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Dimensioning is one of the most important stages in design development. It is traditionally learned
through the sketches or drawings of parts to which the student adds their dimensional values.
However, there are no computer teaching applications which are specifically oriented towards
teaching the student how to dimension and showing what alternatives exist for such dimensioning. A
methodology has been developed based on a computer application which in turn is based on
variational geometry, which will allow students to design a sketch and obtain the different
alternative dimensions, in line with ISO 129. Creating sketches through conceptual design implies
the use of constraints. When developing conceptual design-based CAD programs, two independent
modules must be created: on the one hand, the sketcher module, which must define the model’s
geometrical constraints and interpret the user’s intention through a system of rules. On the other
hand, the calculation module which must solve the final geometry and eventually dimension the
mechanical part. The proposed approach establishes the complete geometry and constraints of a
sketch and relates it with the complete dimensioning of the sketch. The developed methodology
gives as a result a complete and consistent dimensioning of the sketch following the rules established
by a standard like 1SO. The methodology establishes the most suitable dimensioning but, if the
student wants to substitute any dimension for another, the algorithm automatically reconfigures the

complete dimensioning and proposes another different complete one.
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INTRODUCTION

A KNOWLEDGE of drawing is essential to en-
gineering. Drawing is present at every design stage,
either as a preparatory sketch, an outline or an end
product drawing. It is essential for the engineer to
be able to obtain sketches which will serve as the
starting point for drawings drawn by hand by the
student himself, aided only by drawing instruments
such as a compass and a ruler.

Drawing teaching in engineering courses has
seen some slight changes in recent years. Teaching
programs in this subject usually include the learn-
ing of a CAD program of a more or less complex
nature. Sometimes other computer programs are
used as a back-up, for example geometry programs
to explain different subjects. Concepts such as
dimensioning are usually learned in the classroom
and then applied directly to the plans made by the
student following the teacher’s advice.

CAD programs enable dimensioning to be
applied to a drawing since they include tools for
linear, angular, and serial dimensioning, etc., and
are capable of evaluating the magnitude of
elements like straight lines, the radius of a circle
or angles. Help tutorials which explain how to use
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these tools are usually provided by the programs
but they do not show what the best dimensioning is.
However, none of them is able to offer the different
dimensioning alternatives for the same view or
even detect redundancies or incoherencies in
dimensioning. The effectiveness of a good dimen-
sioning was studied by Turner [1] who analyzed
technical drawings and concluded that there is
‘noise’ between what the drawing tries to express
and what it shows. He pointed out that 70% of
rejected parts are due to drawing errors. Around
40% of drawing errors were dimensioning errors.
According to Folini [2] in the automobile sector,
around 70% of the time invested in design is
devoted to modifying previously produced models.

We do NOT know if studies exist that evaluate
the improvements offered by CAD systems with
respect to dimensioning errors in the drawings.
Nevertheless, a good dimensioning is essential
when preparing a technical drawing, since without
this, the product will not be dimensionally appro-
priate. Various experiments have been carried out
to improve spatial visualization and the visual
skills needed by an engineering student using
different commercial CAD programs such as
AutoCAD [3], as well as studies into the results
of applying different methodologies [4, 5] for
teaching spatial visualization.



360 M. Muneta and J. Mindan

With the aim of helping our students to improve
and better understand the dimensioning of a
technical drawing, a new methodology has been
developed. This is based on variational geometry
which will allow the dimensioning of a sketch
made by a student to be obtained, along with its
different alternatives, and detect if the view is
correctly dimensioned, over-dimensioned or if
any dimensions are missing. This methodology
has become reality in the development of a compu-
ter application which also detects the user’s inten-
tion when making a sketch, and serves to introduce
the student to the use of parametric CAD
programs.

This system allows the student to work on
various basic aspects of their training like: recog-
nizing redundant and inconsistent topological and
metric restrictions, detecting the user’s design
intentions, providing a dimensioning of the dra-
wing based on international standards (ISO 129 in
this case) in such a way that the program recog-
nizes redundant and inconsistent dimensions intro-
duced by the user, and is capable of determining
which dimensions are alternative to others should
the dimensioning not have a single solution.

