;i�k � 1� � wl; j;i�k� ÿ �@J�k�
@wl; j;i

�2�

where wl,j,i is the weight which connects the output
of the i-th node in layer lÿ 1 to the input of the j-th
node in layer l and � is a constant called learning
rate. The backpropagation algorithm can be
summarized as follows:

Step 1) INITIALIZE weights to small random
values.

Step 2) PROPAGATE the input signal forward
throughout the network.

Step 3) COMPUTE the gradient of the cost func-
tion for each weight of the network.

Step 4) UPDATE weights according to the gradi-
ent descent law.

Step 5) GOTO step 2 and REPEAT the procedure
until end condition is reached.

Fuzzy logic basics
Fuzzy logic (FL) theory applied to control en-

gineering has developed greatly in recent years.
The reason for this is that it offers easy and robust
solutions to complex problems, allowing human
reasoning to be applied to the control of systems.
This reasoning is often qualitative, so the resultant
actions are vague or ambiguous (soft, high, . . . ), in
contrast to the precise mathematics used by
computers. FL solves this problem by considering
a variable as having a membership degree to a
fuzzy set. Fuzzy sets have been defined covering
the full range of the variable, each value of the
variable having a membership degree to each of the
fuzzy sets. Expert rules will be applied to these
fuzzy sets (inference). Due to the non-existence of
fuzzy actuators or sensors (this is, with their inputs
or outputs being fuzzy), it is necessary to add two
steps to the control scheme: fuzzification and
defuzzification. Therefore, there are three different
elements to a scheme of fuzzy control:

. Fuzzification: The precise values of the inputs
must be transformed into their correspondent
fuzzy variables, with the corresponding member-
ship degree to each fuzzy number.

. Inference: Direct application of the rules to the
inputs. As a result the outputs are obtained with
the correspondent membership degrees.

. Defuzzification: The imprecise values of the out-
puts must be transformed into precise ones.

Fuzzification
A fuzzy set A�X, X being the universe of

discourse of A, is characterized by its membership
function

�A : X! �0; 1�
where �A(x) is the membership degree of the
element x in the fuzzy set A for each x2X. The
set A can also be defined as a set of ordered pairs
(x, �A(x) ). The fuzzification consists of obtaining
the value �A(x) from x. If the universe of discourse
belongs to real numbers, the fuzzy set is called a
fuzzy number. The most employed fuzzy numbers
are triangular and trapezoidal shaped. The human
expert defines the magnitudes in vague terms, with
expressions such as `vigorously', `little', `far', `very
cold', etc., using these fuzzy numbers.

Inference
In a fuzzy design, a human expert expresses, by

means of rules like

IF
inputs verify

some premises

� �
THEN

output is a certain

control action

� �
;
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the decisions s/he would take in specific situations.
Each inference rule is applied to the inputs with
their membership degrees. The result of this infer-
ence process is an output for each rule, with a
membership degree obtained applying a specified
t-norm on the inputs. All these outputs (fuzzy sets)
are aggregated using a specified s-norm, thus
obtaining the output fuzzy number.

Basically a t-norm is an operator that models the
logical connective and is applied to fuzzy sets.
Usually the t-norm is taken to be a min operator.
On the contrary, an s-norm is an operator that
models the logical connective or is applied to fuzzy
sets, and is usually taken to be a max operator.

Defuzzification
The output fuzzy number resulting from the

aggregation process will be transformed into a
crisp value. For this, a defuzzification method
like center-of-gravity, middle-of-maxima, height-
defuzzification, etc., is applied to the output fuzzy
number to get a precise value.

Application to a specific system
Consider a system with two inputs and one

output and fuzzy rules extracted from the expert's
knowledge:

R1: if (x is A1 and y is B1) then (z is C1)
R2: if (x is A2 and y is B2) then (z is C2)
. . .

