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The well known parallel-plates transmission line is solved efficiently by the moment method, where
the entire domain expansion functions contain the edge behavior of the fields. It is shown that two
expansion functions are enough for an excellent convergence of the solution, in agreement with the
analytical conformal mapping solution. Our moment method solution is also compared to other
moment method solutions.

AUTHOR QUESTIONNAIRE

1. The paper discusses materials/software for a
course in Electromagnetic Engineering (EM
fields, microwaves, transmission lines)

2. Students of the following departments are
taught in this course: EE, Communication
Engineering (RF), Physics.

3. Level of the course (year): 3rd and 4th.
4. Mode of presentation: lecture.
5. The material is part of a regular course.
6. Class or hours required to cover the material:

5±6 hours.
7. Student homework or revision hours required

for the materials: 15±20 hours.
8. The novel aspects presented in this paper are:

Improvement of the accuracy and the rate of
convergence for the solution of the parallel
plate transmission line, based on the physical
understanding of the problem.

9. The standard textbooks recommended in the
course, in addition to author`s notes: N. N.
Rao, Elements of Engineering Electromag-
netics, 5th Ed. Prentice-Hall (2000); R. E.
Collin, Foundations for Microwave Engineer-
ing, 2nd Ed., McGraw-Hill (1992).

10. The material is not covered in the textbooks.

INTRODUCTION

THE PARALLEL-PLATES transmission line
(TL) is a very popular educational tool in text-
books in the field of electromagnetic engineering
[1, 2]. Due to its relatively simple structure, it often
serves also as an instructive example for teaching
the method of moments (MM) [1] where the MM is

introduced by solving the parallel-plates TL using
three pulse basis functions. The solution of Ref. [1]
is compared with those obtained by the conven-
tional MM and also by an analytical conformal
method [2], which can be used as a reference
solution for checking the accuracy and rate of
convergence of other methods.

In [3], it has been shown that if the expansion
functions used in MM are chosen in accordance
with the physical behavior of the fields, both the
accuracy and the convergence rate of the solution
are significantly improved. Accordingly, this kind
of MM may be called the efficient moment
method. In this method, the solution is based on
the very physical behavior of the electric field, i.e.
symmetry and edge conditions, which are known
prior to the MM solution. This method has been
successfully applied for solving several electrostatic
and acoustic problems (see, for example, [5, 6] ).

The efficient MM differs from the conventional
MM in the choice of the basic expansion functions.
In this method the basic expansion functions are
composed solely of the known functions describing
the true singularity behavior of the electric field. In
other words, the efficient MM utilizes the know-
ledge of irregular field solutions obtained else-
where, e.g. edges at right angle, in order to
facilitate the convergence of the MM solution,
whilst yielding a more accurate solution. This is
in contrast to the conventional MM that uses
arbitrary simple expansion functions, and no
attempt is made to `guess' the correct basis func-
tions corresponding to the physical behavior of the
electric field in the problem at hand. In addition to
its higher accuracy and convergence rate, the
efficient MM, being based on the physical beha-
vior of the electric field, also provides a better
insight to the solution. In this sense, the efficient
MM may be considered a semi-numerical method* Accepted 15 September 2005.
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as compared to the conventional MM which is a
pure numerical method. As the efficient MM is
based on an understanding of the physical aspects
of the problem for selecting the expansion func-
tion, it may also be favored for educational
purposes.

In this work, we wish to illustrate the solution
for the parallel-plates TL using the efficient MM.
The solution is based on the Galerkin moment
method in which the same set of functions is used
as both expansion and test functions. This method
provides the students with a valuable insight into
physical understanding of the parallel-plates TL.

FORMULATION OF THE MM PROBLEM

The cross-sectional view of the parallel-plate
transmission line and the corresponding co-ordi-
nates are shown in Fig. 1a. Figure 1b shows the
equivalent structure of the TL used in our analysis.
The spacing between the plates is d (y-direction),
and their width is W (x-direction). The plates are
held at potentials �V.

The potential function
Following [4], the solution of the Laplace equa-

tion:

r2� � 0 �1�

for the electric potential in the upper half and

above the parallel plates shown in Fig. 1 can be
written, respectively, as:

�I �x; y� �
�1
0

dk ~VI �k�cos�kx�sinh�ky�; y � d=2

�2�

�II�x; y� �
�1
0

dk ~VII �k�cos�kx�exp�ÿky�; y � d=2

�3�

describing symmetrical functions of x, which obey
boundary conditions at y!1 and y = 0.

