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We have combined collaborative didactic techniques, virtual laboratories and intelligent tutors to
improve the process of learning mobile robotics. The students learn the basic concepts in mobile
robotics, first by experimenting in a virtual laboratory and later by building a small mobile robot
for a competition. The course is based on the project-oriented learning (POL) didactic strategy.
Throughout the course the students design, build and program a small mobile robot to participate in
student competitions. Here we present an evaluation of the virtual lab and of the tutor, and of the
course in general.

INTRODUCTION

FOR INTERDISCIPLINARY fields such as
robotics, it is necessary to integrate knowledge in
different areas with a variety of skills in order to
achieve effective learning. In this work we have
combined project-oriented learning, virtual labora-
tories and intelligent tutors in an innovative course
in which the students learn the basics of mobile
robots by building and programming a robot for a
competition.

The project-oriented learning (POL) didactic
technique activates learning as an educational
paradigm that transforms direct experience into
a tool for supporting and stimulating learning [1].
We have used POL as the main didactic strategy
for an undergraduate course in mobile robotics at
ITESM Campus Cuernavaca [2]. The course is for
Computer Science and Electrical Engineering
majors at junior/senior level. Based on POL and
collaborative learning, the students learn by doing.
They form interdisciplinary teams that must learn
about mechanical design, kinematics, sensors,
control, and artificial intelligenceÐsuch as line-
following, maze-solving, rescuing, etc.Ðin order
to design a robot for a competition. To support
this process, we have developed several tools,
including an intelligent tutoring system coupled
to a virtual laboratory, which facilitate and guide
the learning process, particularly in the first stages
of the course [3].

The characteristics of open-learning environ-
ments often involve simulation, whereby learners
can experiment with different aspects and para-
meters of a given phenomenon and so observe the
effects of any changes. This is desirable in virtual
laboratories. However, a substantial limitation of
an open learning environment is its effectiveness
for learning, because it strongly depends on the
learner's ability to explore adequately. We have
developed a semi-open learning environment for a
virtual robotics laboratory based on simulation, to
learn through free exploration, but with specific
performance criteria that guide the learning
process. We proposed a generic architecture for
this environment, in which the tutor module
combines the performance and exploration beha-
viour in several experiments, to decide the best way
to guide the student. The most important element
of this environment is a representation of the
student model based on probabilistic relational
models [4]. This student model has several advan-
tages: flexibility, user adaptability, high modular-
ity and facility of model construction for different
scenarios. The model keeps track of the students'
knowledge at different levels of granularity,
combining performance and exploration behavior
in several experiments, in order to decide the best
way to guide the student in subsequent experi-
ments, and in order to recategorize the students
based on the results.

We present an initial evaluation of the virtual lab
and of the tutor, and of the course in general. A
group of students in a robotics course used the* Accepted 6 March 2006.
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virtual lab. In this test group, some students used the
virtual laboratory with the tutor, and others only
used the virtual lab. The experiments show that the
students who had the help of the tutor performed
better than the others. We applied an additional
qualitative questionnaire, in which most of the
students found that the virtual laboratory is useful
for learning the relevant concepts, and 80% enjoyed
the learning environment. For evaluating the course
in general, we show the the students' opinions,
based on questionnaires, and the results of their
participation in several national competitions.

The rest of the paper is organized as follows.
First we introduce POL, then we describe the
robotics course in general, including a description
of the main phases in the process. The next section
explains how POL is used in the course, then we
present a semi-open learning environment, which
is part of a general architecture for virtual labora-
tories that incorporates an intelligent tutor. The
main component of the tutor, a probabilistic
relation student model, is summarized next,
followed by an evaluation of the virtual lab and
the course with a group of students. The final
section concludes with a summary and suggestions
for future work.

PROJECT-ORIENTED LEARNING

POL is one of several active learning methods
devised during the last decade as a result of
research on collaborative learning in the fields of
the behavioral and cognitive sciences [5]. With
POL, student teams work on a single guiding
thread, or project, for an entire course [6].
Students organize themselves into teams and
play roles while sharing work amongst them,
and delivering feedback to their team mates [7].
Overall success in these terms is not easily measur-
able. Since most of the learning process will take
place outside the realm of the computer system,
learning has to be assumed whenever there is
evidence of its existence through visible actions
[8]. It is hard to prove that students are motivated
to learn when the instructor applies POL to their
classroom activities. Johnson states that `̀ chan-
ging to a cooperative style is not simple. There is a
big difference between putting students into
groups to learn . . . and structuring your teaching
so students learn cooperatively . . .'' [9].