Rn: if (x is An and y is Bn) then (z is Cn)

where fAigi�1;...;n are the fuzzy numbers in U of
the first input variable of the rule's antecedent;
fBigi�1;...;n in V the fuzzy numbers of the second
one; and fCigi�1;...;n the fuzzy numbers in W of the
output variable of the rule's consequences. Let
xo2U and yo2V be two crisp input values; C0i
the fuzzy number inferred from xo and yo applying
the rule Ri; and C 0 the fuzzy number given by
the aggregation of each C 0i . Usually, Mamdani's
method (or min-max-gravity method) [6] is used
for the inference. With this method, the t-norm
that operates on the fuzzy inputs is the min
operator. Then, the membership degree of the

value consequence of the rule Ri can be expressed
generally as:

�C 0
i
;max � minf�Ai

�xo�; �Bi
�yo�g �3�

The membership degree to the inferred fuzzy
number C 0i is:

�C 0
i
�z� � minf�Ci

�z�; �C 0
i
;maxg; z 2W �4�

On the other hand, the s-norm that operates on the
C 0i fuzzy results is the max operator

�C 0 �z� � maxf�C 0
1
�Z�; �C 0

2
�z�; . . . ; �C 0n �z�g; z 2W

�5�
And the center-of-gravity method is employed for
defuzzification:

zo �

�
W

z � �C 0 �z� dz�
W

�C 0 �z� dz

�6�

where zo is the defuzzified value of the fuzzy set C 0.

PLANT DESCRIPTION

The plant on which the experiments will be
developed is shown in Fig. 1. This prototype
consists of the following units:

. Crab: A vehicle that transports the load mass. It
is powered by two DC motors joined to the
driving wheels. The input voltage to each DC
motor can vary between ÿ8.5 V and �8.5 V. The
voltage applied on a motor is proportional to
the angular velocity reached by the motor. The
maximum speed is about 60 rpm for an 8.5 V.

. Load mass: A container joined to the crab by a
steel rope.

. Metal bridge of about 1.2 m length where the
crab can move horizontally.

The values of the crab mass, the length of the rope

Fig. 1. General view of the crane prototype.
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and the mass of the container used in the experi-
ments are as follows:

. Crab mass: 0.3 kg.

. Load mass: 0.15 kg.

. Length of the rope: 0.5 m.

This scale model is complemented by an A/D D/A
converter board, which sends the information to
the control unit and the commands to the crab.
The board is located on a PC, with the necessary
control software.

CONTROL OBJECTIVE

The experiments proposed in this laboratory try
to complete the theoretical background of the
students. The experiments are divided into two
groups: one is related to the design of classical
control strategies and the other is related to the
design of intelligent controllers. The objective of
the proposed control strategies is to take the crab
from an initial point to a desired one, arriving with
no oscillations in the load mass. For this plant, a
simple PID controller is not able to reach the
control objective because of the multivariable
specification.

For this reason, other control strategies are
designed. The first two approaches are based on
a state variable feedback (SVF) controller. To
adjust the gains, two of the most common methods
are used. First, the students try a pole placement
strategy based on the Ackerman's formula. The
second strategy consists of applying an LQ opti-
mization procedure. The third experiment intro-
duces an intelligent scheme of control consisting of
the design of an NN to automatically adjust the
SVF gains. The last experiment is the design of a
controller based on fuzzy logic. Once the dynamics
of this system is known (e.g. by observing the
behaviour of the system under the previous
controllers), the students are prepared to define
the fuzzy variables and their subsets, and also the
inference rules to achieve the control objective.

EXPERIMENTS

Model validation
This experiment is planned to take three hours.

A schematic view of this overhead crane plant is
shown in Fig. 2. The task of the crane is to
transport containers with different masses from
an initial point to a final one. There are four
degrees of freedom: the position of the crab (x),
the linear speed ( _x), the rope angle (�) and its
angular speed ( _�). It is assumed that the crab has
a mass M, the length of the rope is l and the load
mass is m. A simplification is done assuming that
the rope has a negligible mass. The input of the
plant, u, represents the horizontal force applied to
the crab. The application of a non-zero force on
the plant produces undesirable oscillations in the

load mass. The control objective is to make the
crab arrive at the final position with � and _� equal
to zero. Defining the state variables x1� x, x2� _x,
x3� � and x4� _� that control objective can be seen
as taking the crane from the point x1 � x1i, x2 � 0,
x3 � 0, x4 � 0 to the set point x1 � x1ref , x2 � 0,
x3 � 0 y x4 � 0.