Requiring the continuity of the potential func-
tion at y = d/2:

�I�x; d=2� � �II�x; d=2� �4�

we have:

~VII�k� � 1

2
~VI�k��exp�kd� ÿ 1� �5�

yielding:

��x; y� �
�1
0

dk ~VI �k�cos�kx�sinh�ky�; y � d=2�1
0

dk ~VI �k�cos�kx��exp�kd� ÿ 1� exp�ÿky�; y � d=2:

8>><>>:
(6)

(a)

(b)
Fig. 1. Cross-sectional view of the parallel-plates transmission line. The plates have a width of W and are held at potentials �V. The

distance between the plates is d. (a) the actual line, (b) the equivalent structure.
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The potential functions in terms of the surface
charge density

Applying the boundary conditions for the
normal components of the electric fields at the
y = d/2 plane

n̂ � �~DII ÿ ~DI� � �s�x� �7�
we obtain

ÿ @�II�x; d=2�
@y

� @�I�x; d=2�
@y

� 1

"0
�s�x� �8�

and thus�1
0

dk ~VI �k�cos�kx��exp�kd� ÿ 1� k
2

exp ÿ kd

2

� �

�
�1
0

dk ~VI�k�cos�kx�kcosh
kd

2

� �
� �s�x�

"0
�9�

where �s(x) is the surface charge density on the plate.
Using the Fourier cosine transforms:

~�s�k� �
�1
0

�s�x�cos�kx�dx �10�

�s�x� � 2

�

�1
0

~�s�k�cos�kx�dk �11�

Equation (9) is rewritten as:

~VI �k�
�
�exp�kd� ÿ 1�k

2
exp ÿ kd

2

� �

�kcosh
kd

2

� ��
� 2~�s�k�

�"0
�12�

and thus:

~VI �k� � 2~�s�k�
�"0k

exp ÿ kd

2

� �
�13�

The surface charge density
We now apply the boundary condition � � V, at

the upper plate (y � d/2)�1
0

dkf~VI�k�cos�kx�sinh�kd=2�� V; 0 < x < W=2

�14�
and substituting ~VI �k� from Equation (13), we
obtain�1
0

dk
2

�"0k
~�s�k�exp�ÿkd=2�cos�kx�sinh�kd=2�

� V; 0 < x < W=2 �15�

yielding:

1

�"0

�1
0

dk
~�s�k�

k
cos�kx��1ÿ exp�ÿkd��

� V; 0 < x < W=2 �16�

Equation (16) is an integral equation for the
unknown function ~�s�k� the cosine Fourier trans-
form of the charge density on the plates, whose
inverse transform yields the charge density func-
tion. Since an analytical solution to this integral
equation is not known, we apply the MM to solve
this equation.

The moment method formulation
The MM solution is based on replacing the

unknown function, ~�s�k�, by a linear combination
of basis functions:

~�s�k� �
X1
j�1

aj�j�x� �17�

The functions {�i(x)} are also called the MM
expansion functions, and the unknown coefficients
{aj}}are called the MM expansion function coeffi-
cients.

Choosing the expansion functions
The surface charge density near the edges can be

described as:

�s�x� ~
X1
n�1

�n�W=2ÿ x��n ;�n� n=2ÿ 1; x!W=2

and n � 1; 3; 5; . . . �18�
and

�s�x� ~
X1
n�1

�n�W=2� x��n ;�n� n=2ÿ 1; x! ÿW=2

and n � 1; 3; 5; . . . �19�

where �n are yet arbitrary constants.
As it was mentioned above, the appropriate

expansion functions must contain the exact edge
behavior of the surface charge density. In addition,
the expansion functions should be continuous and
of continuous derivatives on the plates. Further-
more, in order to increase the convergence rate of
the solution, one should choose expansion func-
tions having an analytical Fourier transform.
According to these considerations the following
set of expansion functions are chosen [3]

�i�x� � cosiÿ3=2 �x

W

� �
; i � 1; 2; 3; . . . �20�

The MM linear equation system
The last equation is substituted in Equation (16),

yielding the MM set of linear equations system:

Efficient Moment Method Solution for the Parallel-Plates Transmission Line Revisited 325



XN

j�1

Aij�j� Bi �21�

where N is the number of expansion functions
taken for the solution, and

Aij �
�W=2

0

1

�"0

�1
0

dk
~�j�k�

k
cos�kx��1ÿ exp�ÿkd��

8<:
9=;�i�x�dx

� 1

�"0

�1
0

~�j�k�
k

~�i�k��1ÿ exp�ÿkd��dk (22)

and

Bi�
�W=2

0

V�i�x�dx �23�

The capacitance per unit length of the transmission
line

Having found the MM coefficients, �j, the
charge per unit length on each plate can be
calculated by:

Q �
�W=2

ÿW=2

XN

i�1

�i�i�x�
" #

dx � 2
XN

i�1

�i ~�i�0� �24�

and hence the capacitance per unit length of the
transmission line and its characteristic impedance
are given by:

C � Q

V
�25�

and

Z0 �
������
�"
p

C
�26�

respectively.

