
Is Designing Software Different From
Designing Other Things?*

DAVID SOCHA
Center for Urban Simulation and Policy Analysis, University of Washington, Seattle, WA 98195, USA.
E-mail: socha@cs.washington.edu

SKIP WALTER
Chief Technology Officer, Attenex Corporation, Seattle, WA 98104, USA. E-mail: skip@attenex.com

This paper explores the question of whether designing software is different from designing other
things (we believe it is). We discuss several key distinctions that are largely missing from the
discourse on software design yet which are vital to the success of software designs. These
distinctions are increasingly important as software becomes prevalent in the design tools and
products of other engineering disciplines. By considering what is similar and what is different we
help reveal how the lessons of software design may help other disciplines, and vice versa. This in
turn illuminates a core meta-question of how educators in academia and industry can help evolve
our understanding of what we do so that we can be more effective at software design. But first, we
need to understand what is different, and what is not different, about this discipline called software
design.

Keywords: software design; architecture; complex adaptive systems; design; design process;
digital artifacts; organizational design; organizational intervention; pattern language; test-
driven development.

INTRODUCTION

THIS PAPER is part of our exploration into how
to improve the profession of software develop-
ment. In our 60+ years of experience in developing,
using, managing and teaching about all forms of
software and software development, we wondered
why there are few examples of great software
designs. We wondered why there are so few good
software designers among the 2.5 million profes-
sional programmers in the United States. We see
few resources in the form of books, seminars and
college courses focused on designing software. We
find very little research that looks at how other
fields of design may help us do better software
design, or that discusses whether software design is
so different that it cannot draw from other fields of
design. Thus, our exploration of the question
posed in the title of this paper `Is designing soft-
ware different from designing other things?'

We believe that software design is different. In
this paper we identify major differences between
software design and other forms of design, whether
these are `hard design' (for material objects) or
`soft design' (for processes or policies). We will not
distinguish whether software design should be seen
as a type of soft design. Our main point is that it is
different from all other forms of hard and soft
design. Understanding whether designing software
is different from designing other things will help

our software discipline learn from other disci-
plines, and contribute to other design disciplines.
We believe that this understanding is critical, since
most design fields are seeing an increasing role for
software as aids to the creation of the design, or of
software as part of making a more interactive end
product.

John Heskett starts off his graduate course on
the Economics of Design with the nonsensical
statement [1] `Design is to design a design to
produce a design!' He follows this slide with a
partial list of the many different fields of
designÐengineering design, product design, indus-
trial design, ceramic design, decorative design,
graphic design, illustration design, information
design, typographic design, advertising design,
packaging design, brand design, interior design,
pattern design, software design, systems design,
interaction design, hair design . . .

The multiple uses of the word `design' make it
difficult to identify similarities and differences in
the diverse fields of design. Parsing the sentence to
make sense of it we get:

`Design is to design a design to produce a design.'
Noun 1; Verb; Noun 2; Noun 3.

Heskett's working definitions of these uses of
`design' are [1]:

. Noun 1Ðindicating a general concept of a field
as a whole.
± Example: `Design is important to the national

economy.'* Accepted 12 December 2005.

540

Int. J. Engng Ed. Vol. 22, No. 3, pp. 540±550, 2006 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2006 TEMPUS Publications.

. VerbÐindicating action or process.
± Example: `She is commissioned to design a

new kitchen blender.'
. Noun 2Ðsignifying a concept or proposal.

± Example: `The design was presented to the
client for approval.'

. Noun 3Ðindicating a finished product of some
kind, the concept made actual.
± Example: `The new VW Beetle revives a clas-

sic design.'

At this level of abstraction, the definitions apply to
each field of hard and soft design. It is the working
practice in each of these definitions which differ-
entiates software design from other forms of
design.

We believe that software design is different
because:

. the activities that make up the software design
field (Noun 1), including organizational design
and intervention, span more expertise and
domain boundaries than do other forms of
design;

. the optimum software design process is the
reverse of the process for hard object or product
design (Verb);

. the design specification is the software source
code (Noun 2) which is complete enough to
generate automatically an end product (Noun
3) without translation into humanly understood
forms;

. the finished outcome of software design is both a
complex adaptive system (CAS) and a compo-
nent of other complex adaptive systems at the
same time (Noun 3).

Practitioners from the fields of physical object and
hard product design might argue that these differ-
ences are a matter of degree rather than a differ-
ence in kind. They could argue that because the
field of software design is so young that appro-
priate first principles of design are not obvious or
not yet discovered. To confuse the argument
further, it is difficult to find an area of hard
design that does not have a component of software
vital to the design process. Software is often used
for computer-aided design or simulation, as well as
embedded into the product to make it more inter-
active. We believe the examples in this paper
illustrate that there is a difference in kind with
software design. Given our examples, and that
software is a material without substance, we
claim that it is likely that there are no first prin-
ciples of software design to find.

We believe that in the future hard design
processes will adopt and include many of the
methods of successful software design practice. A
good example of this melding of practices is
documented in the shifting of design process and
methods of the architect Frank Gehry. Through
the last 20 years, Gehry's design practice has
moved from that of the traditional architect devel-
oping drawings, specifications and models to

adapting CAD and Computer Numerical Control
(CNC) machining software to design and realize
his complex building shapes. We discuss this
below.

We also believe that in the reverse direction,
some of the hard design practices aid in better
software design, as demonstrated by John Socha in
producing the highly successful product, Norton
Commander. However, the differences between
design in soft and hard systems require us to be
careful as to which techniques to transfer from
hard to soft, and vice versa. We elaborate on this
below.

