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This paper presents an educational tool developed for neural network (NN) control of brushless
DC (BLDC) motors. Neural networks courses are widely offered at the graduate and under-
graduate level due to the successful applications of neural networks to the nonlinear and unmodelled
systems control. However, teaching of neural network control in a laboratory may be time
consuming and an expensive task. The developed software helps students learn the application of
neural network control to the electric machinery. It provides flexible structure and graphical
interface which permits the design of the neural networks and its training with various learning
algorithms. Using the proposed tool, neural network control performance of BLDC motors can be
monitored graphically for different NN control structure under different load conditions and
parameter variations.
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INTRODUCTION

BRUSHLESS DC MOTORS are preferred in
high performance drive applications such as,
robotics, dynamic actuation, machine tools and
positioning devices, due to their favourable elec-
trical and mechanical characteristics such as high
torque to volume ratio, high efficiency and low
moment of inertia [1, 2]. BLDC motors have the
speed and torque control characteristics similar to
DC motors. The torque and flux control can be
achieved by means of field oriented control (FOC)
which is sometimes called decoupling control or
vector control. Thus, two control loops exist in the
BLDC motor control system, which are current
and speed control loops [3]. A desirable control
performance of the motor must be provided even
when the loads, inertia and parameters are vary-
ing. The conventional controllers used in the speed
and /or vector control loops of the motor become
poor when the load is nonlinear and uncertainties
exist. Therefore, control strategy must be adaptive,
robust and accurate.

NNs have many advantageous features that
include parallel and distributed processing, robust-
ness and efficient nonlinear mapping between
inputs and outputs, without knowledge of the
system model [4]. In the last two decades, much
research have been done on applications of artifi-
cial neural networks for the identification and
control of nonlinear dynamic systems [5±7]. Vari-
ous NN control structures based on adaptive
control and conventional control techniques are
proposed using feedforward and recurrent NNs
[8±10]. Similarly, wide varieties of NN control
methods are applied to BLDC motors [11, 12]

under nonlinear loads and parameter variations.
Many colleges are now offering neural networks
courses as a result of successful application of NN
control in nonlinear systems. Therefore the quant-
ity of the material to be taught has increased.
However, this increase does not make the under-
standing of the course easy for the students, if the
courses are not supported with the educational
tools and experiments. It is often difficult for
schools with their limited and often expensive
equipment facilities. Therefore, computer simula-
tions and dedicated software become very impor-
tant. For this purpose, many colleges are now
developing educational tools for various areas
[13±20].

The present teaching approach uses simulations,
which include the animation and graphics if neces-
sary to assist the students in visualizing the
concepts and to provide graphical feedback
during the learning process. There are many soft-
ware packages in the areas of neural networks. The
well known software package, MATLAB-Simu-
link developed by Mathworks Inc., offers neural
networks and control toolboxes, in addition to
many other toolboxes [21]. These software
packages provide an environment for the develop-
ment and evaluation of neural networks; however,
they are not well suited to electrical machines and
only a few advanced students could achieve its
application to electrical drives control in a limited
time.

In this study, an educational tool is presented
for NN identification and control of electrical
drives. The software can be easily used for teaching
the materials to graduate and undergraduate
students. It also may be used by instructor for
curriculum development. The tool has a flexible
structure and graphical interface which permits the
design of the NN and its training with various* Accepted 1 April 2005.
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learning algorithms. The program is prepared in
DELPHI and it can be installed on a PC operating
in Windows environment. In the paper, initially
the dynamic model of a BLDC motor is presented
and conventional control strategy is given. Then,
NNs control structures and training algorithms are
outlined. In the last section, the software is
explained in details by showing the graphical and
numerical results obtained from NNs identifica-
tion and control of a BLDC motor.

BLDC MOTORS

The state space model of a BLDC motor
referred to the rotor rotating reference frame is
given by:
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where, id and iq is the direct and quadrature
components of the stator current, R is the stator
resistance, Lq and Ld is the inductance, � is the
magnitude of the flux linkage established by the
rotor magnet and ! is the rotor speed. The model
is based on the assumptions that the air-gap is
uniform, rotor induced current are neglected due
to the high resistivity of magnet and stainless steel,
and the motor is supplied by a three phase sinu-
soidal input source [1, 2]. For the vector control of
electrical drives, stator currents are decomposed
into the flux and torque components which can be
controlled independently. Using the flux and
torque current components, electromagnetic
torque produced by the BLDC motor is given by
Equation (2):

Te ÿ 3P�

4
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In the surface mounted permanent magnet motors,
the d-axis inductance is assumed to be equal to the
q-axis inductance. Thus, electromagnetic torque
equation becomes dependent only on the q-axis
current, i.e.

Te ÿ 3P�

4
iq: �3�

On the other hand, dynamic equation of the
mechanical system can be expressed as:
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where ! is the electrical rotor speed, TL is the load
torque (Nm) and J and B are inertia and friction of
the motor respectively.