RESULTS

The calculations are carried out for a parallel-
plate line of d �W, as in the case of Ref. [1] so the
results can be compared to those obtained by the

conventional MM. The results are shown in Table
1 and compared with those obtained by other
methods. Since the result of [2] are obtained by
the analytical method of conformal transforma-
tion it is referred to as an accurate result for the
purpose of comparison. Note that the results
correspond to an air filled line. For dielectric
filled lines, the characteristic impedance must be
divided by

����
"r
p

.
As can be seen from Table 1, in the case of the

efficient MM only two expansion functions, based
on physical behavior of the fields, are sufficient to
achieve a highly accurate result of Z0 � 178.07
 as
compared to a value of 178.04
 in Ref. [2]. The
small discrepancy between these values can be
attributed to the fact that the latter was actually
calculated from a less precise result (4 digits, only)
for the TL capacitance per unit length. In the case
of the conventional MM in which only the symme-
trical considerations are used, 10 basic functions
are required to achieve a less accurate value of
Z0=179.94
.

CONCLUSIONS

In conclusion, it is shown that the efficient MM
can be applied to efficiently solve the parallel
plates line. Using only two entire-domain edge-
type expansion functions, an accurate and fast
converging solution has been obtained.

As the method and solution procedures
presented in this paper are based on physical
interpretation of the problem it provides an excel-
lent educational means for teaching students both
the subjects of parallel plates and MM emphas-
izing the very physical aspects behind the field
solution. This method can be used for teaching
other electromagnetic problems in a similar fash-
ion.

It should be noted that taking advantage of the
known physical behavior of the field is indeed a
common practice also in other method. The solu-
tion of [1], for instance, is, to a certain extent,
simplified by noting the symmetrical geometry of
the problem, i.e. the number of expansion func-
tions required to achieve a solution having a given
level of accuracy is halved. In our solution, we
extended the physical analysis of the problem
beyond the symmetry considerations realizing

Table 1. The TL's characteristic impedance [UÁ ] calculated by various methods, for three values of d/W.

Method d/W=10 d/W=1 d/W=0.2

This paper, N=1 442.631896 178.695612 61.922209
This paper, N=2 442.518190 178.061373 58.054936
This paper, N=3 442.518055 178.061255 58.043023
This paper, N=4 442.518055 178.061255 58.043019
Rao [1], N=1 456.103875 188.369126 60.416496
Rao [1], N=10 443.888991 179.203402 58.538541
Rao [1], N=100 442.655629 178.176951 58.096696
Rao [1], N=500 442.545574 178.084417 58.053809
Collin[2] 442.518051 178.056792 58.042994
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that the exact field solution is closely related to its
known behavior at wedges, and hence we have not
only reduced the solution complexity (two basic
functions instead of 10 in [1] ) but also increased its

accuracy. The interaction between physical analy-
sis of the problem and the numerical method is a
useful educational tool.
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APPENDIX

Fourier transform of the expansion functions

The Fourier transform of the expansion functions is given by:

�i�x� �
�W=2

0

cosiÿ3=2 �x

W

� �
cos�kx�dx

�W

�
Ic i ÿ 3=2;

kW

�

� �
where [9]:

Ici��; k� �
��=2

0

cos��t�cos�kt�dt � �ÿ�1� ��
21��ÿ�1� �=2ÿ k=2�ÿ�1� �=2� k=2�

Similarly:

Bi�
�W=2

0

V�i�x�dx � V
Wÿ�i=4�

�i=2ÿ 1� ����p ÿ�i=4ÿ 1=2�

Accelerating the convergence of A11

The integrands of A11 behave as k±I±j. In order to accelerate the convergence of A11 we write:

A11 � 1

�"0

��=2d

0

~�1�k�
k
�1ÿ exp�ÿkd��~�1�k�dk� 1

�"0

�1
�=2d

~�1;as�k�
k

~�1;as�k�dk

� 1

�"0

�1
�=2d

~�1�k�
k
�1ÿ exp�ÿkd��~�1�k�ÿ ~�1�k�

k
�1ÿ exp�ÿkd��~�1�k�

� �
as

� �
dk
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where the second integral is calculated analytically. We have:

Ic;as��; k� � ÿ�1� �� sin ��k ÿ ��=2� �
k1�� k !1

Ias � 1

�"0

�1
�=2d

~�1;as�k�
k

~�1;as�k�dk

� 1
�"0

W
�

ÿ �2 �1
�=2d

1
k

ÿ�1=2� sin���kW=��1=2�=2�
kW=�� �1=2

n o2

dk

� 1

�"0
W

�1
�=2d

1

k2
sin2�kW=2� �=4�dk

� W

2�"0

�1
�=2d

1

k2
�1� sin�kW��dk

� W

2�"0

4d

�
ÿWCi��=2�

� �
where it is assumed d=W.
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