The rest of the article explores these four
definitions of `design' for software and how they
are different or similar to design in other disci-
plines. The character of these four definitions is
tightly coupled, so please bear with us as we
explore each.

Design (Noun 1)ÐConcept of a field as a whole
Getting our minds around the field of design is

difficult. Simon [2] states `Everyone designs who
devises courses of action aimed at changing exist-
ing situations into preferred ones.' LoÈwgren and
Stolterman provide further context [3]:

We live in an artificial world. It is a world made up of
environments, systems, processes, and things that are
imagined, formed, and produced by humans. All these
things have been designed. Someone has to decide
their function, form, and structure, as well as their
ethical and aesthetical qualities. In this artificial world
created by humans, information technology is increas-
ingly becoming not only a common but a vital and
fundamental part. Our designed world is full of digital
artifacts, that is, designed things built around a core
of information technology . . . To design artifacts is to
design people's lives.

A wide range of engineering disciplines use a
definition of design similar to that presented in
Dym et al. [4]:

Engineering design is a systematic, intelligent process
in which designers generate, evaluate, and specify
concepts for devices, systems, or processes whose
form and function achieve clients' objectives or
users' needs while satisfying a specified set of con-
straints.

The output of the engineering design process is
generally a set of detailed specifications which can
range from a simple text document to complex
animated CAD drawings. Dym and Little [5]
describe the scope and detail of the hard design
process in steps that are recognizable for most
design disciplines:

. client statement and need;

. problem definition;

. conceptual design;

. preliminary design;

. detailed design;

. design communication;

. final design (fabrication specifications and docu-
mentation).

Is Designing Software Different From Designing Other Things? 541

Within the domain of software design, following
the above steps in order is known as the waterfall
method. When combined with powerful techniques
and methods as described in Jones [6] and Cross
[7], a designer from any discipline can build on the
experience of others to produce good designs. An
important development in the evolution of design
methods is the shift to human centered design.
Charles Owen [8] captures the scope and the
tools of the Institute of Design's human centered
design process in his lifelong work with Structured
Planning. Nelson and Stolterman [9] describe a
practice of design that is applicable to all fields.
Schon [10] provides insights on how to improve
design thinking through the process of reflection
and double loop learning.

Dym and Little [5] point out that an important
aspect of industrial design is that it is typically
done with teams of individuals who not only
include the product designers but also manufactur-
ing and distribution engineers. Such teams design
in parallel to optimize the product through its
entire life cycle of design, building, distributing
and operating. This process of concurrent engin-
eering increases the complexity of the design
process.

While we find these resources and points of view
useful, none of them capture the unique difficulties
of designing good software systems. We claim that
the particular characteristics of the execution and
operating environment of the end software design
(Noun 3) make the process of designing software
(Verb) different from design processes of most
disciplines. In addition, we assert that the source
code is the software design specification (Noun 2),
since the manufacturing step has been essentially
eliminated by widespread and powerful build tools
that rapidly create the end product from the source
code. Because the intent of the software product is
to change how humans and human organizations
act, the field of software design (Noun 1) needs to
consciously cover the field of organizational devel-
opment, as well as the field for which they are
producing a product. Following Covey's `Begin
with the end in mind' adage [11], we cover the
remaining definitions in the reverse order of
Heskett's statement on design.

Design (Noun 3)ÐA finished product, concept
made actual

What sets software design apart from other hard
design disciplines is that the end product of the
design is an interacting set of rules. Research in the
science of complexity illustrates that even a few
simple rules interacting with each other can
produce complex behaviors. An exciting break-
through in computing came from Chris Langton
[12] at the Santa Fe Institute when he discovered
that flocking behavior in birds could be simulated
with three rules. Most of us assumed that there was
always a leader of the flock, but there is not.
Langton [13] showed that with only three rules
he could emulate flocking:

1. Each individual shall steer toward the average
position of its neighbors.

2. Each individual shall adjust its speed to match
its neighbors.

3. Each individual shall endeavor not to bump
into anything.

This insight and rule formulation started the field
of generative computing. The World Wide Web
has many examples of small programs which use
these rules to emulate flocking behavior. One of
the most popular applets looks at several levels of
birds flocking with simulated birds called `boids'.
As you watch the animations, it is hard to realize
that the complexity of behavior is coming from the
interactions of three simple rules. Contrast this
level of CAS with the average business program
which has tens of thousands of rules interacting
with each other.

Another example of a CAS with emergent
behavior is the music that you listen to on the
Sseyo [14] website. These are compositions done
with a program called Koan. This program
provides a visual interface to a CAS that generates
music that is different with every playing. The
interacting rules can be set at a number of different
levels from manipulating the physics of sound to
composing with visual icons of `instruments' in
order to generate compositions. Brian Eno,
famous as a music producer, worked with the
producers of Koan to refine their tool set. In his
published diary, he describes the nature of genera-
tive music [15]:

Ten RCA students over to look at Koan and screen-
savers. I gave them all a talk about self-generating
systems and the end of the era of reproductionÐ
imagining a time in the future when kids say to their
grandparents, `So you mean you actually listened to
exactly the same thing over and over again.' Interest-
ing loop: from unique live performances (30,000 BC
to 1898) to repeatable recordings (1898-) and then
back toÐwhat? Living media? Live media? Live
systems?

Of course, the real can of worms opens up with the
new stuff I'm doingÐthe self-generating stuff. What
is the status of a piece of its output? Recently I sold a
couple of pieces as film-music compositions (a minor
triumph, and an indication of how convincing the
material is becoming). I just set up some likely rules
and let the thing run until it played a bit I thought
sounded right! But of course the film-makers could
also have done thisÐthey could have bought my little
floppy (for thus it will be) containing the `seeds' for
those pieces, and grown the plants themselves. Then,
what would the relationship be between me and those
pieces? There is, as far as I know, no copyright in the
`rules' by which something is madeÐwhich is what I
specify in making these seed programs. The end of the
era of reproduction.