The dynamics of the plant can be described [7]
by the following two non-linear second-order
equations

ml� _x4 cos x3 ÿ x2
4 sin x3� � �M �m� _x2 � u

_x2 cos x3 � l _x4 � ÿg sin x3

)
�7�

Some effects due to non-linearities must be consid-
ered. They are actuator saturation, dead zone and
mechanical friction. The first two effects can be
inserted in the model by considering the non-linear
function:

V 0 �
0; if jV j < 1:8

V ; if 1:8 � jV j < 8:5

8:5; if jV j � 8:5

8>><>>: �8�

where V is the voltage (in volts) applied to the
plant and V 0 the resultant voltage obtained by
considering command constraints and dead zone.
The voltage V is proportional to the speed in the
system. However, the input signal u appearing in
(7) is expressed in force units (kg m/s2) and it is
proportional to the acceleration. The following
relation is found between the signals:

u � � dV 0

dt

� � 0:015 �kg �m=�s � Volt�� �9�
The first experiment proposed to the students is to
validate this model. This step is necessary to the
later realization of any control experiment on the
plant. They can do it by applying step voltage
inputs and ramp voltage inputs to get the open-
loop response of the real plant, and then compar-
ing the results with those obtained by simulation of
the model (7), (8) and (9) using the masses and

Fig. 2. Schematic view of the plant.
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lengths of the real plant. In Fig. 3 the theoretical
(dashed line) and the measured (continuous line)
evolution of the x1 and the x3 variables for a
voltage ramp input with slope equal to 3 V is
shown. As can be observed the theoretical model
fits the real plant response relatively well. Observe
that the amplitude of the load mass oscillations
decreases as a consequence of the mechanical
friction effects (not incorporated in the model).
In view of this, the model (7) with the considera-
tions given by (8) and (9) can be chosen as a
representation of the plant dynamics.

After model validation, the real-time implemen-
tation of the different controllers in the prototype
is performed. These controllers are described in the
following sections.

Pole placement controller
The students are asked to design a pole place-

ment controller. This will take approximately three
hours. The procedure is based on obtaining a
feedback control law so that the closed-loop
system presents specified dynamics. The resultant
control action has the following expression:

u�k� � k1e1�k� ÿ k2x2�k� ÿ k3x3�k� ÿ k4x4�k�
�10�

being

e1�k� � x1ref ÿ x1�k� �11�
where x1ref is the reference value for the position
x1, while the reference value for the linear speed x2,
angle x3 and angular speed x4 is zero.

The ki values are adjusted to get the desired
closed-loop response in the system. So, the proce-
dure is, first, to choose the desired closed-loop
poles, and then to calculate the gains. As is well
known, this is accomplished by means of the
Ackerman's formula [8]:

K � �0 0 . . . 1�M ÿ1
c P�A� �12�

Mc being the controllability matrix of the system,

A the matrix of the linearized system and P�A�
the characteristic polynomial of the closed-loop
system with the matrix A substituted for the
complex variable s.

Obviously this algorithm assumes a linear model
for the plant. So the first step in the controller
synthesis is the linearization of the model. The
easiest way is to linearize around the equilibrium
point. This can be done assuming small angles and
ignoring the products of angular variables. In this
way the model (7) is simplified to

_x1 � x2

_x2 � mg

M
x3 � 1

M
u

_x3 � x4

_x4 � ÿ�m�M�g
lM

x3 ÿ 1

lM
u

�13�

The validity of the linearized model can be easily
verified by the students comparing the response of
the non-linear model (7) with the linearized model
(13) when small angles are considered. The algo-
rithm for the real-time implementation of this
experiment is the following:

Step 1) FIX the measuring period T.
CHOOSE the closed-loop poles and
COMPUTE k1, k2, k3, k4 in Ackerman's
formula.