For the vector control, the output of the speed
controller is the quadratic current component
(torque current) iq*, and direct current component
(exciting current) id* is set to zero to avoid demag-
netization of the permanent magnet on the rotor
[3]. The block diagram of the vector controlled
BLDC motor is shown in Fig. 1. Figure 2(a) shows
the hysterisis band current controller and Fig. 2(b)
shows the conventional current controller and
PWM modulator unit.

NEURAL NETWORK CONTROL
OF BLDC MOTORS

As seen in Fig. 1, NN can be used for the speed
control, current control and the identification of
the BLDC motor. In addition, the speed and
position estimation for the sensorless control of a
BLDC motor is also another important applica-
tion of the NN in electrical drives. The developed
software is restricted only to the identification and
speed control of BLDC motors using various NN
control structures and learning algorithms under
parameter variations.

In order to determine the NN forward identifi-
cation model of a BLDC motor, shown with
dashed line in Fig. 1, forward dynamics of the
motor including current controllers should be

Fig. 2. (a) Hysterisis band current controller; (b) conventional
current controller and PWM mod.

Fig. 1. Speed control block diagram of the BLDC motor.
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considered. If the dynamics of the fast current
control loop are ignored i.e., iq* � iq and id* � id,
NN identification model can be expressed as:

!m�k� � NN�!�k ÿ 1�; i �q�k�� �5�
which is obtained using the discrete time equiva-
lent of Equation(4), and shows the forward
dynamics of the motor since the flux current
component id is equal to zero. If the actual current
controllers are considered, it is clear that the more
delayed components of the speed and torque
current may be required. Hence, NN models
representing the dynamics of the motor and
current controller can be derived using more
delayed components of the speed and torque
current, i.e.,

!m�k� � NN�!�k ÿ 1�; . . .!�k ÿ n�;
iq�k�; iq�k ÿ 1�; . . . iq�k ÿ r�� �6�

Forward identification scheme of the BLDC
motor using NN is illustrated in Fig. 3. In a similar
way, inverse identification model of the motor,
used as speed controller, can be derived by using
Equation (6) and it is given as:

i�q�k� � NNÿ1�!�k�; !�k ÿ 1�; . . .

!�k ÿ n�; i�q�k ÿ 1�; . . . i�q�k ÿ r�� �7�
The forward and inverse NN models of BLDC

motors, using speed and torque current delays, can
be trained in the developed software. Indirect
adaptive control scheme of the BLDC motor
using the both NN forward and inverse model of
the motor is shown in Fig. 4.

Direct adaptive control scheme is obtained if the
forward NN model is removed from the system
shown in Fig. 4. Wide varieties of NN control
structures are proposed for identification and
control of nonlinear systems and can be accessed
them in the literature [5±10]. In this software,
direct and indirect NN control schemes are simu-
lated and conventional PID control is also
included for comparison.

Training of the neural network
Multilayer neural network is used in the

proposed software for both identification and
control purposes. Forward mathematical relation
of one hidden layer NN can be given as:

vj � '
Xn

i�1

Wjixi � bj

( )
; !

m
�
Xm

j�1

�jvj � q �8�

where, !m is the output of the NN model, xis are the
inputs of the NN, vjs are the outputs of the hidden
layer, Wjis are the weights between the input and the
hidden layer neuron and �js are the weights of the
output layer. It means that the training of the NN is
to find a procedure for the adaptation of the NN
weights, which minimize the selected performance
criteria depending on the error between NN output
and teaching output. Various derivatives based
training algorithms including pattern and batch
learning are given in the literature [10, 22]. For
pattern learning, the error (em) between the NN
model and actual motor speed and the square of the
error as performance criteria (E) are given:

em ÿ !ÿ !m E ÿ 1

2
e2

m �9�

The first derivative of the performance criteria E is
used by backpropagation algorithm for the
updates the weights (W and �). Thus, the correc-
tion to be applied to any weight in the hidden layer
and output layer can be expressed respectively as:

�W � � _ EW �� � �rE� �10�
where, � is learning rate, _EW are _E� the gradi-
ents of the performance criteria. Note that Equa-
tions (9) and (10) are for the training of the NN
model. Similar equations can be derived for the
training of the NN controller. If the gradient
descent direction is obtained by using the second
derivatives of the performance criteria, if available,
the NNs can be trained by Newton's methods and
it can be defined as:

�W � �Hÿ1rEW �� � �Hÿ1rE� �11�
where, H is the Hessian matrix obtained by second
derivative of the performance criteria. Classical

Fig. 3. Forward identification of BLDC motors with current
controller using NN.

Fig. 4. Indirect adaptive control of BLDC motors using NNs.
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Newton's method defined in Equation (11)
requires much less training time than the back-
propagation method. However, the main disad-
vantageous of Newton's method is that calculating
the inverse of the Hessian matrix is computation-
ally intensive and may introduce numerical
problems due to rounding of errors. In addition,
if the first weights of the NNs selected randomly
are remote from the optimum weights, this method
may not yield descent direction due to the trun-
cated higher-order terms in a Taylor series expan-
sion of the performance criteria [22]. Levenberg-
Marquardt modification of the Newton's method
can be obtained by adding a positive definite
matrix to the Hessian matrix to make it positive
definite and it can be defined as:

�W � ��H � �I�ÿ1rEw �12a�

�� � ��H � �I�ÿ1rE� �12b�
where, � is a positive value and I is the identity
matrix.