Both the Boids and Koan programs are the results
of a few rules interacting. Most programs used in
business, games and consumer software products
have tens of thousands of interacting rules.
Further, these CAS software designs are embedded

D. Socha and S. Walter542

in and surrounded by thousands of other software
designs like operating systems, database systems,
middleware and the World Wide Web infrastruc-
ture. The result is a living mixture of emergent
behavior that seemingly mimics living systems.
Even the vocabulary used to describe software
systemsÐniche, virus, dead, adapting, evolvingÐ
is drawn from ecosystem literature.

We are beginning to have a better theoretical
framework of what it means to be working with
such CAS. Holland provides a high level view of
CAS [16]:

Overall, then, we will view CAS as systems composed
of interacting agents described in terms of rules. These
agents adapt by changing their rules as experience
accumulates. In CAS, a major part of the environ-
ment of any given adaptive agent consists of other
adaptive agents, so that a portion of any agent's
efforts at adaptation is spent adapting to other
agents. To understand CAS, we must understand
these ever changing patterns.

Holland then identifies and describes the proper-
ties (aggregation, nonlinearity, flows, diversity)
and mechanisms (tags, internal models, building
blocks) that provide the foundation for a CAS
theory. Potgeiter [17] builds on these CAS basics to
describe how to design for emergent properties of
CAS in software systems.

For software systems in particular, Highsmith
looks more specifically at CAS, software design,
and the management of the software development
process [18]:

In complex environments, adaptation is significantly
more important than optimization. Adaptation
includes the ability to utilize emergent order to alter
actions that are essential if an organization is to
survive and thrive in complex social and economic
ecosystems. It includes the ability to make local
alterations rather than depending on centralized,
slow acting, control processes. Adaptation trades
efficiency for speed and flexibility. Optimization
works in a complicated world; adaptation works in
a complex one . . .

The greatest risk we face in software development is
that of overestimating our own knowledge. . . . At
the core of our ability to succeed in extreme
environments is the admission that we don't know
it all . . . Fast learning requires iterationÐtry,
review, repeat.

What this means for software design is that soft-
ware is never done, and that the behavior of the
software on our computer can change without us
asking for it to change. New behaviors emerge as
the software is being developed, as it is put into
operation, and as its environment (its ecosystem)
changes. These quickly change both the user's and
the developer's views of what is needed and what
could be. Thus, software projects almost never
deliver what they initially expected to deliver.
Their plans are fluid in the extremeÐnot because
people don't put in sufficient effort to plan, but
because they cannot accurately predict the results
of the CAS they are building.

Design (Noun 2)ÐA concept or proposal
As we look at the difference between what is

espoused in formal courses and books on the role
of software design specifications versus what
happens in practice, we see that in practice the
only software specification that meets the intent of
the Dym et al. [4], design definition is the source
code itself. As our tools for creating software have
improved, it is much easier to get something
started and get early user feedback with the real
thing, than it is to design software in the abstract.
Jack Reeves in an early article on designing soft-
ware with modern languages describes this change
in view [19]:

The final goal of any engineering activity is some type
of documentation. When a design effort is complete,
the design documentation is turned over to the
manufacturing team. This is a completely different
group with completely different skills from the design
team. If the design documents truly represent a
complete design, the manufacturing team can proceed
to build the product. In fact, they can proceed to build
lots of the product, all without any further interven-
tion of the designers. After reviewing the software
development life cycle as I understood it, I concluded
that the only software documentation that actually
seems to satisfy the criteria of an engineering design is
the source code listings.

As the software engineering community created
better development languages like Smalltalk,
C++, Java and C# and robust development envir-
onments like Microsoft's Visual Studio, Eclipse,
and IBM's Websphere, this assertion is becoming
reality.

Reeves points out that another challenge of
software design is that everything is part of the
design process. There are no natural separations of
functions as with hard engineering disciplines [19]:

Coding is design, testing and debugging are part of
design, and what we typically call software design is
still part of design. Software may be cheap to build,
but it is incredibly expensive to design. Software is so
complex that there are plenty of different design
aspects and their resulting design views. The problem
is that all the different aspects interrelate.

As current development systems make it easy to
start generating code (or is it design?), the software
developer tends to jump in and start producing
something without incorporating any explicit
design methodology. Furthermore, the value of
an up-front design is less compelling if CAS
theory implies that we cannot understand what
the design will produce until we execute the design.

An interesting outcome of Reeves definition is
that once software is designed (written), it becomes
very inexpensive to build and distribute. Reeves
states [19]:

There is one consequence of considering code as
software design that completely overwhelms the
others. It is so important and so obvious that it is a
total blind spot for most software organizations. This
is the fact that software is cheap to build. It does not
qualify as inexpensive; it is so cheap it is almost free. If

Is Designing Software Different From Designing Other Things? 543

source code is a software design, then actually build-
ing software is done by compilers and linkers. We
often refer to the process of compiling and linking as
`doing a build.' The capital investment in software
construction equipment is lowÐall it really takes is a
computer, an editor, a compiler and a linker. Once a
build environment is available, the actually doing a
software build just takes a little time. Compiling a
50,000 line C++ program may seem to take forever,
but how long would it take to build a hardware
system that had a design of the same complexity as
50,000 lines of C++.