THEORETICAL BASIS

CAD systems are a good answer for the design
and representation of final products. Indeed, there
exists a need to make conceptual design easier and
to build-in better tools to do it. Parametric CAD
systems are used in the design of families of objects
which, in spite of having individual geometries,
share the same topological constraints. Parametric
models store the object’s geometry through vari-
able dimension parameters. Parametric design
means more flexibility in the design process since
geometry and constraints can be defined without
specifying the actual dimensions of the object.
Additionally, constraints allow for the description
of dependencies between the elements which make
up the object, as well as dependencies between
objects.

Constraint-based modeling is one of the more
modern approaches to product design. In it, en-
gineering knowledge combines with the geometri-
cal and topological knowledge that the designer
has of the parts themselves. Constraint-based
modeling, and design with features, is behind the
development of the new CAD systems. The influ-
ence of the new techniques can be seen in the
architecture of so-called parametric CAD systems.
Besides the new geometry and topology modelers,
sketchers and constraint solvers have cropped-up,
becoming a key element in the new CAD systems.
The sketcher serves as an interface with the
designer when modeling with constraints. Also,
rule-based methods are applied for automatic
constraint detection. Constraint solvers evaluate
the full set of constraints entered by the designer or
inferred through the system of rules.

Variational geometry is a powerful method for
defining and modifying geometric models, based
on geometrical constraints rather than on defining
geometry through Cartesian points. The theory of
variational geometry was developed by Hillyard
and Braid, [6, 7] and by Light, Lin and Gossard,
[8, 9].

The architecture of constraint-based CAD
systems is a hybrid where geometry and topology
go hand in hand with modeling components and
constraint solving.

Most constraints are set in 2D and only a few of
them in 3D projections of a solid, so the sketcher
module turns into one of the keys of this type of
system. To obtain a consistent model of a mecha-
nical part, every one of the constraints must be
evaluated or solved. For this reason, the other key
component is the constraint solver, which
normally uses either numeric algorithms or a
system of rules.

For the modeling to be efficient, the CAD
system must aid the designer not only by solving
a system of constraints, but must also help to
formulate the constraints. This is achieved through
automatic constraint detection.

Thus, the design process can be divided into
three phases: sketching, constraint definition and
solving. While doing the sketch or draft, the
designer need not worry about exact dimensions.
In the second phase, constraints can be liberally
applied and the system can help by automatically
detecting them. The third stage is done entirely by
the system.

Constraint-based CAD systems can be grouped
into two main categories, depending on their built-
in solver [13]:

® Equation solvers: These generally employ
numeric methods. Most of them use methods
derived from Newton Raphson and need an
initial value close to real; otherwise they show
convergence problems. Other solvers use sym-
bolic methods. This searches for a polynomial
system having the same roots as the initial
problem. Grobner’s base [14] and Wu Ritt’s
Method [15, 16] are normally employed. Com-
putation time is high. Yet other solvers employ
propagation methods based on graphs where
vertices are variables and constants and the
edges represent their constraints.

® Constructive solvers: These systems follow the
assumption that constructions of a sketch can be
achieved simply by using a ruler, a compass and
a protractor [17]. Normally they use either a
symbolic solution of the systems through pre-
dicates or graph construction analysis [18].

This paper presents a new approach of the
constraint-based solvers. The proposed approach
establishes the complete geometry and constraints
of a sketch and relates it with the complete
dimensioning of the sketch. The developed
methodology gives as a result a complete and
consistent dimensioning of the sketch following
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the rules established by a standard like ISO. The
methodology establishes the most suitable dimen-
sioning but, if the user wants to substitute any
dimension for another, the algorithm automati-
cally reconfigures the complete dimensioning and
proposes another different one.

The sketcher module

A variational parametric system consists of a set
of geometric primitives whose dimensions and
relative situation to each other are defined by a
series of mathematical equations.

Complex geometries can be drawn in the
sketcher by using three simple entities: lines,
circles, and arcs. The combination of these
elements and the application of geometric
constraints will produce complex geometries.