Step 2) READ the inputs x1�k�, x2�k�, x3�k�,
x4�k�.

Step 3) COMPUTE the output u�k�.
Step 4) APPLY u�k� and WAIT until

t � �k � 1�T .
Step 5) k  k � 1.
Step 6) GOTO step 1.

The students in this experiment have to propose
the closed-loop poles for satisfactory performance
of the plant. Several guidelines are provided to the
students: the poles at the origin have to be moved
out of it; and the complex poles should have to
have a given damping factor. Once they have an
appropriate set of gains, the students have to
implement the controller on the plant. They can
implement it easily using any real-time software
package, first programming the input/output
routines for the specific A/D D/A converter.

As is well known, damping factors between 0.4
and 0.7 usually give good closed-loop perfor-
mance. However, for the crane system this range
of values implies large feedback gains and the
response of the system is poor. In practice, to get
better results it is necessary to reduce the damping
factor of the complex poles. In Fig. 4 a real-time
experiment is shown where the complex poles are
selected to have a damping factor of 0.14. The
sample period taken for the real-time implementa-
tion was T� 0.03 sec. This value is several times
smaller than the fastest time constant of the
system. It can be observed that the crane attains

Fig. 3. Open-loop response using a voltage ramp input with
slope 3 V. Theoretical response (dashed line) and measured

response (continuous line).
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the set point smoothly but with overshooting. Simul-
taneously, the variable x3 starts oscillating until the
crane is near to the final position. At this point
the mass oscillation decreases and tends towards
the equilibrium point x3� 0, x4� 0. The settling
time of the closed-loop system is about 10 sec.

The main drawback of this control strategy is
related to the choice of the closed-loop poles. If the
right values for the poles are not encountered, the
feedback gains may take inappropriate values and
the performance of the closed-loop system would
decrease notably.

Optimal controller
In this section another classical control strategy

is proposed to the students: an optimal controller.
This will take approximately three hours. This
strategy uses a control law like (10) where the
feedback gains are chosen to optimize a linear
quadratic function. A typical cost function is:

J �
X1
k�1

�xT
k Qxk � uT

k Ruk� �14�

where x is the 4� 1 state vector. Q is, in this case, a
4� 4 matrix that weighs the state variables and R
is a factor that weighs the applied command. The
choice of these matrixes, Q and R, will determine
the values of the resulting feedback gain, and hence
the performance of the closed-loop system.

The algorithm for the real implementation of
this strategy is similar to the previous controller.
The students should try different values for Q and
R and compare the results obtained. Figure 5
shows an experiment with the gains obtained
from the matrices:

Q �

105 0 0 0

0 310 0 0

0 0 0:05 0

0 0 0 0:015

0BBB@
1CCCA; R � 0:1

With this choice, the weight in the variables corre-
sponding to the position and velocity of the crab is
more important in the cost function than the
corresponding angle and the angular speed. This
will produce higher gains in the position variables
of the crab than in the angular variables. As can be
seen, the position is attained efficiently but the
angle is not corrected until 6 seconds.

If an appropiate weight is considered for the angle
in the cost function, the oscillations of the load mass
are cancelled more efficiently. In Fig. 6 an experi-
ment corresponding to this situation is presented.
The matrices chosen in this case are the following:
Q � diag�105 310 740 2:5� and R � 0:1. Now the
oscillations are cancelled in a shorter time than in
the previous experiment. As a consequence, the
position of the crab will not attain the set point
and the response of the system loses efficacy.

Therefore, an adequate choice of the matrices of
the cost function will be necessary if appropriate

Fig. 4. Real-time experiment for S.V.F. controller. Poles at
ÿ0.5, ÿ178, ÿ0.76 5.28i. The damping factor for the complex
poles is reduced to 0.14. The corresponding gains are k1� 19.36,

k2� 39.79, k3�ÿ18.30 and k4�ÿ3.54. Set point at 0.5 m.

Fig. 5. Real-time experiment for optimal controller. The gains
are k1� 32.4, k2� 56.0, k3�ÿ1.45 and k4� 0.03. Set point at

0.3 m.

