
A Strategy and Tool Support to Motivate
the Study of Formal Methods in
Undergraduate Software Design and
Modeling Courses*

SHUO WANG and LEVENT YILMAZ
Department of Computer Science and Software Engineering, College of Engineering, Auburn University,
Auburn, AL 36849, USA. E-mail: yilmaz@auburn.edu

Proper design analysis is indispensable to assure quality and reduce emergent costs due to faulty
software. Teaching proper design verification skills early during the pedagogical development of a
software engineer is crucial, as such analysis is the only tractable way of resolving software
problems early when they are easy to fix. The premise of the presented strategy is based on the
observation that a fundamental component of any engineering discipline is the use of formal and
sound techniques that facilitate analysis of produced artifacts. Yet, fundamental roadblocks exist in
bringing the state of the art in formal design analysis to the undergraduate software engineering
classroom due to the steep learning curve and quagmire of theoretical details involved in formal
methods. This paper suggests a strategy and tool support to improve the attainment of software
design verification skills. We illustrate how selective and pragmatic application of model-based
verification methods can be used in software design education via tools that aim to bridge the gap
between students' semi-formal design worldview and the formalism underlying formal methods.

AUTHOR QUESTIONNAIRE

1. The paper discusses materials/software for a
course in Software Engineering.

2. Students are taught this course Computer
Science, Software Engineering and Computer
Engineering departments

3. Level of the course (year): Junior (3rd year).
4. Mode of presentation: lectures, group design

project, programming assignments.
5. The material is presented in a regular course.
6. Hours required to cover the material: 3 hours/

week for 15 weeks.
7. Student homework or revision hours required:

5 homeworks over 15 weeks.
8. The novel aspects presented in this paper

involve integrating the formal methods trans-
parently into software design courses, so that
students can:
± appreciate pragmatic utility and use of

formal methods without getting into the
quagmire of theoretical details,

± avoid steep learning curves about the syntax
of a specific formal method by using alter-
native abstract templates, and

± discover inconsistencies and ask pertinent
questions about designs within the realm of
the actual software development process.

9. The standard textbook recommended in the
course is Craig Larman, Applying UML and

Patterns: An Introduction to Object-Oriented
Analysis and Design, Third Edition, Prentice-
Hall (2005).

10. The material is not covered in the textbook.

INTRODUCTION

SOFTWARE ERRORS are prevalent and detri-
mental; they cost the USA economy an estimated
$59.5 billion annually, or about 0.6 percent of the
gross domestic product [1]. According to numer-
ous other sources [2±6] software projects fail to
meet deadlines, are suffused with defects, run over
budget, and do not include many of the features
present in the original specifications. The NIST
study [1] indicates that while all errors cannot be
removed, more than a third of these costs, or an
estimated $22.2 billion, could be eliminated by an
improved quality evaluation infrastructure that
enables earlier and more effective identification
and removal of software defects. Due to this
imminent issue, concern has grown over the
levels of assurance of software intensive systems
[6].

Mitigating this problem requires immediate
attention of educators to improve the pedagogy
of software engineering by facilitating transparent
integration of quality evaluation techniques into
the curriculum. Fortunately, there already exist
efforts in making software testing an integral
part of programming courses [7±9]. Such initiatives* Accepted 27 September 2005.

407

Int. J. Engng Ed. Vol. 22, No. 2, pp. 407±418, 2006 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2006 TEMPUS Publications.

do not only increase awareness among students
about the role and significance of testing, but also
help them attain significant program analysis
experience. While teaching students how to instill
confidence in software has already received signifi-
cant attention, reasoning and asking pertinent
question about design have not received the same
level of treatment.

The emergent trend toward model-driven devel-
opment [10] and the adoption of principles under-
lying the model-driven architecture (MDA) [11]
suggests the necessity of promoting critical design
analysis skills. The significance of teaching formal
methods in the context of emerging trends in
software development is also argued by Davies
and Simpson [12] and Robinson [13]. They both
agree that analyzing design artifacts requires
educated use of formal methodologies. Unfortu-
nately, current state of practice extensively relies
on informal procedures [14].

Lack of proper training in formal analysis is one
of the major causes of bug-riddled and inconsistent
software. Teaching proper design analysis skills
early in the pedagogical development is crucial
[15], as such analysis is the only tractable way of
resolving problems early when they are easy to fix.
Besides, a fundamental component of any engin-
eering discipline, including software engineering, is
the use of formal and sound techniques that
facilitate analysis of artifacts produced by students
[16]. Yet, the impact of formal methods in software
engineering practice [13], as well as education, is
minuscule [17]. The fundamental reasons why
formal methods are not effectively utilized are
attributed to:

. the impedance mismatch between the underlying
mathematical underpinning of formal methods
and student's semi-formal, if not informal, view
of the design problem [18];

. the lack of tool support for seamless integration
of formal methods into software design educa-
tion [19, 12].