To define the geometric primitives, a set of
characteristic points has been established for each
one. The above mentioned primitives have the
following characteristic points:

® Primitive: characteristic points

Straight line: both ends

Arc: both ends and the center

Circle: the center and one point on the circum-
ference

The set of primitives underlying the geometry
make up a vector of variables generically known
as generalized co-ordinates. The set of variables has
the following form:

4= (X1 X12 . Xj X .. Xpl X2)
=(q ¢ - @) (1)

where, in a two-dimensional case, p = 2 x n, the
geometry we are looking for is determined by the
values of q.

The geometric entities will be interrelated by a
set of geometric conditions generically known as
geometric constraints. In the most general case,
each geometric constraint will be a nonlinear
equation depending on the generalized co-ordi-
nates, of the form:

R(q) =0 2)

where R(q) =0 is a set of m nonlinear equations
with p unknowns.

Two types of geometric constraints are defined:
topological and dimensional. Topological con-
straints are those which specify the position of the

elements relative to one another. Examples of topo-
logical constraints are: perpendicularity, angles
between straight lines, horizontality, verticality,
orientation of straight lines, parallelism, tangency,
symmetry, coaxiality, element alignment, etc. Topo-
logical constraints are used to createequations which
relate the components of vector g to one another.
Dimensional constraints specify the actual
dimensions of the mechanical part. The following
are examples of dimensional constraints: X
distance between two points, Y distance between
two points, X-Y distance between two points,
distance between two parallel lines, radius of a
circle, and radius of an arc. Each dimensional
constraint has associated with it a new variable
d;, generically known as driven co-ordinate. Driven
co-ordinates will give the final geometric confi-
guration of the mechanical part. Thus, the set of
equations defining the geometry is of the form:

R(q,d) =0 (3)

Table 1 lists the equations used in some of the
constraints considered.

Let’s see an example. Given a rectangle such as
the one in Fig. 2. Table 2 gives the variables and
elements to consider.

Figure 3 shows the mechanical part constrained
and dimensioned. To determine the final confi-
guration of the geometry, the Equation System (2)
must be solved. The solution to the sketch will be
found when the system solves the equations given
in Table 3. The equations in this system are
nonlinear. All numerical methods of solving
systems of nonlinear equations use iterative solving
of linear equations approximating the set of equa-
tions by a first-order development series of the
following form:

R(q) = R(W) + R, (61“") (q - q"”) 4)

so the idea is to solve the following equations:

R(q“‘>) + R, (61("’) (q - 4‘“) =0 (5

The R,(¢")) matrix, generically known as J, is the
Jacobian matrix of the system of equations. It is
formed by the partial derivatives of each constraint
equation in relation to the generalized coordinates
of the system.

Fig. 1. Characteristic points of each primitive.
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Table 1. Equations which define the geometric constraints.

Constraint

Equation

Perpendicularity

i, -ty =x-X+y-y +z-2=0

(x12 = x11) - (x22 = x21) + (Y12 = y11) - (Y22 = y21) =0

Angle between two straight lines

cos(7,5) - \/(Xlz - X1|)2 + *)’11)2 : \/(Xzz - le)z + (2 *yzl)zf

—(x12 —x11) - (X2 —x21) + (V12 —yn1) - (Y2 —yu) =0

Horizontality yu—yr=0

Verticality X1 —x12=0

Orientation of a straight line

Parallelism

cos(7, ) - \/(Xlz —xn)’+ O —yn)’ = (xa—xn) =0

[7xs] = (x12 —x11) - (72 —y21) — (¥ = x21) - (Y12 —y11) =0

d(Pm,?)'\/(xzz —x2) 4+ (2 —y2)* — ( >

((le +y11)
2

Tangency between a straight
line and an arc

X12 + X
M—xn) '(yzz —J/21)*

—yz1> “(xn—x21)=0

(x10 = x11) - (12 = y11) = (12 = xn1) - (1o — ym1) —r’ddius'\/(xlz —x11)2+(J/12 —yn)z =0