The project-oriented technique provides the
following advantages [7]:

. It allows students to learn how to solve pro-
blems using relevant knowledge independently
of the discipline.

. Activities are focused on exploring and working
out a practical problem with an unknown solu-
tion.

. Activities are designed in such a way that they
can involve several areas of the same discipline
or the interaction of different disciplines.

. Project-oriented courses consider in their design
the application of interdisciplinary knowledge,
so the students can appreciate the relationship
between different disciplines in the development
of a particular project.

. The project assignment promotes the search for
open solutions, so students are free to create new
knowledge.

We designed the pedagogical aspects of the mobile
robotics course based on this collaborative didactic
technique.

COURSE DESCRIPTION

The robotics course is the first course in mobile
robotics for electrical engineering and computer
science majors. It is an optional course usually
taken at the junior or senior level (3rd or 4th year
in the engineering curricula). Some of the main
characteristics of the course are described below.

General objectives
Students must learn the basic concepts of mobile

robotics, first by experimenting in a virtual labora-
tory and later by building a small mobile robot for
a competition. Throughout the course, the
students design, build and program a small
mobile robot to participate in a competition,
such as line-following, maze-solving, rescue, etc.,
thus learning the basic concepts in several fields
related to mobile robots: mechanical and electro-
nic design, sensors, control, programming and
artificial intelligence. They have to assimilate,
integrate and apply all these concepts in multi-
disciplinary teams. The attributes fostered in the
course are: teamwork, honesty, leadership, self-
directed learning, creativity, and the capacity to
identify and solve problems.

Course contents
This basic robotic course covers the following

topics: mechanics and electronics concepts, sensors
and actuators, robot vision, robot architectures,
programming, control, map-building, planning,
the Markov decision process and reinforcement
learning.

Learning activities
In the first part of the course, the basic concepts of

mobile robotics are covered in weekly lectures.
During this period, the students use the virtual
laboratory to strengthen the basic concepts in kine-
matics, sensors, programming and control. During
the fifth week, students form teams and select the
competition in which they will participate. This first
part of the course is illustrated in Fig. 1.

In the second part of the course, the students
start building and programming their robot,
taking advantage of the experience in the virtual
lab. Advanced topics in planning, learning and
reasoning are covered in the classroom. In the
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last stage, the students incorporate these techni-
ques in their robot, according to the competition
goals. Fig. 2 shows these phases.

The reflection process is a very important tool
for students. They need to construct a portfolio for
learning-by-doing management, conflict resolu-
tion, and overall synthesis of all products, derived
from the team activities and their integration in a
robot prototype. It also serves to point out
elements that have not been completed, thus
contributing towards overcoming flaws which
may arise throughout the course.

Course project
The main focus of the course project is to design

and build a robot to participate in a competition.
For example, the 4th Latin American IEEE
Student Contest [10] has both beginner and
advanced categories. An example is the Lego [11]
beginner category: a game is defined to develop
solutions for an autonomous mobile robot based
on the Lego platform. Two teams need to design,
build and program two robots with different abil-
ities which are placed in an arena (a robotics
manipulation pharmacy), in order to produce a
drug according to a prescription without any
human interaction. Robots read the prescription
at the beginning of the challenge.

Assessment process
For the course assessment, three milestones of

the project are considered with respect to the robot

development phases of the chosen competition.
The total evaluation of the course comprises a
variety of different aspects (shown in Table 1).

Twenty subjects enrolled in the last course,
comprising five teams of four students each. The
students chose their own competitions. In this case,
the competitions selected were maze-solving and
Lego beginners.

USING PROJECT-ORIENTED LEARNING
TO SHOW LEARNING

During this course, the students build a small
mobile robot and the associated technical docu-
mentation, based on the POL didactic strategy.
The project has the following phases:

. The students constitute teams; they make con-
tractual agreements and choose a competition.