How can we integrate formal methods transparently
into software design courses? Given the above
observations, we explore methods that can:

. appreciate pragmatic utility and use of formal
methods without getting into the quagmire of
theoretical details;

. avoid steep learning curves about the syntax of a
specific formal method by using alternative
abstract templates;

. discover inconsistencies and ask pertinent ques-
tions about designs within the realm of the
actual software development process [20].

The proposed strategy entails the integration of the
Model-Based Verification (MBV) methodology
[21] into an undergraduate software design
course. In this course students participate in
group projects to formulate requirements and
develop UML-based [22] software designs. The
Behavioral Model Analyzer (BMA) is part of a

comprehensive Web-based Computer Aided Veri-
fication Environment (Web-CAVE). It is used by
students to verify the behavior designs to discover
and locate errors before coding starts. Web-CAVE
is a student-centered design evaluation center that
integrates structural consistency analyzer, design
metrics collector, and the BMA. In this paper, we
focus on the design rationale, development, and
use of the BMA in facilitating the attainment of
design verification skills.

The premise of the underlying strategy is partly
based on the utilization of high-level and easy-to-
learn templates that do not require a background
in formal mathematical logic. Our findings indi-
cate that by using the tool, students gain valuable
experience in identifying potential sources of
discrepancies and faults within their behavioral
models. Furthermore, the tool provides a basis
for the development of an online grading system
to support instructors.

This paper reviews current approaches in using
formal methods within the software engineering
curriculum along with the Model-Driven Architec-
ture (MDA) trend in software development to
suggest a pragmatic strategy based on selective
and pragmatic application of model checking.
The overview of the context within which the
BMA is used is presented and development of
the BMA is outlined. We demonstrate the utility
of the BMA in terms of a case study and conclude
by discussing potential avenues for further
research to address further issues pertaining to
improvement of BMA's transparency.

FORMAL METHODS IN SOFTWARE
DESIGN EDUCATION

Formal methods are mathematically-based tech-
niques for describing system properties. As such,
they provide frameworks within which engineers
can specify, develop, and verify systems in a
systematic, rather than ad hoc, manner [23].
Recently, in meeting the challenges to reduce soft-
ware errors and increase the quality of software
systems, a set of formal software engineering
techniques and practices for software verification,
known as MBV, has been developed [21]. Seamless
and transparent integration of the MBV philo-
sophy into a software design course constitutes
the foundation of the proposed strategy.

Current strategies for integrating formal methods
into software design education

Current approaches in integrating formal
methods into software engineering education fall
into three main categories. The first approach is to
avoid formal methods. While this strategy is
observed in most continuing education programs,
its appropriateness for general software engineer-
ing education is open to debate. The second
approach is to devote a specific course with
emphasis on formal verification of source code.

S. Wang and L. Yilmaz408

The advantage of such a course is that students are
exposed to a wide variety of formal methods such
as Z [24] and VDM [25]. The broad coverage of
formal methods provides flexibility to tailor a
course to make it relevant to certain software
engineering skills. However, broad coverage of
formal methods may not enable a student to be
proficient on a specific formal approach [19].
Furthermore, the methods are taught in an
isolated manner with an emphasis on the notations
rather than the underlying principles. This isolated
exposure to formal methods prohibits students
from applying such approaches to software engin-
eering practices. The third approach is to redesign
the entire program so that formal methods are
integrated throughout the curriculum. A widely
known example is the CMU strategy [26, 27],
where the graduate program in software engineer-
ing is redesigned to facilitate exposure to formal
models of software systems. While the CMU
strategy presents a novel strategy for comprehen-
sive treatment of formal methods, the curriculum
is formulated for graduate students. As such, the
strategy presumes familiarity and exposition to
advanced logic and discrete math. In the second
strategy outlined above, formal methods courses
are taught at the undergraduate level following
preliminary exposition to discrete math or mathe-
matical logic courses, yet they are treated in an
isolated manner on toy source code samples for
illustrative purposes. Use of formal methods
within the context of software design and modeling
is not yet common.