(x12 = x11) - (*x12 — x10) + 12 —y11) - (Y12 —»10) =0

Tangency between two arcs

\/(Xll —xp2) 4+ —y) —R =0

\/(Xll —xp2) + (i —y) —R =0

(x11 = x12)(P13 = y12) — (i1 = y12) (X3 — x12) = 0

The Jacobian matrix plays a key role, not only in
numerically solving the equations, but in the actual
analysis of the constraints. It allows redundant
conditions or insufficient definition of the system
to be spotted. Adequate analysis of the Jacobian

. line3
i
"-\.\_\_\--\-\-\-\-
lirez 4

hine: 2

fine 1

Fig. 2. Geometric constraints which define a profile.

matrix lets us determine if redundant or incon-
sistent constraints exist, if more constraints are
needed and which constraints are just alternative
possibilities. It’s general form is:

or OR oR,
Oq1 9qx " Oqp
IRy IRy
J = o1 Oqp
IRy IRy
a1 eee g,

To numerically solve the system of Equation (2)
several numeric methods may be used. The most
popular is Newton-Raphson’s (in any of its vari-
ants). This is an attractive method due to it being
quadratically convergent. It has, however, the
important disadvantage of lacking convergence
when the initial estimation is not close to the
final solution.

Alternatively, minimization methods may be
employed. These methods establish an error func-
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Table 2. Constraint equations for the part shown in Fig. 2

Concept Elements Equations
Characteristic Point 1 (x11 x12)
points Point 2 (x21 x22)
Point 3 (X31 X32 )
Point 4 (X41 X42 )
Primitives Line 1: from point (x11 x12) — (X211 X22)
1 to point 2
Line 2: from point (x21 x22) —(x31 X32)
2 to point 3
Line 3: from point (x31 x32) — (X401 Xa2)
3 to point 4
Line 4: from point (xa1 xa2)—(x11 x12)
4 to point 1
Constraints Position of point 1 xX11 =0x;2p=0

Line 1 Horizontal

Line 4 Vertical

Xp —x12=0

X4 —x11 =0

Line 2 parallel to
line 4 at a distance

100 - \/(X]l — X41)2 + (x12 — X42)2+

f 10 X2 +x X33 + X
of 100 + (7( = 2 1) —Xn) S(X12 — X42) — <7( = 2 2) —xlz) (X1 —x41) =0
(11 = xq1) - (22 — X32) — (X12 = Xa2) - (X21 = x31) =0

Distance between
points 2 & 3 is 25

25 - \/(X31 — X21)2+(X32 - Xzz)2 =0

Distance between
points 4 & 1 is 70

70 — \/(X41 - X11)2+(X42 - Xlz)z =0

tion between the initial approximation to the
solution, the constraint equations, and the final
solution, and then try to minimize its value. From
the standpoint of computational time, these
methods are slower, but they ensure convergence.
The developed approach uses one of these, known
as the Levenberg-Marquard method.

This method tries to avoid the difficulties
encountered by the Gauss Newton method when,
at some point of the iterative process, the Jacobian
matrix has an incomplete range. To avoid this, the
direction p; = g — ¢ is calculated by solving the
following sub-problem:

minimize {||R(gi) + J(a0)pil3= ue] |3}

where the parameter u; controls and limits the size
of pr. Note that p; is defined even if J(gx) has an
incomplete range. As p; — oo, ||pk||2 — 0 and py
becomes parallel to the direction of maximum slope.

Thus defined, this problem can be seen as
equivalent to the problem of optimizing with
conditions:

minimize ||R(gx) + J(qx)pk |, such that ||p||,< &

where ;. = 0 if conditions are not fully met (they
aren’t active) in ¢ and u; > 0 if they are. The set
of feasible p vectors, ||pil, < 6, can be under-
stood as the trust region of the linear model
R(q) = R(qx) + J(gk)p,p = q — qx, to  within
which the search for the optimum of the problem
is restricted.