. Each team designs (mechanics, electronics and
sensors) and builds their robot (1st milestone).

Fig. 1. First and second phases of the learning activities in the robotics course.

Fig. 2. Third and fourth phases of the learning activities in the robotics course.

Table 1. Course assessment

Points

25

30
20
25

Learning activities (virtual laboratory practice,
homework, group process, etc.)
Advances of the project (3 milestones)
Mid-term and final exams
Final robot competitions
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. Students specify the software architecture and
develop the basic software modules (2nd mile-
stone).

. Teams develop high-level programming mod-
ules, integrating all in a functional robot (3rd
milestone).

. Teams participate in the competition.

The group process to develop the project consists
of establishing the following steps:

1. At the beginning of the course, we ask the
students to reflect on their expectations of the
course, their actual knowledge level concerning
the course, and their commitment to contribut-
ing to the success of the course.

2. Each team is formed according to each mem-
ber's strengths and weaknesses.

3. Commitment contract: in the fifth week, the
teams are formed and start their team project.
At this point, they make and sign a formal
contract specifying the roles of each participant.
Each team includes four members, and during
each phase of the semester the leading role can
be changed.

4. The teams are asked to present weekly reports
on the advances of the robotics project, on
which they make individual and collaborative
reflections.

5. The students must satisfy the requirements of
the three milestones and give a final presenta-
tion, including technical reports which explain
the progress of the project.

By reading the students' reflections and assessing
skills and learning goals, the instructor uses this
information to supervise the progress of each team.
We combine team reflections of self-perception
with teacher assessments based on the technical
goals delivered.

VIRTUAL LABORATORY

We have incorporated a virtual laboratory in the
first phase of the course, so that the students can
explore the aspects related to the design of the
robot: mechanical configuration, kinematics and
sensors. The students can easily explore different
mechanical and sensor configurations before they
start building their robot. The laboratory also
includes facilities for practicing basic control
programming. The virtual laboratory is designed
as a semi-open learning environment and incorpo-
rates an intelligent tutor. This environment
provides the student with the opportunity to
learn through free exploration, but with specific
performance criteria that guide the learning
process. The model takes care of the balance
between the virtual laboratory capabilities versus
the tutoring, based on decisions such as when to
interrupt an experiment, student performance
follow-up, task planning, and the best pedagogical
actions. The semi-open learning environment is
designed as a general architecture for virtual
laboratories that incorporate intelligent tutors, so
it can be easily extended to other domains. Next we
describe this architecture.

General architecture
We proposed a generic architecture (Fig. 3) to

develop the semi-open learning environment,
providing several advantages:

. Flexibility, allowing different experiments in a
common framework.

. Adaptability, so that it can be adapted to differ-
ent levels of students by using a student model.

. Modularity, whereby it can be easily extended to
other domains, to include more students, more
knowledge objects and more experiments.

The main elements in this architecture are the
following:

Fig. 3. Generic architecture for the virtual robotics laboratory.
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. Initial categorization. We designed an approach
that increases the possibility of the learning
environment interacting in an appropriate way
with the student. Following the philosophy of
virtual laboratories being non-invasive, we used
the academic background of the student for an
initial categorization: novice, medium or expert.
This categorization is based on a probabilistic
model that links previous courses with the dif-
ferent knowledge concepts relevant for the
experiments in the laboratory. An initial cat-
egory is obtained for each student, and this is
updated after each experiment based on the
student model that will be described later. This
category is used to define the exercise complexity
for each experiment and the different types of
help given to the student.

. Semi-open learning environment. We considered
aspects of open learning environments, because
the student needs to explore different parameters
to observe their effects inside the simulated lab,
but each experiment has specific objectives the
student needs to achieve, thus enabling an effec-
tive assessment of the exploration behavior and
learning goals.

. Simulator. This module contains a set of experi-
ments based on kinematics models of different
configurations of mobile robots. The robot and
its environment are displayed graphically, so the
student can interact with the robot (via direct
commands or a program) and visualize the
experiment. It includes the student interaction
analysis, the experiment performance, and
exploration behavior results.