Model-based verification
The challenges involving in the motivation of

the study of formal methods in the classroom are
well-documented [28]. Also, given the empirical
evidence that computer science students do experi-
ence difficulty with the concepts underlying formal
methods [18], strategies to overcome the, so-called,
`mental resistance' phenomena are needed. MBV
and its underlying philosophy provide the requisite
impetus to address this need.

The foundation of the MBV involves the selec-
tive use of different levels of abstraction and
formalism in the systematic generation and analy-
sis of `essential' models of a system. Essential
models are simplified abstract representations
that capture the blueprint of a system. The current
work in MBV is building and extending the
foundation of various promising techniques, espe-
cially formal techniques, and adapting their under-
lying principles and methodologies to improve
software quality. In the broader perspective,
MBV can be seen as an integral technique in
verification and testing practices that reduce the
occurrence of errors [21].

A well-established and accepted method in MBV
is model checking [29±31]. Model checking relies
on building a finite model of a system and checking
that a desired property holds in the model. It
involves an exhaustive state space search which is

guaranteed to terminate. Model checking can be
applied to analyze specifications of software
systems. There are two broad approaches to
model checking that are widely used. The first is
temporal model checking, a technique that uses
specifications expressed in a temporal logic. The
second approach uses specifications given as an
automaton, and the system is also modeled as an
automaton. The system is then compared to the
specifications to determine whether its behavior is
consistent with the specifications. There are tools
that facilitate the checking of expected model-
based system behavior with respect to safety and
liveness properties of systems. Yet, these tools
require advanced knowledge on using temporal
logic to specify such properties.

INTEGRATING MODEL CHECKING INTO
DESIGN EDUCATION

A practical strategy for bringing formal methods
to undergraduate software design education needs
to be based on a level of abstraction that does not
require extensive exposure to the formal syntax of
the specific method. This fundamental requirement
influenced and guided the overall design of the
Web-CAVE, which is a web-based environment
that enables students to evaluate the structure and
behavior of their design models. Web-CAVE and
its BMA tool, which is the focus of this paper, are
used in the context of an undergraduate software
design and modeling course.

COMP3700Ðan undergraduate software design
and modelling course

The Software Design and Modelling course
(COMP3700) at the department of Computer
Science and Software Engineering is a junior-
level course with an average enrollment of
35 students. As a prerequisite, students are
expected to be familiar with object-oriented (OO)
software construction. Based on this foundation,
COMP3700 presents an integrated set of techni-
ques for software analysis and design using the
UML notation. Introduction to object concepts,
fundamentals of OO analysis and design process,
use-case analysis, object modeling using behavioral
techniques, and design patterns constitute the
fundamental topics covered in COMP3700.

The structure of the course is recently revised to
cover software design quality assessment. While
the traditional lecture style is preserved, it is
recognized that analysis and design skills are best
acquired in terms of:

. learning by doing [8, 34];

. critical analysis [32];

. collaborative problem solving [33].

COMP3700 offers two substantial group projects.
The first project entails the development of design
models based on the given problem definition.
Students develop UML [22] models to visualize

A Strategy to Motivate the Study of Formal Methods in Software Design Courses 409

design artifacts. The second project involves the
evaluation of a design produced by another group
using various quality assessment procedures. The
Web-based computer-aided evaluation center (see
Fig. 1) plays a critical role in supporting the second
group project.

The Web-CAVE environment
Web-CAVE is comprised of three components:

(1) structural consistency analyzer, (2) design
metrics collector, and (3) the BMA. As shown in
Fig. 1, the design models can be uploaded by
students onto a central repository through a web-
based interface.

To facilitate interoperability across different
UML design tools, the models are translated into
XMI (an XML-based exchange format) before
they are stored in the database. The structural
model analysis component performs consistency
analysis across different diagrams uploaded by the
members of a group project. In addition to struc-
tural consistency analysis, Web-CAVE provides
facilities for students to collect various design
metrics. Inspections and peer-reviews are an inte-
gral practice in the process of experimentation.
Before the development of Web-CAVE, students
were required to identify a set of critical questions
to overview their designs and check for violation of
design integrity and consistency.

Web-CAVE provides online services including
design consistency rules and metrics collectors to
facilitate performing efficient and effective
reviews. However, this paper focuses on the
behavioral model analysis feature of Web-
CAVE; so, we refer interested readers to [35]
for a review of the structural analysis capabilities
of the environment.