Since Reeves' article was written, the performance
of computing has increased exponentially, with the
cost of building software approaching zero. Like-
wise, with the widespread adoption of the Internet
and a shift to electronic downloads of software, the
cost of distributing software is essentially zero.

These two changes mean that for software the
distance between the concept or proposal (Noun 2)
and the finished product (Noun 3) is approaching
zero, which leads to changes in how we design
software, as explained in the next section.

Design (Verb)ÐIndicating action or process
With the design of physical products, often the

cost of making a realistic prototype is as expensive
as the whole design process that goes before it.
Therefore, the waterfall design method is often
adopted as described in Dym and Little [5].

When designing software, on the other hand,
Dorst describes a different management process
[20]:

If you look at web design, for instance, you would see
quite a different pattern. In developing a website or an
interactive system for a computer, you work on
designs that are easy to replicate, and that will be
used by means of the same medium on which they are
made. So you have a realistic `prototype' at almost
any moment during the design process. You can do
user testing at all times. Designing then changes from
a linear process which leads to a prototype, into a
process of continuous testing and learning. Design
becomes an evolutionary process; you are able to test
many generations of the design before delivery.

Evolutionary development is wonderful: the earlier
you can incorporate user knowledge into the design,
the better. Unfortunately, in practice it turns out that
these evolutionary processes are even harder to
manage than `normal' design projects. How do you
decide on the number of generations you will need, for
instance? This way of working also has its own
pathology, the results of which are all too familiar:
the debugging drama. Software designers are tempted
to `just make something' and then to improve that
imperfect concept over many generations. But if you
begin the evolutionary process at a level which is too
detailed, you end up debugging a structurally bad
design, ultimately creating a weak and unstable
monster.

The evolutionary design process described by
Dorst also has another challenge: getting the
right level of feedback from the client and the
user. This contrasts with hard design where
significant effort is expended in making a realistic

prototype. Because software designs look so usable
at an early stage, the users want to jump right into
using the design and the result is feedback that is at
the myopic level, not at the reflective and systemic
level.

A technique for getting better feedback at this
early level is to change the resolution or fidelity of
the design. Paul Souza, while at Adobe Corpora-
tion, developed a technique of `animating' pencil
sketches. Instead of a polished user interface with a
set of actions and data models developed under-
neath, he would scan a pencil drawing into the
computer and assign hot spots to the drawing in
order to call a function. With a `polished' user
interface the only kind of feedback he would get
would be on the font and the colors and layout of
the interface (convergent detailed feedback). With
the pencil sketch interface on top of the actions
and data model, he would get conceptual feedback
about the intent of the tool and how the tool might
be used to better the organization's goals (diver-
gent and generative feedback). Also, by lowering
the fidelity of the user interface, he reduced the
demand to prematurely start using the design
before a robust architecture could be formulated.

A modern development technique, called Test
Driven Development (TDD) [21], illustrates how
the malleability of software can change lower level
designing. In TDD the classic sequence of engin-
eering steps ± What to do?, How to do it?, Do it! and
Did we do it?Ðare inverted. First we write a test
(hence the name) that asks the Did we do it?
question. The initial answer is usually `No.' We
then Do it! by coding until the test passes. We then
consider the existing design and make improve-
mentsÐthe How to do it? question. Typically, we
then more fully explore the What to do? question
which often leads us to the next Did we do it?
question. TDD is part of the Agile methods of
development that include eXtreme Programming
and Scrum.

Designing using TDD has some interesting
characteristics. The designs themselves are often
simpler than more traditionally designed solutions.
The process spins off tests which add considerable
value as they continue to be used during develop-
ment to enable reliable change. The long-term feel
of the design process is considerably different.
Some folks characterize it by saying that designing
is so important they do it all the time rather than
just `in the beginning'. The feel of the work is
different. It has more of a character of a dance
since the steps are repeated frequently. Better soft-
ware designers tend to take smaller steps.

A weakness in the approach is that once the Do
it! step has been completed, there is strong pressure
to not accomplish the next step, How to do it?, the
design step. After all, the code works, why change
it? If it is not done, the design of the software
rather quickly degenerates and becomes brittle and
hard. This is the character of software developed
using classic techniques, and it points to the hard-
ening of software as primarily a design issue.

D. Socha and S. Walter544

All of these differences change the way that we
need to manage the process of designing software.
Managing any non-trivial software project
requires techniques that honor and take advantage
of how complex adaptive systems work and the
emergent behavior they generate, for not only is
the software developed by a CAS (the software
development organization) for a CAS (the user
community) the actual product is a CAS whose
behavior cannot be predicted. In such situations,
an empirical process control mechanism that
creates an environment providing frequent and
regular feedback on what has been built, such as
those employed in eXtreme Programming and
Scrum, work better than the traditional waterfall
process control mechanisms.

Design (Noun 1)ÐConcept of a field as a whole
The preceding sections describe the differences

during the process of designing, building and
distributing software products but not how the
product is used. Most interesting software is used
in an organizational context, which creates
another challenge.

Successful software design processes include an
additional stage of design activities: organizational
design and intervention (Intervene). While any
good designer must span knowledge domains
such as the problem domain and the solution
domain [9], the nature of software design causes
the designer to span more knowledge domains
than other designers. A good designer in any
field will understand the design brief from the
purchaser and then do research on the users'
needs. Yet, most interesting software is used in
an organizational context. One could argue that
the modern corporation is only as good as the
software that it employs. Much software is, after
all, automating things that people could, or did, do
before without software, or extending what they
could, or did, do before. So using the software will
require people to change what they have been
doing. Thus, for the software to be effective and
usable at its introduction, the software designer
needs to understand the basics of organizational
development and realize that software develop-
ment is an organizational intervention.