Detecting the intent of design

Quite frequently in complicated sketches, when
the designer has the responsibility for defining
their constraints, there will be an insufficient
amount of them for a complete definition, while
some of the existing ones will be redundant. To
avoid this, parametric design programs try to
make the designer’s task easier by internally
using a set of rules generically known as designer’s
intention rules. These rules have formulations such
as ‘if the line drawn by the designer is almost
perpendicular, the line in the sketch is perpendi-
cular’, or ‘if two arcs drawn by the designer are
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Fig. 3. Constrained sketch and its dimensioned result.

almost coaxial, the arcs in the sketch are coaxial’.
To evaluate these rules, an accuracy factor is
defined. This consists of a series of rule validation
functions such that if the value given by a function
is within the accuracy factor of the associated rule,
the corresponding constraint is enforced. Other-
wise, the next rule is checked (Fig. 4).

There are as many accuracy factors as there are
constraints, so the user can modify and adjust
them as he prefers. The program is able, after a
few set exercises, to recognize a user’s accuracy
factor tendencies, which amounts to a customiza-
tion of the program to the user (Fig. 5).

The detection of the designer’s intent starts by
verifying rules related to relationships, such as
tangency, perpendicularity, etc. Once these are
checked, verticality, horizontality and orientation
of straight lines is verified. As a last step, the

dimensional constraints are imposed. Here, align-
ment among elements is considered, and the
distance between parallel elements, and vertical
and horizontal distances is evaluated. Constraint

Designer's in
function
T =it
L
Verifying function i< accuracy factor? *
no
¥ES
k
set constraint

Fig. 4. Accuracy factor.
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Fig. 6. Constraint application sequence.

verification within the program follows the
diagram shown in Fig. 6.

At the same time as the constraints are being
imposed, the range of the system is studied (Fig. 7).
Constraints imposed due to the function giving a
positive are checked for redundancy. If there is no
redundancy, the range of the system is calculated.
Once it coincides with the number of unknowns,
the system can be solved. If the constraint is
redundant, the system prompts for confirmation.
If the user decides to go ahead with the constraint,

the lesser pivot equation is eliminated, so as not to
increase the range of the system.

These operations can be automatically carried
out by the program or they can be used as an
additional help when implementing the sketch
constraints.

Once all the topological and dimensional
constraints have been included in the sketch, the
system will have all the information necessary for
design; all that remains is to properly place them
around the mechanical part following ISO 129.
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Fig. 8. Rectangle constrained and it’s dimensioning. The parallelism constraint is redundant.

DIMENSIONING PROCEDURE

Current variational systems, once the geometry
is defined, are not capable of establishing the
mechanical part’s dimensioning, although some
authors have considered this matter [22]. At
most, they allow the addition of dimensions
imposed by the user while defining the constraints
themselves, but they cannot deduce a complete
dimensioning from topological and dimensional
constraints. Neither can they reorganize these
dimensions, so their position must be defined by
the user. The proposed method allows the
complete lay-out and standardized dimensioning
of the sketch. To this end, dimensions are asso-
ciated with the constraints. Not all constraints
produce dimensions; such is the case, for instance,
of perpendicularity, horizontality, verticality or
alignment conditions.

The program allows either the automatic dimen-
sioning of the mechanical part or the adding of
topological and dimensional constraints step by
step. Additionally, it has algorithms which esta-
blish the orientation of the dimensions as linear,
angular, or radial. These layout criteria follow the
ISO 129 standard.

Analysis of the Jacobian matrix lets us deter-
mine if constraints are sufficient and which, if any,
are inconsistent or redundant. The program
displays this either as textual information or by
arrows indicating the degrees of freedom of the
geometry, which disappear as the coordinates of
the associated points become constrained. Then,
the designer can correct any errors, where
constraints are inconsistent or redundant, or add
new ones in order to complete the sketch. The
chosen pivoting method selects as independent
constraint the one with the greater absolute
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Table 3. Priority factors

Constraint Priority factor Constraint Priority factor
Perpendicularity 1 Symmetry 1
Horizontality 1 Position of points 1
Verticality 1 Distance between two points 0.1
Orientation of a line 1 Vertical distance between two points 0.1
Parallelism 1 Horizontal distance between two points 0.1
Alignment of points 1 Angle constraint between lines 0.1
Alignment of lines 1 Distance between parallel lines 0.1
Alignment between a point and a line 1 Radius of arcs 0.02
Coaxiality 1 Angles between lines 0.001
Belonging 1

value. This can lead to the selection as independent
or redundant of dimensionally inconsistent
constraints, as exemplified in Fig. 8.