Fig. 6. Real-time experiment for optimal controller. The gains
are k1� 32.4, k2� 61.0, k3�ÿ90.0 and k4�ÿ0.02. Set point at

0.3 m.
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gain parameters are to be obtained. This problem
is similar to the definition of the closed-loop poles
of the pole placement controller seen in the
previous section. In the following experiment, an
intelligent control strategy is introduced.

State variable feedback controller using neural
networks

The aim of this experiment is to propose to
students a method for adaptively adjusting the
parameters in a controller. This will take five
hours in the laboratory. Three of these hours will
be spent on simulation experiments and the real-
time experiments will take two hours. Basically the
goal of these real experiments is to show the
students an application of neural networks to the
control of a real plant. The idea is to use NN to
adjust the parameters of a conventional controller
by using information on the system state. The NN
proposed acts as an implicit self-tuner directly
providing the parameters to the controller. Actu-
ally, there is no estimation and control design
stage. The NN, at every moment, simply looks
for the optimal parameters to minimize a cost
function using information on the system state.

This control scheme is shown in Fig. 7 [7]. As
can be observed, an SVF controller similar to (10)
is applied on the x2 and x3 state variables and on
the x1 error variable. Thus, the applied command
is

u�k� � ÿ�k1 k2 k3� � �ÿe1�k� x2�k� x3�k��T
�15�

So there are three parameters to tune: the gains k1,
k2 and k3 corresponding to e1, x2 and x3 respec-
tively. The gain k4 is fixed previously by students.
One NN (NN1) is used to tune the parameters
related to the crab variables, k1 and k2, and
another (NN2) to provide the parameter related
to the load mass variable, k3. The inputs to the net
NN1 are the x1 error and the x1 derivative and for
NN2 the x3 error and the x3 derivative. This

structure based on two NNs is expected to work
better than a one-NN structure due to less para-
meters affecting the cost performance for each
NN. Thus it is less difficult for each NN to find
the optimal values for the gains.

Obviously during an experiment the set-point
x1ref keeps constant until the crane completes the
task. This also assures the convergence of the NNs.
The training of the network is done on-line. At
each stage of the process the NNs are trained to
find the values for k1, k2 and k3 that minimize a
pre-specified cost function. This function is gener-
ally chosen as quadratic. It is proposed to the
students to be in the following form:

J�k� � 1
2

p1�k��x1ref ÿ x1�k��2 � 1
2

p2�k�x2
2�k�

� 1
2

p3�k�x2
3�k� �16�

where pi(k) are time-dependent functions that
weight each variable in the cost function. Depend-
ing on the position of the crab the pi(k) variables
will take the appropriate value.

The computation of the gradient is done
according to

@J�k�
@wL; j;i

� @J�k�
@kj

@kj

@wL; j;i
�17�

The first factor of this expression is:

@J�k�
@kj

� ÿp1�k�e1�k� @x1�k�
@u�k� � p2�k�x2�k� @x2�k�

@u�k�
�
�p3�k�x3�k� @x3�k�

@u�k�
�
@u�k�
@kj

�18�

The factors @xi�k�=@u�k� are obtained immedi-
ately if the model of the plant is known. Avoiding
any assumption about the plant model, these terms
can be obtained by difference approximation:

@xi�k�
@u�k� �

xi�k� ÿ xi�k ÿ 1�
u�k ÿ 1� ÿ u�k ÿ 2� �19�

The factors @u�k�=@kj are calculated from the
expression (15) for the controller:

@u�k�
@k1

� e1�k�; @u�k�
@k2

� ÿx2�k�;
@u�k�
@k3

� ÿx3�k�:
�20�

Starting from the instant k, the algorithm can be
summarized as follows:

Step 1) READ x1�k�, x2�k�, x3�k� and x4�k�.
Step 2) (Networks training)
NN1 training:

@u�k�
@k1

 e1�k�; @u�k�
@k2

 ÿx2�k�
Fig. 7. Structure of the SVF controller for the crane.