Floyd identifies this key attribute [22]:

Enterprise information systems codify structural
aspects of organizations. They come with problems
of integration and (organizational) standardization
on a large scale. Usually it is not a question of
developing new systems but of adapting existing
systems, so design pertains to how to introduce the
system in the organization at hand. Technical chal-
lenges lie in using components for tailoring systems to
specific needs. The relevant social context is organi-
zational development. Software practitioners are
engaged in organizational intervention, being per-
ceived as agents of change. They also have the role
of mediators between organizations and vendors.

While Floyd only made the organizational inter-
vention argument for the scale of enterprise

information systems, we assert that most software
design is an organizational intervention. However,
most software developers do not take organ-
izational design into consideration explicitly.

LoÈwgren and Stolterman relate the challenge of
organizational interventions with the personal,
social and political aspects of designing digital
artifacts [3]:

If a design process aims to create an information
system in an organization, then individuals, groups,
and teams can be seen as kinds of material. The
challenge is to design the social `components' together
with the technical components as a systemic whole . . .
Designers of digital artifacts face a particular diffi-
culty. The material they useÐthat is, the digital
technologyÐcan in many ways be described as a
material without qualities . . . As a consequence, the
design process becomes more open, with more degrees
of freedom and therefore more complex.

Design is also a political and ideological activity.
Since every design affects our possibilities for actions
and our way of being in the world, it becomes a
political and ideological action. With designed arti-
facts, processes, systems and structures we decide our
relations with each other, society, and nature. Each
design is carrying a set of basic assumptions about
what it means to be human, to live in a society, to
work, and to play. When looking at large infrastruc-
tural designs, such as the way we organize society and
companies or large technical systems, most people
realize how they affect the way we can live our lives.
We would like to point out that the same also holds
true in a small-scale perspective. Every digital artifact
restricts our space of possible actions by permitting
certain actions, promoting certain skills, and focusing
on certain outcomes. To some extent, the user has to
adapt to the artifact . . . The role of digital artifacts
has to be recognized and measured in relation to the
way they have a real impact on our lives.

Further, the software designer needs to understand
the impact of the software design on at least three
levels of organizationsÐthe using organization,
the customer of the using organization, and the
software development organization itself. Since
most software projects of significance last from
one to five years, the software designer must look
at the today state (As Is) of each organization and
make a projection for what the future state (To Be)
of each organization is likely to become. Software
designers need to be schooled in the basics of
organizational development, as well as the aspects
of team development of `forming, storming, norm-
ing, performing, and adjourning' [5].

Over the course of my career, I (Skip) alternated
between line management jobs in software engin-
eering and working as an organizational consul-
tant helping large and small organizations develop
visions, missions, strategies and innovative
product designs. In the process of consulting and
graduate school teaching, I tried to pass on what
I've learned about designing successful software
products and systems. While my customers and
students generated better designs, they did not
generate innovative designs like I've accomplished

Is Designing Software Different From Designing Other Things? 545

over my career. I knew there was something
missing from my framework of design, but I
couldn't pinpoint it.

Then I had a Chris Alexander [23] moment while
reading Floyd's article. Alexander realized that the
reason his students weren't producing great
designs is that he left two important aspects out
of his Pattern LanguageÐcolor and asymmetry.
Similarly, I left out of my teaching the foundations
of organizational development, change and design.
Yet at least half of the work of every successful
product design that I've done has included inno-
vative organizational design and interventions.

Having even simple models of organizational
and process design improves the quality of the
design process and the resulting designs. There
are many such models. Ackoff [24] with his idea-
lized design provides both a simple and a robust
methodology for charting an organization's future.
Fritz [25] with his structural tension model
provides both a personal and an organizational
model for development. Rummler and Brache [26]
provide an organizational view of the process
flows in an organization that reminds us that an
organization chart is not the only means of viewing
how an organization works. Goldratt [27] provides
a view derived from the types of thinking in
physics on how an organization can change
through the focusing on the constraints inherent
in any organization or work flow.

DESIGNÐHARD AND SOFT

In my (Skip's) graduate course on `Creating
Products Interactively', I assert that all product
development is essentially a software and informa-
tion design problem today. The assertion stems
from the increasing use of specialized CAD tools
to aid in the design of products, along with more
computing being embedded in hard products. Yet,
most corporations that produce hard products still
deal with software as an afterthought. At a recent
Center for the Advancement of Engineering
Education (CAEE) [28] review meeting, the Direc-
tor of the Design Institute for Global Core Engin-
eering from a major automobile manufacturer
described the major curriculum subjects of the
institute. They were all about the physical compo-
nents of the car. When asked where was software
design within the curriculum, he replied that it was
subservient to the major functions like Powertrain
and Control. He then indicated that this could be a
problem in the future as more functions are moved
from mechanical designs to computing and soft-
ware designs. I (Skip) own a Mini Cooper car and
have had three recall noticesÐall to fix software
problems.

Similarly, Adidas recently released the Adidas-1
computerized running shoe for continuously
adapting the shoe to the demands of the runner
[29]. The brain of the shoe is located under the arch
and is capable of making 5 million calculations per

second and 1000 readings per second from the
sensors to the shoe's computer. The software and
sensors judge whether the cushioning is too soft or
too firm and adjusts the fit throughout the run. Is
it a shoe or a computer? Is it hard or soft design?
Clearly, the answer is both. This shoe is an ex-
ample of the wide range of domains that the design
team had to cross to produce a viable, interactive
physical product.