A strategy for integrating model checking into
software design courses

Structural analysis significantly reduces sources
of errors, but it does not guarantee behavioral
correctness. In software design classes, students
are often required to create UML statecharts to
depict behavioral aspects of their designs. While
model checking [29±31] is a state-of-the-art analy-
sis method for analyzing and verifying state
machine models, its use requires understanding
temporal logic in developing formal specifications.
Note, however, students taking COMP3700 lack
such formal background. Furthermore, common
myths on formal methods [36] inhibit the recogni-
tion of the utility of formal methods by students.

As a result, bringing this advanced technology,
in its basic form, to improve critical design analysis
skills, is a challenging task. The BMA aims to
bridge the gap between students' semi-formal
design worldview and the formalism underlying
model checking. The BMA accepts a software
design model and a property specifying how the
model is required to behave.

The BMA then performs model checking using
the model and the property to display the results
back to the student in an informative form.
Although this description hardly differs from the
operation of any other model checking tool, the
BMA places emphasis on the following features
that are not present in other model checkers:

. The inputs are UML models, which are com-
monly used in software design, rather than a
tool-specific model description language, to
which students have little exposure.

. The properties defining the required behaviors
of the models can either be supplied or derived
from UML sequence diagrams in the form of

Fig. 1. Web-CAVE.

S. Wang and L. Yilmaz410

specification templates rather than temporal
logic, thus eliminating the requisite mathemati-
cal skills involved in formal methods.

. The results of model checking are shown using
graph visualization rather than text, so that
students can have better intuition about the
source of errors.

The features of the BMA are implemented using
three incremental steps. The first step includes the
translation of UML statechart models for the
purpose of model checking, the construction of
the specification template, and a graph visual-
ization to show the counter example that violates
the required property. The second step incorpo-
rates the capability to recognize limited forms of
behavioral properties in terms of specification
templates. The third step adds the capability to
visualize the specification finite state machine
generated from the required behavioral properties.

Types of input models used in the BMA
The Unified Modeling Language (UML) [22] is

a general-purpose visual modeling language that is
used to specify, visualize, construct, and document
the artifacts of a software system. UML is capable
of capturing information about the static structure
and dynamic behavior of the system. The static
structure defines the collection of discrete objects
that make up the system. The dynamic behavior
defines the history of objects over time and the
communication among objects to accomplish
goals. UML is not a highly formal language, but
rather a semi-formal modeling language for
discrete systems. The UML state machines and
sequence diagrams are widely used to specify
dynamic behavior of software components. The
state machine view describes the dynamic behavior
of objects over time by modeling the lifecycles of
objects of each class. A state machine is a graph of
states and transitions, and it describes the response
of an instance of the class to events that it receives.
Events represent the kinds of changes that an
object can detectÐthe receipt of calls or explicit
signals from one object to another, a change in
state values, or the passage of time. A state is
defined as a set of object values for a given class.

Converting UML models into PROMELA
Consistent with the philosophy of the MDA

initiative [26], the BMA converts a UML state-
chart into a PROMELA code skeleton that can
easily be augmented by students, who are not
familiar with the PROMELA syntax. The
PROMELA code translated from a UML state-
chart does not provide actions and the logic needed
to execute the transitions that update the state
variables. Yet, the SPIN model checker that inter-
prets the PROMELA code needs to update the
state variables to change the state of the model by
executing transition logic. This requires explicit
specification of transition code. Since UML state-
charts do not currently provide conventions to

define the transition code, the BMA tool enables
students to enter the code through a graphical
interface to complete the specification of the
model. The process by which the PROMELA
code is generated is demonstrated below. The
process is reminiscent of the code generation and
simulation efforts advocated in the MDA initia-
tive, where the source code is generated from UML
models to reduce the coding effort in software
development. The same philosophy is applied in
the BMA tool to improve verification of software
designs by reducing the effort required to develop
formal specifications.

Deriving constraints from specification templates
In model checking, a property (i.e., required

behavior) of the model is specified using temporal
logic. The steep learning curve involved in using
mathematical logic is one of the core reasons why
formal methods have been lacking in undergradu-
ate design education. Yet, it is imperative for the
BMA to navigate around this obstacle. As a result,
the BMA uses the notion of specification templates
[37] to describe the required property of the model.
A specification template is a generalized descrip-
tion of a commonly occurring requirement on the
permissible state sequences in a finite-state model
of a system, and it describes the essential
constraints of some aspect of the system's intended
behavior. The specification templates are general-
ized in a hierarchical structure in terms of their
scopes for formal specification and verification.

The scope of a template is the extent of program
execution over which the template must hold. It is
determined by specifying a starting and an ending
state for the template. Therefore the scope consists
for all states beginning with the starting state and
up to but not including the ending state. As shown
in Fig. 2, there are five different scopes:

. GlobalÐthe entire model execution.