A Control Engineering Laboratory Based on a Low-Cost Non-linear Plant 211



Backpropagation

@u�k�
@k1

;
@u�k�
@k2

; e1�k�; _e1�k�; pi�k�ji�1;...;4

� �
;

UPDATE k1 and k2

NN2 training:

@u�k�
@k3

 ÿx3�k�

Backpropagation

@u�k�
@k3

; x3�k�; x4�k�; pi�k�ji�1;...;4

� �
;

UPDATE k3.
Step 3) COMPUTE command

u�k� � ÿ�k1 k2 k3��ÿe1�k� x2�k� x3�k��T :
Step 4) APPLY u�k� and WAIT until
t � �k � 1�T .
Step 5) k k+1.
Step 6) GOTO step 1.

Note that, although NN1 provides the value for k1

and k2 and NN2 provides k3, both NNs use the
same cost function (16). This is why pi�k�ji�1;...;4 is
used in both NNs. This algorithm finds the opti-
mal values for the gains of the controller. For a
fixed parameter plant, the gains of the adaptive
controller will converge to a set of values that
minimizes the performance index. However, if
plant dynamics vary, the gains supplied by the
NNs change adaptively to a new set of values.

Due to the complexity of this algorithm, the
experiments will consist of two sessions. Firstly,
there is a class in the computer room where they
are asked to implement the same control structure
on a SISO linear plant. To do this, they are
provided with MATLAB1 and the Neural
Networks MATLAB1 Toolbox. Then students
have the opportunity to implement the controller
on the crane prototype. The real-time experiments
are carried out using the software package
NNCYC developed by the Computer and Control
Group of the University of La Laguna [9]. This
software allows the definition of the NN structure
and the weights (pi) of the cost function.

The results obtained in one of the experiments
are presented in Fig. 8. This experiment has been
performed after several training trials with the
crane. The gain k4 has been fixed to the value
zero. In other trials, students could vary this
value in order to get better performance from the
controller. The cost parameters chosen are
p1(k)� 20, p2(k)� 0.2 and p3(k)� 0.1. The results
obtained seem entirely satisfactory, since both
control objectives in the load angle and in the
cart position are attained. Observe that, although
the system achieves the control objective, the
evolution is too slow. Note that in the previous
experiment the settling time is about 4 sec and now
this time is about 8 sec. The reason for this is the
transient evolution of the gains until their conver-
gence is achieved.

As an alternative to the SVF controller, a
controller based on fuzzy logic is proposed. The
advantage of fuzzy controllers is that the model of
the system is not necessary in the design of the
controller. Thus it is expected that a fuzzy control-
ler would have better performance than a model-
based controller. In particular, if the linear model
is not available or is not accurate (because angles
are not small enough), the efficiency of the SVF
controller decreases, while the fuzzy controller
presents a good performance. A very simple
controller based on linguistic rules is presented.
The rules are obtained on the basis of a human
expert's knowledge. This reduces the complexity of

Fig. 8. Real-time implementation on the crane prototype.
Evolution of the x1 and x3 variable.

Fig. 9. Scheme of a typical fuzzy controller.
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the control algorithms. A comparison between
these results and the preceding ones is proposed.

Crane control based on fuzzy logic
Students are asked to design a fuzzy controller.

For this experiment five hours in the laboratory
will be needed. The typical scheme of a fuzzy
control system is shown in Fig. 9. The fuzzy
numbers of each input and output variable and
the rules that define the control action must be
specified. These sets and rules are proposed to be
defined intuitively by the students, once they have
studied, in the previous experiments, the behaviour
of the system. For this purpose, visual fuzzy soft-
ware is used. This program allows easy definition
of the fuzzy sets and the inference rules. These
fuzzy sets and the results of the control action
are graphically represented. Mamdani's method,
previously proposed, is used in its discrete form,
computing the output of the controller from the
inputs read in the converter board.

One of the possible choices of the fuzzy variables
and the inference rules that offers acceptable
results is presented below. The chosen input vari-
ables to the inference motor are the error in the
position (e1=x1ref-x1) and the angle of the load (�).
The output variable is the command applied to the
crane (u).