. Intelligent tutoring system. We coupled an intel-
ligent tutoring system with the virtual labora-
tory. The tutor follows the exploration and
performance of the student in the lab, updates
its model, gives the appropriate help if required,
and defines the next experiments. When a stu-
dent performs an experiment in the virtual lab,
the student model propagates the evidence from
the experiments' evaluation to the knowledge
objects in the knowledge base. Based on this
evidence and the accumulated evidence from
previous experiments, the behavior and perfor-
mance module updates the student model. After
each experiment, the results are used by the tutor
module to decide the best pedagogical action.
The main component of this tutor is a novel
student model based on probabilistic relational
models [3].

In the next section we describe in more detail the
semi-open learning environment, and then the
student model.

SEMI-OPEN LEARNING ENVIRONMENT

Open learning environments often involve simu-
lations where learners can experiment with differ-
ent aspects and parameters of a given phenomenon

to observe the effects of changes they make [12].
This is a desirable characteristic in virtual labora-
tories. However, a substantial limitation of these
systems is their effectiveness for learning, which
strongly depends on the learner, on the specific
features that influence the learner's ability to
explore adequately, and a clear definition of what
constitutes effective exploration behavior [13±14].
Several authors [15±17] have presented open learn-
ing environments. They argue that additional
metacognitive skills, such as self-explanation,
may improve the effectiveness of a student's
exploration. However, this hypothesis needs
further study before drawing stronger conclusions.

We propose a semi-open learning environment,
which provides the student with the opportunity to
learn through free exploration but with specific
performance criteria guiding the learning process.
In the virtual robotics laboratory, we considered
important aspects of open learning environments,
because the student has the opportunity to explore
different parameters to observe their effects inside
the virtual lab, but each experiment has specific
objectives that the student needs to achieve. Some
questionnaires and interviews were applied to
students and professors in order to define the
main desired characteristics for free exploration,
which are combined with the simulator and experi-
ment behavior. We defined an interface with this
information. The main elements of the interface
for one of the experiments (shown in Fig. 4) are:

1. Simulator. In this area the simulated robot and
its environment are displayed graphically and
updated according to the dynamic behavior of
the robot.

2. Exploration. This area allows for different
aspects to be explored by students for each
experiment. For example, the first experiment
involves mechanical design concepts, so the
students can change the type of robot, the
diameter of the wheels, and the size of the
robot.

3. Interaction. In this area, the options for the
students' interaction with the robot are speci-
fied. For instance, in the first experiments they
can change the robot's direction and increase or
decrease its speed.

4. Dynamic behavior. The interface shows the
dynamic behavior of the mobile robot accord-
ing to the experiment, including several perfor-
mance parameters.

5. Final results. When the experiment is finished,
this section displays the final results.

The same framework is used for all the experi-
ments.

To define the experiments, we initially consider
some basic knowledge on mechanical design,
sensors, control theory and programming. The
main difficulty for the tutor is how to assess several
knowledge items with little student interaction.
Thus, we defined a sequence of specific experi-
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ments to enable assessment of the knowledge
items.

The first experiment involves the mechanical
properties of mobile robots, as shown in Figs. 1
and 5. The educational goals are: (i) to learn
mechanical aspects of mobile robotics, and (ii) to
practice with different configurations and sizes
using manual controls.

The second and third experiments are designed

to explore the basic properties of infrared (IR)
sensors (which help to change speed and direction),
as shown in Fig. 6.

The fourth experiment concerns actuators and
control theory. We defined a set of basic robotics
instructions for controlling the simulated mobile
robot, which are similar to the libraries used for
programming the real robots used in the second
part of the course. We constructed an interpreter

Fig. 4. The main elements of the interface for the semi-open learning environment.

Fig. 5. Experiment 1: mechanical and kinematics can be explored.
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for this language. The student needs to have
written his/her control program previously,
taking care of the mechanical and sensor aspects
which were explored in experiments 1, 2 and 3. To
use the virtual laboratory, the student needs to
load his/her control program. The system verifies
its syntax and, if there are no errors, they can select
the execute button and the system shows the robot
movements based on the control program.

When a student uses the virtual lab, the intelli-
gent tutor follows the experiments and gives per-
sonalized help. This tutor, and its main element,
the student model, are described in the next
section.