. BeforeÐthe execution up to a given state.

. AfterÐthe execution after a given state.

. Between ± any part of the execution from one
given state to another.

. After-UntilÐjust like Between, but the desig-
nated part of the execution continues even if
the second state does not occur.

Fig. 2. Scopes of specification templates.

A Strategy to Motivate the Study of Formal Methods in Software Design Courses 411

Common specification templates used in model
checking are shown in Fig. 3. Each template is
translated into its temporal logic formula by the
BMA. When working with a specification
template, only states required by the particular
template need to be supplied by the student. The
process by which a template is instantiated is
shown below using a simple example. The seman-
tics of the commonly used templates are defined
in [37].

The occurrence template type includes concrete
templates from which students select to specify the
following types of constraints:

. AbsenceÐA given state or event does not occur
with a scope. This template is also known as
Never.

. Existence ± A given state or event must occur
within a scope. This template is also known as
Future or Eventuality.

. Bounded ExistenceÐA given state or event must
occur k times within a scope.

. UniversalityÐA given state or event occurs
throughout a scope. This template is also
known as Globally, Always and Henceforth.

Interested readers can find more about the rest of
the templates along with their temporal logic
specifications in [37].

THE DESIGN OF THE BMA

The diagram shown in Fig. 4 provides the
physical layout of the implementation components
of the BMA, grouped with respect to their func-
tions. The components in the BMA can be grouped
into five subsystems. The subsystem UI/Controller
contains the BMADesktop, which performs inter-
action with the student to facilitate communication
among other components.

The ModelChecking performs model checking
and retrieves the raw results. The Visualization
provides the results of model checking using
graph visualization. The BMA is enacted when
the DestopBMA component initializes. This
component contains functions to call other compo-
nents in order to execute the request by using
interactive user interface widgets. Using these
widgets, a UML design model is converted into
PROMELA language, supplies specification

Fig. 4. The architectural design of the BMA.

Fig. 3. Taxonomy of specification templates.

S. Wang and L. Yilmaz412

templates, and launches the model checking
process to find potential errors in the design.

When the student chooses a UML model as the
input design model, the component XMIParser
extracts the detailed model information from the
input and stores it in a data structure called
StateMachine. Concomittantly, the component
ModelVisualizer generates the graph visualization
and displays it to the student. PromelaEncoder
converts the model in the StateMachine data
structure into its corresponding PROMELA code
skeleton. DesktopBMA initiates the Template-
Input, which provides the specialized user interface
elements that allow the student to supply
constraint templates.

The temporal logic generated from the templates
is saved into a temporary text file as well. SpinE-
voker enacts the model checker and calls Output-
Parser to extract errors present in the text-based
results generated by SPIN. The errors are saved
into a data structure called Errors. This data
structure is then used by the ModelVisualizer to
generate a colored trace of problematic states of
the design to show the results of the model check-
ing back to the student.

The BMA is developed in Java using the open
source Eclipse IDE, and it is compiled using Sun's
Java SDK 5.0.

All GUI components in the application are built
using the Java Swing toolkit. The XMI files

containing the UML diagrams are parsed using
the open source Xerces XML SAX parser for Java.
Graph-based visualizations in the application are
generated by the Java Universal Network/Graph
Toolkit (JUNG). The model checker SPIN is used
to perform model checking.

THE UTILITY OF BMA IN TEACHING
VERIFICATION-DRIVEN DESIGN

The BMA emulates the success of Test-Driven
Assignments [9], as well as the promising proposals
for improving testing skills [38] and integrating
more testing into the curriculum [25]. Our strategy
is to require students to submit verification queries
in terms of BMA templates along with their UML
statechart designs.

As part of their homework assignment, students
are provided with a set of constraints their designs
need to satisfy. They are asked to supply verifica-
tion queries and demonstrate the correctness of
their designs with respect to these queries. In
evaluating submitted assignments we not only
check the correctness of the design, but also
students' verification performance. Verification
performance is tested by running the verification
queries against the instructor provided design
models that are mutated to measure the fault-
revealing quality of the student-supplied queries.

Fig. 5. BMA visualization for the gas pump statechart.

A Strategy to Motivate the Study of Formal Methods in Software Design Courses 413

The case study
To illustrate the utility of the BMA, we use the

design model of a simple gas pump that is created
and submitted by a student. Figure 5 illustrates the
BMA visualization of an input UML statechart.