In a more complex example, Frank Gehry, at a
Technology, Education and Design (TED) Confer-
ence put on by Richard Saul Wurman, described
his challenges in creating the kind of public build-
ing designs such as the Guggenheim Museum in
Bilbao, Spain, the Experience Music Project in
Seattle, and the Disney Concert Hall in Los
Angeles. When he first started exploring complex
curved shapes for the exterior of buildings he was
startled to discover that when he put his designs
out to construction bid, the contractors quoted
him five times the normal fees. He realized that no
one knew how to build his creations. So he had to
form a company to first adapt CAD tools to design
the complex metal shapes, and then develop the
software that would connect his CAD tools with
CNC equipment to cut and mill the complex metal
shapes. The end result was that he was able to
build his distinctive creations for the same cost as
traditional construction methods. During his
presentation he reflected on whether he was now
a building architect or a software designer.

These changes are causing the field of architec-
ture to look more like the field of software design.
Lindsey details the extent to which computer
systems and particularly the Dassault CATIA
CAD system [30] have entered Gehry's practice
of architecture. The computer is used for simula-
tions of the digital and physical models, direct
detailing, computer aided manufacturing, coordi-
nation of the electrical, mechanical and plumbing
systems, and as a framework for the operation of
the building after construction. Gehry describes
how his evolving process is changing the craft of
building design and construction [30]:

This technology provides a way for me to get closer to
the craft. In the past, there were many layers between
my rough sketch and the final building, and the
feeling of the design could get lost before it reached
the craftsman. It feels like I've been speaking a foreign
language, and now, all of a sudden, the craftsman
understands me. In this case, the computer is not
dehumanizing; it's an interpreter.

The significance of the changes that Gehry has
made in his fluent design process shows up in the
organizational interventions that the software is
bringing to the building industry [31]:

Ultimately, allowing for all communications to
involve only digital information, the model could
signal a significant reduction in drawing sets, shop
drawings, and specifications. This is already reflected
in the office's current practices where the CATIA
model generally takes precedence (legal as well as in
practice) over the construction document set. This is a

D. Socha and S. Walter546

significant change in standard practice where specifi-
cations take precedence over drawings and specified
dimensions are subject to site verification.
Glymph states that `both time and money can be
eliminated from the construction process by shifting
the design responsibility forward'. Along with this
responsibility comes increased liability. When the
architect supplies a model that is shared, and becomes
the single source of information, the distributed
liability of current architectural practice is changed.

Building on the experience of Gehry, we see that
this combined hard and soft design can shift
forward into the area of operating a building as
well. One software system can act as a shared
repository and information refinery for the
design, build, distribute, intervene and, now, the
operate phase knowledge base.

Likewise, the software design discipline can
learn from the processes of hard product design.
Some of the best software designers come from
physical science or engineering disciplines where
they learn early on the power of constraints.
Having a background in designing with physical
parts appears to provide a different perspective on
design, in part because you learn to think about
and design systems that respect the hard
constraints of the physical world. John Socha,
author of the Norton Commander software pack-
age, attributes much of his software design success
to his electrical engineering background. Unlike
computer scientists, electrical engineers spend a lot
of time dealing with failure modes, since they
cannot count on clean signals coming into their
parts. He applied this to software design not by
creating rigid software that enforces interface
standards, but by creating software that does the
most reasonable thing when its inputs are out of
the expected range. The result is software that fails
gracefully.

THE SPAN OF DESIGN

As we look at the differences between hard and
soft design along with their merging, the span of
the domains that need to be designed for emerges.
Good hard and soft design in the future needs to
encompass these stages:

. Design

. Build

. Distribute

. Intervene

. Operate

The amount of time and resources required for
each of these stages varies considerably between
hard and soft design.

For hard design, the resource expenditure looks
like:

Design Build Distribute Intervene Operate

For soft design (e.g., software), we see very differ-
ent resource utilization:

Design Build Distribute Intervene Operate

The magnitude of the above resources shows how
the focus of the designer must shift depending on
what they are designing. We believe that this
graphic provides guidance for what, and how, we
should be teaching design across the hard and soft
disciplines.

DESIGNÐTEACHING

The common understanding of what and how to
teach software design is at a very low level. In
September 2004, as I (David) was coming out of
the main office of the Allen Center at the Univer-
sity of Washington, I saw Ed Lazowska waiting for
the elevator. Ed is an impassioned and impressive
researcher, teacher, and politician with wide
contacts inside and outside the university. I've
always respected his opinions and his astute obser-
vations, so I took the opportunity to ask him some
questions.

`Do you know,' I asked, `whether the professors
here believe that computer science is a mathema-
tically-centric discipline, or a design-centric discip-
line?' He thought for a moment, and then replied
that he believes most of the professors in this
building believe computer science is a design-
centric discipline. They practice design as algo-
rithm design, system design, etc. However, because
they have no formal training in design, they don't
know how to teach design. Which may be why
there are so few courses on software design.

Instead of coming from a discipline, like Civil
Engineering, where students are introduced to the
concepts of design at an early stage, the professors
in computer science have never been formally
taught about design, and thus don't know how
to teach it to their students. This is the same with
how to do researchÐthey are excellent researchers,
but they have no training in how to teach it.

Even the current focus on software design
patterns [32] is at a low level, aimed at establishing
a design language [33] to describe design (Noun 2).
It is creating a common vocabulary. However, we
see very little work on the verbs and the grammar
rules for good composition.

Given this setting, how can we bring to the
software discipline a coherent and effective model
of software design that fits the forces at work in
software?