The Jacobian matrix of this rectangle is:

0O 0 1 0 0 0 0 0
0O 0 0 1 0 0 0 0
0O 0 0 1 0 1 0 0
1 0 -1 0 0 0 0 0
0 0 -1 0 1 0 0 0
-1 0 0 0 0 0 1 0
0O 1.0 -1 0 0 0 0
0 0 0 0 0 -1 0 1
|06 0 06 0 —06 0 06 0

The lesser pivot equation, the last row, corresponds
to the parallelism constraint and the program, since
it is the ninth equation and has the lesser pivot,
classifies it as redundant. It would not seem appro-
priate that a dimensional constraint, in this case a
distance of 113 between the lower vertices, should
override a topological one.

LY
.

Since the program uses automatic dimensioning
algorithms and detects dimensions to complete the
sketch, the set of independent constraints must be
prioritized. The pivoting method used reorganizes
the matrix following the order of magnitude of the
pivot. This feature can be taken advantage of by
assigning certain constraint equations a priority
relative to others. This can be achieved by a value
known as priority factor which multiplies the
constraint equation. When the terms of the Jaco-
bian matrix are obtained, they are multiplied by
this factor. The pivoting method will follow the
new order when selecting the pivots that are
selecting as independent the equations with the
highest priority index. This way, dimensional
constraints tend to become redundant instead of
the higher order topological constraints.

Table 3 gives the priority factors assigned to the
constraints.

Once independent, redundant and inconsistent
dimensions are identified, they must be represented
according to rules. To that end, a series of algo-
rithms have been developed which allow dimen-

—

NG

Fig. 9. Dimension layout algorithm.
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sions to be represented on the nearest side of the
element to be dimensioned as well as the nesting of
dimensions according to their length.

The algorithms for locating dimensions let you
find the nearest end of the element on each
orientation. For each of these a system of local
co-ordinates is created per dimension. The center
of this new system of co-ordinates is the point of
reference of the dimension of lesser X-axis, Ypl,
Yp2, Yp3, and Yp4, characteristic points of the
elements to be dimensioned in the new system of
co-ordinates. The maximum and minimum Y-axis
points (Ymax and Ymin, respectively) are also
calculated for the new system. The distance
between Ymax and the points Ypl and Yp3 is
compared to the distance between Ymin and the
points Yp2 and Yp4. The dimension will be situ-
ated in the nearest end.

Once the dimensions are sorted by type, orienta-
tion and layout around the element, they are
ordered by length and then follow a nesting algo-
rithm. Each group of similarly oriented dimen-
sions, on the same side of the element, is sorted
by length. The longest one has a nesting index of
i = 0. Shorter ones receive a nesting index of i = 1
as long as they are either fully included in or
overlap the longer dimension. The next magnitude
is then sorted, and all dimensions that are either
fully included or overlap it add one to the previous
index i=1+1=2. This procedure is repeated

AP £l mimpla e i g TR )

until the lesser dimension is reached. Fig. 10
illustrates this graphically.

Figure 12 shows the constrained sketch of an
element and its dimensioning. User-provided
redundant dimensions appear in the dimensioning.
When displaying redundant dimensions, these are
shown as an auxiliary dimension with the numbers
in parenthesis; in the case of inconsistent dimen-
sions, the number appears struck-through.

Alternative dimensions

Generally, dimensions established for a mechan-
ical part must be modified because they do not
meet the needs of the drawing’s users. For ex-
ample, Fig. 12a, dimensioned following construc-
tive criteria, changes to Fig. 12b when production
criteria are followed.

It is possible to detect equivalent dimensions by
allowing user dimensions to be entered and elim-
inating unnecessary ones. It is the user who decides
which dimensions get inserted in the sketch. On
doing this an additional equation is added to the
system. If it is a perfectly constrained system it will
thus become over-constrained, the new dimension
will be redundant, and it can be expressed as the
linear combination of the preceding geometric
constraints:

Ry = )\1R1 + MR + ... + MRy,
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Fig. 11. Sketch and dimensioning of a part.