The gas pump model provides a brief synopsis of
the model's behavior. The gas pump starts in an
idle start state waiting for a customer to interact
with it. When a customer needs to use the pump by
lifting a nozzle, the pump checks whether the
nozzle is available to be used. If the nozzle is out
of service, the pump indicates that it is unavailable
and eventually goes back to the idle start state. If
the nozzle is ready to be used and once the
customer starts pumping gas into the car, it
becomes in use. At any point during the pumping
process, the customer can pause or stop the process
to finish fueling the car. While the pump is paused,
the customer can either continue or stop the
fueling process.

One of the queries can be described as `the
pumpstatus will reach state inuse before paused',
which considers the fact that a customer must
always start the fueling process before s/he can
pause the pump. This template can be divided into
two logical propositions: one representing the
status of the pump is currently inuse, the other is
currently paused. The two propositions are joined

using the scope operator before that is presented in
the template list of the specification development
interface shown in Fig. 6. In deriving the verifica-
tion query, the instructor defines the two proposi-
tions as follows: The first is called pumpinuse with
the logical expression `pumpstatus == INUSE'
assigned to it. The second is called pumppaused
with the logical expression `pumpstatus ==
PAUSED' assigned to it. We also specify that the
scope operator of this template is before.

This indicates that pumpinuse should occur
before pumppaused. As shown in Fig. 7, the
model checking process does not yield any errors.
The instructor tests the design with the rest of the
verification queries to determine if the design is
consistent with the constraints provided along with
the problem definition. Next, the instructor uses
the reference model for the problem to test the
quality of the verification queries submitted by
students. The model is injected with faults that
violate explicitly stated problem constraints For
instance, the instructor injects a fault to make sure
that the transition Pause and the state `Paused' are
not reachable during execution. In the scenario,
the customer may complete the fueling process
without pausing in the middle, thus the pumpstatus
state variable may not be assigned to the state
paused.

Fig. 6. Abstract constraint manager.

S. Wang and L. Yilmaz414

To demonstrate this feature, we use the follow-
ing specification template provided by the student:
`the pumpstatus will reach the state paused between
the states inuse and stopped'. Creating the template
in the same way as described above and perform-
ing model checking proves that the design model
violates the specification and the colored error
trace is shown in Fig. 8. The trace is shown in
terms of sequence of states and transitions that
lead to the state, which fails the specified property.
The fault coverage of student queries is used to
assess the quality of the verification queries they
develop. This strategy is similar to the notion of
fault-coverage in specification-based testing, where
the quality of test cases is assessed based on the
extent to which they cover injected faults in
mutated software programs.

Preliminary observations on the utility of the
Web-CAVE and the BMA

While a comprehensive survey or field study is
not yet performed to evaluate the effectiveness of
the Web-CAVE system and its BMA tool, group
project team leaders are asked to reflect upon their
group design project experience. A common
response among team leaders was on the conve-
nience of Web-CAVE in locating inter-diagram
inconsistencies. That is, as different members of a
group develop distinct aspects and views of the

same system (i.e., conceptual model, interaction
diagrams, class design diagrams, and finite state
designs), inconsistencies among diagrams become
a significant concern. Structural consistency analy-
zer in Web-CAVE helped group members recog-
nize integrity problems earlier to assure design
coherency and correctness. A common criticism
is the difficulty of the usability of the system, as
well as the lack of clarity of the relevance of
collected design metrics to quality objectives.

Also, the BMA tool is found by students useful
in revealing discrepancies between state charts and
sequence diagrams. However, the requirement for
developing and submitting verification queries
along with the assignments is found by students
to be time consuming, since there is clearly a
learning curve in using the verification pattern
used by the BMA. Note, however, this effort is
significantly less compared to learning to write
formal specifications. On the other hand, students
agree on the usefulness of the tool in asking
pertinent questions about their designs, discover-
ing and locating errors in models before submitting
their assignments. Having instructor-supplied
constraints and development of verification
queries that aim to prove the satisfiability of
these constraints improve their confidence in the
grading scheme. As a side effect, the existence of
the BMA tool and the inclusion of the reference

Fig. 7. Result of model checking.

A Strategy to Motivate the Study of Formal Methods in Software Design Courses 415

verification queries provided by the instructor
further ease the evaluation and grading of the
submitted assignment. In effect, this observation
revealed the potential of the BMA for becoming an
automated grading system, through which design
correctness, as well as verification skills of students
can be tested in an objective manner.