INTELLIGENT TUTOR

As for most intelligent tutoring systems (ITS),
the ITS for the virtual laboratory has three main
parts: (i) the knowledge base, (ii) the tutor, and (iii)
the student model. One of the main differences
with other ITSs is that in this case there is not a
direct evaluation of the student with questions or
problems. The students are evaluated indirectly,
based on the results of the experiments and the
exploration behavior. With this information, the
tutor has to assess the cognitive state of the student
and decide the best pedagogical action. Given the
uncertainty inherent in this task, we have devel-
oped [3] a probabilistic relational student model
for the virtual laboratory.

Many tutors use student models based on Baye-
sian networks (BN), which are useful for diagnosis,

the task of inferring the cognitive state of the
student from observable data [18±21]. However,
the effort required to define the network structure,
the difficulty of obtaining the parameters and the
computational complexity of the inference algo-
rithms, makes the application of these types of
models difficult, particularly in real-time situations
such as virtual laboratories. An additional compli-
cation is finding a general model for several
students, given that each student has different
knowledge, abilities, preferences and academic
antecedents. In order to solve these problems, we
proposed the use of probabilistic relational models
(PRM) [22] to represent the student model, allow-
ing the domain to be represented in terms of
entities, their properties, and the relations between
them. Next we give a brief introduction to PRMs,
and then we discuss their application to student
modeling.

Probabilistic relational models
Koller [23] states that ``The basic entities in a

probabilistic relational model are objects or
domain entities. Objects in the domain are parti-
tioned into a set of disjoint classes X1, . . . , Xn.
Each class is associated with a set of attributes
A(Xi). Each attribute Aj 2 A(Xi) takes on values
in some fixed domain of values V(Aj).'' The
dependency model is defined at the class level,
allowing it to be used for any object in the class.
For each class, its dependency relations with other
classes are defined. Later, the specific dependencies
between the attributes of an object are defined
based on the attributes of related objects.

Fig. 6. Experiment 2: use of infrared sensors.
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This representation allows for two types of
attributes in each class: (i) information variables
and (ii) random variables. The random variables
are the ones that are linked in a kind of Bayesian
network that is called a skeleton. From this skele-
ton, different Bayesian networks can be generated,
according to other variables in the model. For
example, in the student model described below
we define a general skeleton for an experiment,
from which particular instances for each experi-
ment are generated. This gives the model a greater

flexibility and generality, facilitating knowledge
acquisition. It also makes inference more efficient,
because only part of the model is used in each
specific case.

A PRM specifies the probability distribution of
the skeletons using the same underlying principles
used for Bayesian networks. The assumption is
that each of the random variables in a PRM, in
this case the attributes x.a of the individual objects
x, is directly influenced by just a few others. A
PRM therefore defines for each attribute x.a a set
of parents, which are the directed influences on it,
and a local probabilistic model that specifies the
probabilistic parameters. Once a specific network
is generated from a skeleton, the inference mechan-
ism is the same as for Bayesian networks.

PRMs allow a compact and natural representa-
tion of student models for virtual laboratories.
Next we describe briefly a novel student model
based on probabilistic relational models [3].

Probabilistic relational student model
In order to apply PRMs to student modeling, it

is necessary to define the main objects involved in
the domain. As shown in Fig. 7, the main classes
related with students and experiments were
defined. For each class, a number of attributes
(information variables and random variables) are
defined. For example, the class X4, experiment
results, is formed by attributes such as id, number
of repetitions, success, efficiency, performance. The
dependency model is defined at the class level,

Fig. 7. A general student PRM for virtual laboratories. The
model specifies the main classes of objects and their depen-

dencies. For instance, the class knowledge items represents the
knowledge of the student for the particular concepts for an

experiment, which are related to the experiment's results and
student behavior, and which influence the knowledge of the

student at higher levels (sub-themes and themes).

Fig. 8. A detailed view of the model in Fig. 6, showing information and random variables (attributes) for each class in the model and
the dependencies between classes.
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allowing it to be used for any object in the class.
Fig. 8 shows the model in more detail, with
information and random variables for each class,
and the dependencies between classes.