We hypothesize, based on recent experience in
teaching senior level software development courses
and an industrial design course, that the emergent
trend toward applying agile development techni-
ques in the classroom will lead to a better appre-
ciation for the issues covered in this paper. We are
aware of courses in human centered design (Insti-
tute of Design [34]), Human Computer Interaction
Design (Indiana University [35]), and Personal
Fabrication (Gershenfield MIT [36]) that are
achieving success helping students produce designs

Is Designing Software Different From Designing Other Things? 547

using the integrated methods of hard and soft
design described previously. While many of the
areas of software designing can be improved
through this process, a key area of concern is
how to teach the organizational intervention
component of software designing. Where can
students experiment with and learn about organ-
izational development, since most organizations
are reluctant to let experienced professionals
loose in their organizations, let alone student
practitioners?

We also hypothesize that the entire undergrad-
uate experience would be substantially enhanced if
design language and process were introduced in the
very beginning of the undergraduate education
and then referred back to, enhanced, etc. in every
course. After all, virtually every course is about
design, whether it is the uncovering of the designs
that exist in nature, understanding the designs
created by others, or creating new designs. This
type of curriculum intervention has a low prob-
ability of being accepted by most higher education
organizations, because it reframes the concept of a
curriculum to have coherent threads passing
through the entire curriculum. As a result, industry
is left to use apprenticeship to try and impart more
appropriate design practice.

SUMMARY

Over the last ten years, we have seen improve-
ment in the field of software designing by drawing
on the knowledge from other design fields. The
adoption of pattern language techniques from the
field of architecture provides consistent solutions
to low-level software design tasks that arise repeat-
edly. Designing from human-centered techniques
versus technology-centered techniques has sped up
customer adoption of new products. Brainstorm-
ing methods, team process methods, and science of
design methods have all helped produce better
software more productively. While these processes
form firm foundations for other disciplines, and
are valuable in software, they are not sufficient for
designing software.

While Heskett's `Design is to design a design to
produce a design' seems nonsensical at first read-
ing, it serves as a clarifying framework to look at
the similarities and differences between hard and
soft design. The view of the design activities field
needs to expand beyond just generating a specifi-
cation to include the full range of activitiesÐ
design, build, distribute, intervene, and operate.
The evolution of Frank Gehry's and John Socha's
respective design experiences suggest that the
future of hard and soft design is not an either/or
choice but rather the appropriate combination of
techniques, skills, and processes.

As we see in this paper, each of the meanings of
`design' is different between software design and
most other design disciplines. In software, the first

noun extends to include organizational interven-
tion as a significant component. The verb is about
reversing the steps (test-driven development). The
second noun is about the source code is the design
specification. The third noun is about the design
not being an object to be manufactured, for most
classes of software, but instead being a complex
adaptive system that is an organizational interven-
tion. The other design disciplines that are most like
software design are those that share these qualities,
including the disciplines dealing with bioengineer-
ing and social systems.

The result is what we believe to be a convincing
story that software designing is different because it
is a field of a `material without qualities'. The key
differences are:

. Source code is the design (Noun 2)

. Design (Noun 2) and organization intervention
(Noun 1) are the dominant steps, unlike hard
design where build and distribute are the domin-
ant steps

. The steps of the waterfall design (Verb) model
are reversed

. There is little material resistance with softwareÐ
no physics, no first principles, no simulation
from first principles

. Software design (Noun 3) is a complex adaptive
system design

. Software is always deeply embeddedÐit exists in
some hardware form which provides one set of
constraints, and in a soup of other complex
adaptive systems which generates fuzzier con-
straints

As software becomes more prevalent in the design
tools and products of other disciplines, we can
expect those `hard' disciplines to become progres-
sively more `soft', with the concurrent change in
forces requiring softer design techniques. In the
future, many domains of hard design will require
multiple design methods and processes:

. Hard design processes for those things that
physics apply to.

. Software design processes for the software or
`alive' components.

. Recognition that most products have an organ-
izational intervention component to them.

While we identify key differences between software
design and hard design, the awareness of these
differences is little understood by practicing soft-
ware designers. As we write this article, there are
further challenges coming on the horizon that will
affect how software designers work:

. Availability of cheap multi-processor personal
computers with the introduction of multi-core
processorsÐfour processors per chip this year
expanding to sixteen per chip in the near term
[37]. How will we effectively harness this paral-
lelism to continue to deliver improved software
performance?

. Expansion of media types used on a daily basis

D. Socha and S. Walter548

in business from text and numbers today to
sound, pictures, and personal fabrication of
interactive physical objects in the near term.
[38] How will education and business be trans-
formed by the regular use of multiple media?

Expanding software designer capabilities to
include differences identified in this paper, along
with the technology and business needs we see
coming, will strain university curricula and all
forms of knowledge acquisition and transfer. We
expect this change to take yearsÐafter all, it has
taken professional software developers twenty

years to widely accept object-oriented technolo-
gies. We look forward to contributing to a unifying
and pragmatic model of software design, better
software design tools, and engaging student and
professional curricula to improve the field of soft-
ware design.

AcknowledgementsÐThe authors thank Jeff McKenna, Steve
Forgey, Barney Barnett, Wolf-Gideon Bleek, and Robin Adams
for their thoughtful comments and insights into the software
design process and design education which contributed to this
article. This research was supported in part by NSF Grant
number EIA-0121326, and by the Institute for Scholarship on
Engineering Education through the NSF funded Center for the
Advancement of Engineering Education (NSF ESI-0227558).