CONCLUSIONS

The steep learning curve and effort involved in
applying conventional formal methods in software
engineering are the primary roadblocks in their
practical use. Realizing this barrier, integration of
MBV perspective to software design and modeling

courses is discussed. The premise of the strategy is
based on the observation that the fundamental
component of any engineering curriculum is a
collection of formal and sound techniques that
facilitate analysis of artifacts produced by
students. We discuss several opportunities to facili-
tate integration of MBV into undergraduate soft-
ware design education. To this end, high-level
architecture of a web-based computer-aided veri-
fication system is presented to illustrate how
attainment of analysis and verification skills can
be promoted through an online design evaluation
system. The notion of abstract verification
patterns is used to bridge the gap between the
mathematical underpinnings of formal methods
and student's semi-formal design worldview.

REFERENCES

1. NIST, The Economic Impacts of Inadequate Infrastructure for Software Testing, NIST Planning
Report 02-3, (2002) accessed May 21, 2005. http://www.nist.gov/director/prog-ofc/report02-3.pdf

2. Standish Group, The Chaos Report (1994), accessed April 30, 2005. http://www.standishgroup.
com/sample_research/chaos_1994_1.php

3. OASIG, Why do IT Projects so Often Fail, OR Newsletter, 309, 1996, pp. 12±16.
4. J. King, Survey shows common IT woes persist, Computerworld (2003), accessed April 30, 2005.

http://www.computerworld.com/managementtopics /management/ story/0,10801,82404,00.html
5. C. Mann, Why software is so bad . . . and what's being done to fix it, MSNBC Technology and

Science, 2002, accessed May 28, 2005. http://www.msnbc.com/news/768401.asp?0dm=
C11LT&cp1=1

6. B. Lewis, The 70-percent failure, Infoworld, 2003, accessed April 30, 2005. http://www.infoworld.
com/articles/op/xml/01/10/29/011029opsurvival.html

7. E. F. Barbosa, R. LeBlanc, M. Guzdial and C. J. Maldonado, The challenge of teaching software
testing earlier into design, Workshop Teaching of Software Testing (WTST), February 7±9, 2003,
Melbourne, Florida, pp. 27±33.

8. S. H. Edwards, Can quality graduate software engineering courses be delivered asynchronously
on-line, Proc. ICSE'2000, (2001) pp. 676±679.

Fig. 8. Visualization of error trace in BMA.

S. Wang and L. Yilmaz416

9. S. H. Edwards, Automatically assessing assignments that use test-driven development, Workshop
Teaching of Software Testing (WTST), February 7±9, 2003, Melbourne, Florida.

10. D. Gluch and C. Weinstock, Model-Based Verification: A Technology for Dependable System
Upgrade (CMU/SEI-98-TR-009, ADA 354756). Pittsburgh, Pa: Software Engineering Institute,
Carnegie Mellon University (1998) accessed on May 21, 2005. http://www.sei.cmu.edu/
publications/documents/98.reports/98tr009/98tr009abstract.html

11. MDA, The Architecture of Choice for a Changing World (2004). http://www.omg.org/mda/
executive_overview.htm

12. J. Davies and A. Simpson, Teaching formal methods in context, Proc. CoLogNET/FME
Symposium, TFM2004, LNCS 3294, pp. 185±202.

13. K. Robinson, Embedding formal development in software engineering, Proc. CoLogNET/FME
Symposium, TFM 2004, LNCS 3294, pp. 32±46.

14. S. L. Duggins and B. B. Thomas, An historical investigation of graduate software engineering
curriculum, Proc. 15th Conf. Software Engineering Education and Training (CSEET), Kentucky,
USA, February 25±27, 2002.

15. M. Sebern and M. Lutz, Developing undergraduate software engineering programs, Conf. Soft-
ware Engineering Education and Training, 6±8 March 2000, Austin, Texas, USA, pp. 305±306.

16. D. Gries, The Science of Programming, Springer-Verlag, New York (1981).
17. D. L. Parnas, Education for computing professionals, Teaching and Learning Formal Methods (eds

Dean and Hinchey) Academic Press (1996).
18. L. V. Almstrum, Investigating student difficulties with mathematical logic, Teaching and Learning

Formal Methods (eds. Dean and Hinchey) Academic Press (1996).
19. D. Garlan, Effective formal methods education for professional software engineers, Teaching and

Learning Formal Methods (eds Dean and Hinchey) Academic Press (1996).
20. E. Wang, R. Wirtz and M. Greiner, Simulating Corporate Project Engineering for Freshmen, Proc.