(a)

(b)

Fig. 12. (a) Geometric dimensioning; (b) production-oriented dimensioned.
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- =

Fig. 13. Element with redundant dimensions.

By solving the system and finding the values of \;,
as follows:

JIA = Ry

We will obtain \; = 1 coefficients for the metric
constraints on which it depends, and other values
for ); for the rest of the constraint equations if it
depends on them. In this way, any of the dimen-
sional equations can be substituted by the dimen-
sion that the user wants. Given the following
example (Fig. 13):

We want to include a vertical dimension of 20
and a horizontal dimension of 55. Therefore, other
dimensions will have to be eliminated to avoid
over-constraining. The first column includes the
constraint number. In the list, these two dimen-
sions are known as R,s and R4 respectively. We
are looking for values such that:

Ros = MR + MR + ...+ AaRoy
Ry = )\,1 Rl + /\/2R2 + ...+ /\/24R24

Solving the above systems, we get:
Rys = R3 + 4.4959R7 + Ry, — Ry

Rog = 0.436R; — 0.0218Rg 4 0.0718Ry
+0.05R10 + Rig + Rig + Ry

In the first case, we observe that the values of As,
A, and A»; are £1, as expected. R;, a horizontal-
ity restriction, is assigned to a dimension with a
null value, R>3 and R», are the vertical dimensions
defined with values of 30 and 50, respectively. The
vertical dimension whose value is 20 can substitute

for one of these two. Additionally, the + sign
associated with constraint R», and the—sign asso-
ciated with constraint R,z indicate that R,s can be
obtained by subtracting R,; from R»,.

In the second case, the dimensional constraints
once again offer a coefficient of 1, and additional
dependencies appear. If the horizontal dimension
with value 55 is added, one of the others, with
values 20, 25, and 10, must be eliminated. Addi-
tionally, the three plus signs associated to these
dimensions indicated that the one with value 55 is
obtained by adding the three preceding ones.

Application of the methodology

Students in the first course of engineering have
to do basic drawing and advanced drawing (draw-
ing of assemblies). Both subjects take up 130 hours
in the year, and study and practice in dimensioning
sketches is essential. The basic study plan is shown
below in Fig. 14.

During the class, the teacher explains the
concepts needed to perform appropriate dimen-
sionings and puts forward different examples to
the students for later discussion. The student does
these exercises at home with the help of a computer
application. This guarantees a solution with no
redundant or inconsistent dimensions. The results
are later discussed in class where the teacher
comments on the advantages or disadvantages of
the different solutions proposed by the students.
The disadvantages of serial/in-series dimensioning
are then explained, along with functional dimen-
sions, and the adaptation of dimensioning to
different types of manufacturing.

CONCLUSION

In this paper a new methodology approach of
teaching dimensioning based on variational
geometry has been presented. With the aim of
helping engineering students and reinforcing their
learning of sketch dimensioning, a computer appli-
cation based on variational geometry has been
developed. The proposed approach establishes
the complete geometry and constraints of a
sketch and relates it with the complete dimension-
ing of the sketch. The developed methodology
gives as result a complete and consistent dimen-
sioning of the sketch following the rules estab-
lished by an international standard like ISO 129.

This approach allows the user’s intention to be
detected at the time of making the sketches. This

Classroom p— Qut of class work — Discussion of

instruction +R&utaDIn solutions
Teachers Students Teachers+
students

Fig. 14. Planning of the dimensioning instruction.
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means that the drawing is simple and similar to
what the student would produce on a sheet of
paper. The methodology also establishes the most
suitable dimensioning but, if the student wants to
substitute any dimension for another, the algo-
rithm automatically reconfigures the complete
dimensioning scheme and proposes another differ-

ent one. It is possible to detect redundant and
inconsistent dimensions introduced into the
sketch by the user. It also includes algorithms to
dimensioning the element, following the ISO 129
standard. Lastly, it can detect alternative dimen-
sions to a given one, thus offering several possible
dimensionings of one sketch.
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