THE EDUCATIONAL TOOL

The software is prepared using DELPHI and it
works in the MS Windows environment. It is
developed to help students improve their under-
standing of neural network modelling and control.
Using the software, learning and generalization
performance of the various NN control structures
of BLDC motors under the parameter and load
variations can be studied and various learning
algorithms can be used for the training. Both
graphical and numerical results can be seen on a

Fig. 5. The main window of the control tabsheet.
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PC monitor by choosing appropriate windows.
The software consists of two tabsheets: modelling
and control. Each tabsheet includes three windows
which are system setups, graphs and results-&-tests
windows. A system setups window including the
neural network design section is the main window.

There are some negligible differences between
modelling and control tabsheets, and the user can
aware of them easily in the software. Hence, all of
the windows are not given in order to avoid the
repetition of similar figures. The main window of
the control tabsheet is given in Fig. 5 and it is
divided into two sections. The left side of the main
window is used for designing of NNs. Dimension
of input vector, hidden layer units and outputs can
be defined by users. Training parameters such as
the number of training patterns, training itera-
tions, desired minimum error as stopping criteria
and learning rate can be specified as well. In
addition, one of the various learning algorithms
and pattern or batch learning mode, and learning
rate adaptation rule can be selected by users. On
the right side of the main window, three menus and
related windows are placed, which are system
setups, graphs and results and test windows.
When the setups menu is selected, modelling or
control configuration appears on the right side of
the main window, which permits the changing of
NN control structures, vector control methods and
motor parameters, using the related buttons at the
bottom of the window. Submenus of control
structure are shown in Fig. 6. Submenus of the
current controller&PWM modulator are given in
Fig. 7. The settings in Figs 6 and 7 allow users to
test the NN control performance of motor for
various current controllers and NN control struc-
tures.

Figure 8 shows the parameter settings window.
When the graphs menu is selected, graphs window
appears on the right side of the main window (as
shown in Fig. 9), which permits the variables of the
controller and the motor to be seen using the
related buttons on the right side of the window.
Two graphics can be shown at a time and more
variables can be selected to see more variables on
the same graph. If desired, graphs can be printed
out and/or copied and used in other softwares.
Speed tracking performance of the NN controller
for the sinusoidal reference input is given in the
first graph in Fig. 9, and the control input (the
torque current) is presented in the second graph in
Fig. 9.

As seen in Fig. 10, on the upper half of the
results and test window, the numerical values of
the neural networks weights, motor and NN
outputs, the iteration number required for training
and sum of the squared error can be monitored.
The lower half of the window is used for testing of
trained NN model or controller, using the different
test inputs such as square wave, step and triangular
wave. Sum of the squared errors for the selected
test input can be obtained and modelling or
control performance of the trained NNs can be

illustrated graphically. Identification performance
of the trained NN for the square test input is
illustrated by the graph in Fig. 10.

Although many different simulation results can
be obtained using the developed software in addi-
tion to results given in Fig. 9 and Fig. 10, some
simulation examples are also presented. The sum
of the squared errors curve obtained by training of
the NN model is given in Fig. 11 and the error
between the actual motor speed and the output of
the NN model trained using the Levenberg-
Marquardt learning algorithm is shown in Fig. 12.

Fig. 7. Submenus of the current controller.

Fig. 8. Motor parameter settings.

Fig. 6. Submenus of the control structure.
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Fig. 9. Graphs window and some results obtained NN control of BLDC motors.

Fig. 10. Numerical results and test window.
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CONCLUSIONS

In this paper, an educational tool is developed
for neural network control of brushless DC
motors. It aims to help students improve their
understanding of neural network control of elec-
trical drives. The tool has a flexible structure and
graphical interface. It enables the user to design
neural networks and to change the motor para-
meters. Motor and controller variables can be
monitored for various NN control structures
under the various load conditions.

The software is prepared in a Delphi environ-
ment and the setup files are available for down-
loading at http://mgokbulut.firat.edu.tr. To benefit
from the tool, students should have a priori know-
ledge of electrical machines, neural networks and
control techniques. The tool has been used by
graduate students who have the required back-
ground in the department of electronics and

computer education at Firat University. The critics
of the graduate students in the neural network
control courses are very positive. Recently, the
software has started to be used in laboratory
experiments of the undergraduate neural network
course. We have the impression that the tool
should be adapted for the undergraduate level.
Therefore, it is planned to asses the educational
advantages of the tool with more students through
evaluation sheets.

It is expected that the tool achieves the following
educational goals. The students should be able to:

. Gain a comprehensive understanding on neural
network control techniques of drives.

. Do virtual experiments on a PC to be ready for
real lab experiments.

. Relate drive parameters to response of the drive.

. Improve his/her knowledge on neural network
control in a short time.
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