Frontiers in Education Conference, November, pp. 1313±1318 (1998).
21. D. Gluch and J. Brockway, An Introduction to Software Engineering Practices Using Model-

Based Verification (CMU/SEI-99-TR-005, ESC-TR-99-005). Pittsburgh, Pa.: Software Engineer-
ing Institute, Carnegie Mellon University, 1999. [accessed on may 21, 2005 from http://www.sei.
cmu.edu/publications/documents/99.reports/99tr005/99tr005abstract.html]. (1999).

22. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide, Addison-
Wesley. (1999).

23. J. Wing, A specifier's introduction to formal methods, IEEE Computer, 23(9), 1990, pp. 8±24.
24. A. Diller, Z: An Introduction to Formal Methods (2nd Ed.), John-Wiley & Sons (1994).
25. C. Jones, Systematic Software Development Using VDM, Prentice-Hall Intenational Series in

Computer Science, Hemel Hempstead (1986).
26. D. Garlan, M. Shaw, C. Okasaki, C. Scott and R. Swonger, Experience with a course on

architectures for software systems, Proc. SEI Conf. Software Engineering Education, Springer
Verlag, LNCS 376, October 1992. Also available as CMU/SEI technical report, CMU/SEI-92-TR-
17 (1992).

27. D. Garlan, Integrating formal methods into a professional master of software engineering
program, Proc. Z Users Meeting, June 1994.

28. J. N. Reed and J. E. Sinclair, motivating study of formal methods in the classroom, Proc.
CoLogNET/FME Symp., TFM 2004, LNCS 3294, 203-213. (2004).

29. M. Clarke, E. Emerson and A. Sistla, Automatic Verification of finite state concurrent systems
using temporal logic specifications, ACM Transactions on Programming Languages and Systems,
8(2), 1986, pp. 244±263.

30. M. Clarke, O. Grumberg and D. E. Long, Model checking and abstraction, ACM Trans.
Programming Languages and Systems, 16(5), 1994, pp. 1512±1542.

31. E. M. Clarke, O. Grumberg and O. Peled, Model Checking, MIT Press (2000).
32. J. E. Stice, Developing Critical Thinking and Problem-Solving Abilities, Jossey-Bass Inc., San

Francisco, CA (1987).
33. R. J. Daigle, M. V. Doran, and J. H. Pardue, Integrating Collaborative Problem Solving

throughout the Curriculum, Proc. 27th SIGCSE Technical Symposium on Computer Science
Education, 1996, pp. 237±241.

34. M. J. Oudshoorn and K. J. Maciunas, Experience with a project-based approach to teaching
software engineering, Proc. Southeast Asian Regional Computer Confederation 5th Annual Working
Conf. Software Engineering Education, Dunedin, New Zealand, November 1994, pp. 220±225.

35. L. Yilmaz and S. Wang, Integrating model-based verification into software design education,
J. Science, Technology, Engineering, and Math Education (in press).

36. J. A. Hall, Seven myths of formal methods, IEEE Software, 7(5), September 1990, pp. 11±19.
37. M. B. Dwyer, G. S. Avrunin and J. C. Corbett, Patterns in property specifications for finite-state

verification, Proc. 21st International Conference on Software Engineering, May, 1999.
38. T. Shepard, M. Lamb and D. Kelly, More testing should be taught, Communications of the ACM,

44(6), 2001, pp. 103±108.

Shuo Wang is graduate student of Computer Science and Software Engineering in College
of Engineering at Auburn University. He earned his BS degree in Computer Science from
Georgia Institute of Technology. His academic and research interests are software
modeling and simulation, software engineering, computer networks, and human-computer
interaction. He is a member of ACM and IEEE.

Levent Yilmaz is assistant professor of Computer Science and Software Engineering in the
College of Engineering at Auburn University. Dr. Yilmaz earned his Ph.D. and M.S.

A Strategy to Motivate the Study of Formal Methods in Software Design Courses 417

degrees from Virginia Tech. He received his B.S. degree in Computer Engineering from
Bilkent University, in Turkey. He worked as a lead project engineer and principle
investigator for advanced simulation methodology, model-based verification, and simula-
tion interoperation technology development efforts. His research interests are on software
engineering and simulation modeling education, advancing the theory and methodology of
simulation modeling, and agent-directed simulation (to explore and understand socio-
technical systems such as software process and project dynamics). He is a member of ACM,
IEEE Computer Society, Society for Computer Simulation International, and Upsilon Pi
Epsilon.

S. Wang and L. Yilmaz418