Every fuzzy variable has five sets defined in their
universe of discourse:

PL: Positive Large
PS: Positive Small
ZE: Almost Zero
NS: Negative Small
NL: Negative Large

The membership functions are represented in
Fig. 10. The rules of the inference motor are
defined according to the following considerations:

. There is no action on the angle until the position
is near the set point.

. The oscillations of the load are corrected by
aligning the crab vertically with the load.

. Once the angle is corrected, the crab is taken to
the set point with a small command.

With these guidelines the resultant rule table can
be seen in Fig. 11. The algorithm used for the
implementation of the controller can be summar-
ized as follows:

Step 1) DEFINITION of the fuzzy subsets for the
variables and inference rules.

Step 2) READ the inputs x1(k), x3(k).
Step 3) FUZZIFICATION of the input variables.
Step 4) APPLY the inference motor rules to get

the output variable.

Fig. 10. Membership functions of the defined fuzzy variables.

Fig. 11. Rule table of the crane fuzzy controller.
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Step 5) DEFUZZIFICATION of the output vari-
able.

Step 6) APPLY u(k) and WAIT until t� (k+1)T.
Step 7) k k� 1.
Step 8) GOTO step 2.

The results obtained in one of the experiments are
shown in Fig. 12. Starting from any initial error,
the set point is attained smoothly and with zero
offset. There is no overshooting and the settling
time is about 3 sec. The response to a perturbation
applied on the load mass once the set point is
attained can also be seen. The fuzzy controller
provides the necessary commands to correct the
angle and to reach the target position.

With a thinner choice of the triangular sets
around the final target values, the closed-loop
system is unstable. This is because small variations
in the variables will produce large variations in the
fuzzified variables. Thus, the resultant command
will change too brusquely, causing instability.

An advantage of this kind of controller is its
robust response to changes on the system para-
meters (mass of the crab, mass of the load or
length of the rope). Moreover, even choosing the
rules and the subsets intuitively, on the basis of the
known performance of the system in the previous
experiments, a good response of the controller was
obtained.

Comparing these results and the previous ones,
it can be seen that the oscillations of the load mass
are cancelled in a shorter time than in the preced-
ing experiments. This is because the controller first
tries to correct the load oscillations once the crab is
near the set point. Due to this fact, the variations
on the applied command are higher than in the
preceding experiments. In experiment 2 the
command takes the maximum value to attain the
desired crab position. Nearing this, it slowly
decreases, suppressing the load oscillations. The

command evolution in experiment 3 is very soft,
but the position of the crab is attained after a
longer time. With the fuzzy controller, the
command evolves with sharper changes, but the
angle is corrected earlier.

Due to the different values of the applied
command, the amplitude of the oscillations varies
for experiments with different controllers: high
values of angles are obtained in experiments 2
and 4, while in experiment 3 these values decrease
by roughly half. It is worth pointing out that, with
the fuzzy controller, if there were later load oscilla-
tions, the system would efficiently and quickly
retrieve the set point.

CONCLUSIONS

In this paper, a digital control laboratory has
been proposed. The laboratory is oriented to
digital control and intelligent control courses.
The objective of the experiments proposed is, on
the one hand, to reinforce the theoretical concepts
seen in the lectures and, on the other hand, to
evaluate and compare the performance of both
classical and intelligent techniques in a specific
control problem. An important advantage of this
laboratory is that the plant on which the experi-
ments are carried out is a relatively low-cost plant.
Furthermore, the presence of this kind of system in
industry is very widespread, and the associated
control problem is still a matter of study for
researchers. This makes the laboratory more
attractive for students. Although they consider
that these subjects are not easy because of the
complexity of some of the approaches studied,
they are now more motivated and enthusiastic
than earlier generations that took the laboratory
by simulation.

Fig. 12. Evolution of the position and the angle of the crane applying the fuzzy controller. A perturbation is applied to the load mass
once the set point, situated in 0.5 m, is attained.
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