REFERENCES

1. John Heskett, Toothpicks & Logos: Design in Everyday Life, Oxford University Press, Oxford
(2002). Portions of the presentation can be found at http://www.johnheskett.net/page01.htm

2. Herbert A. Simon, The Sciences of the Artificial, The MIT Press, Cambridge, MA (1969).
3. Jonas LoÈwgren and Erik Stolterman, Thoughtful Interaction Design: A Design Perspective on

Information Technology, The MIT Press, Cambridge, MA (2004).
4. Clive Dym, Alice Agogino, Ozgur Eris, Daniel Frey and Larry Leifer, Engineering design thinking,

teaching, and learning, J. Eng. Educ., January 2005.
5. Clive Dym and Patrick Little, Engineering Design: A Project Based Introduction, John Wiley and

Sons, Hoboken, NJ (2004).
6. John Chris Jones, Design Methods, John Wiley and Sons, New York (1992).
7. Nigel Cross, Engineering Design Methods: Strategies for Product Design, John Wiley and Sons,

Chichester, UK (2000); Nigel Cross et al., Analysing Design Activity, John Wiley and Sons,
Chichester, UK (1996).

8. Charles Owen. http://id.iit.edu/papers/Owen_theoryjust.pdf
9. Harold Nelson and Erik Stolterman, The Design Way: Intentional Change in an Unpredictable

World: Foundations and Fundamentals of Design Competence, Educational Publishers, Inc,
Englewood Cliffs, NJ (2002).

10. Donald Schon, The Reflective Practitioner, Basic Books, New York, 1983.
11. Stephen R. Covey, The 7 Habits of Highly Effective People, Simon and Schuster, New York (1989).
12. John Horgan, From complexity to perplexity, Scientific American, June 1995. http://www.econ.

iastate.edu/tesfatsi/hogan.complexperplex.htm
13. http://www.vergenet.net/~conrad/boids/
14. http://www.sseyo.com
15. Brian Eno, A Year with Swollen Appendices, Faber and Faber, London (1996).
16. John H. Holland, Hidden Order: How adaptation builds complexity, Helix Books, Reading, MA

(1995).
17. Anna Potgieter, The Engineering of Emergence in Complex Adaptive Systems, Ph.D. thesis,

University of Pretoria, 2004. http://upetd.up.ac.za/thesis/available/etd-09222004-091805/
18. James A. Highsmith, III, Adaptive Software Development: A collaborative approach to managing

complex systems, Dorset House Publishing, New York (2000).
19. Jack Reeves, What is software design? C++ Journal, Fall 1992.
20. Kees Dorst, Understanding Design: 150 Reflections on Being a Designer, BIS Publishers, Holland

(2003).
21. Kent Beck, Test Driven Development: By Example, Addison-Wesley, Reading, MA (2002).
22. Christiane Floyd, Developing and embedding auto-operational form, in Dittrich et al., Social

ThinkingÐSoftware Practice, MIT Press, Cambridge, MA (2002).
23. Christopher Alexander's extensive body of work includes Notes on the Synthesis of Form, Timeless

Way of Building, Pattern Language, and his four volume series on The Nature of Order.
24. Rusell Ackoff, Creating the Corporate Future: Plan or Be Planned For, Wiley, New York (1981).
25. Robert Fritz, Path of Least Resistance: Learning to Become the Creative Force in Your Own Life,

Ballantine Books, Boston (1989).
26. Geary Rummler and Alan Brache, Improving Performance: How to Manage the White Space in the

Organization Chart, Jossey-Bass, Boston (1995).
27. Eli Goldratt, The Goal, North River Press, Hartford, Connecticut (2004).
28. http://www.engr.washington.edu/caee/
29. The Daily Reveille, Adidas introduces computerized running shoes, http://www.lsureveille.com/

vnews/display.v/ART/2005/03/17/42392654eebf1
30. Dassault CATIA web site. http://www.dassault.fr/en/valeur.php?docid=156
31. Bruce Lindsey, Digital Gehry: Material Resistance, Digital Construction, Birkhauser, Basel (2001).
32. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns, Addison-

Wesley, New York (1995).
33. John Rheinfrank and Shelley Evenson, Design Languages, in Bringing Design to Software, edited

by Terry Winograd, Addison-Wesley, Reading, MA (1996).

Is Designing Software Different From Designing Other Things? 549

34. Institute of Design website. http://id.iit.edu/grad/welcome.html
35. Eli Blevis et al., Integrating HCI and Design: A Design Education Case Story. http://www.infor-

matics.indiana.edu/eblevis/designandhci.pdf
36. Neil Gershenfeld, FAB: The Coming Revolution on your DesktopÐFrom Personal Computers to

Personal Fabricators, Basic Books, New York (2005).
37. Herb Sutter, The free lunch is over: a fundamental turn toward concurrency in software, Dr.

Dobb's Journal, 30(3), March 2005. http://www.gotw.ca/publications/concurrency-ddj.htm
38. Stan Davis and David McIntosh, The Art of Business: Make All Your Work a Work of Art, Berrett-

Koehler Publishers, San Francisco (2005).

David Socha studies the human side of software development. He currently is the Software
Project Manager on the UrbanSim project, and a Lecturer in the Computer Science &
Engineering department, both at the University of Washington, Seattle where he received
his Ph.D. in 1991. After his doctorate, he spent 11 years in industry, 6 of those managing
teams of software developers, before returning to practice software development in
academia.

Skip Walter is CTO of Attenex Corporation bringing over 35 years of technology product
development experience along with executive management experience in Fortune 1000 com-
panies and start-up businesses. Skip was the creator of DEC's ALL-IN-1, a $1 billion
revenue per year office automation system. He taught Masters and PhD courses in
interactive product planning and tangible knowledge design at the Institute of Design at
the Illinois Institute of Technology for 10 years.

D. Socha and S. Walter550