Once the model is specified at the class level,
including the attributes and their dependencies, we
can extract a skeleton that is a general Bayesian
network model for a fragment of the model. For
instance, a skeleton obtained from the model in
Fig. 8 is depicted in Fig. 9. This network includes

the dependencies between the student knowledge
at different levels of granularity, and the results of
the experiments in terms of performance and
exploration results.

From the skeleton, it is possible to define
different instances according to the values of
specific variables in the model. For example,
from the general skeleton for experiments of
Fig. 9, we can define particular instances for each
experiment. As shown in Fig. 10, a generic skeleton

Fig. 9. A general skeleton obtained from the PRM in Fig. 8, specifying the dependencies between the random variables (attributes) of
each class related to other classes.

Fig. 10. Obtaining different instances from a generic skeleton of the experiments in the student model. From one skeleton, several
instances are obtained according to the experiment and student level.
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is used to obtain several instances of the probabil-
istic relational model to infer the knowledge gain
of a student for different experiments.

As in Bayesian networks, the parameters of the
model consist of the conditional probability table
(CPT) of each variable (attribute), given its
parents, which are defined for the skeleton of the
relational schema. This model allows different
conditional probability tables for each instance,
according to the categorization of the student as
novice, intermediate or expert. This is because the
relationship between performance and the know-
ledge items changes according to the level of the
student. An example �1 for experiment 1, obtained
from the skeleton in Fig. 9, is shown in Fig. 11. The
random variables associated to this instance now
have specific values according to the performance,
exploration and concepts associated with experi-
ment 1.

An example: experiment 1
As mentioned above, the first experiment

involves the mechanical properties of mobile
robots. The educational goals are: (i) to learn the
mechanical aspects of mobile robotics, and (ii) to
practice with kinematical models using manual
control. The interface is shown in Fig. 5. Different
aspects should be explored by the students for this
experiment. The exploration characteristics are
related to the experiment goals. Students are able
to explore three different kinematics models and
several parameters for each model, as shown in
Fig. 12.

The learners' knowledge of the objects targeted
by the virtual laboratory in experiment 1 are: angle
speed, the large±wide relation, axels relation, and
robot dimensions. Then the results of each experi-
ment, in terms of exploration and performance, are
considered in the relational student model. When a

Fig. 11. Instance �1 corresponding to experiment 1, obtained from the skeleton in Fig. 9.

Fig. 12. Experiment 1: kinematics and mechanical aspects of mobile robots are explored by students in this experiment. The left side
shows the virtual lab interface, and the right shows the three types of configuration that can be explored.
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student performs an experiment in the virtual lab,
the experiment results and student exploration
behavior are mapped to different knowledge items
relevant to the experiment. Fig. 13 shows a frag-
ment of the model used to convert evidence from
the results and exploration.

The evidence from the experiment results is
propagated first to the basic concepts (knowledge
items) related to this experiment, and then to the
sub-themes and themes according to a hierarchical
knowledge structure for the course. This propaga-
tion is done using standard probability propaga-
tion techniques [24, 25] applying the Bayesian
network for experiment 1 (see Fig. 11), derived
from the PRM student model. In the case of a
PRM, we can take advantage of the flexibility of
the model to simplify probability propagation, so
inference is done over an instantiation (skeleton) of
the model. The student's knowledge base changes
at the different levels of granularity according to a

hierarchical structure previously defined. The
knowledge items, sub-themes and themes related
to experiment 1 are shown Fig. 14.

After each experiment, the results are used by
the tutor module to decide the best pedagogical
action. If the experiment's goals are below the
expected value, the tutor decides the best pedago-
gical action, such as help or lessons. The PRM
model is also used for initial categorization of the
students based on their academic background [3].
Next we present the evaluation of the course and
the virtual laboratory that incorporates the intelli-
gent tutor and student model.

EVALUATION PROCESS

We present, firstly, an evaluation of the virtual
lab and of the tutor and, secondly, of the course in
general.

Fig. 13. Taking evidence from experiment results: the exploration and performance (results) parameters are mapped to the knowledge
items (one item is shown in the figure for simplicity, but this item represents several concepts or variables).

Fig. 14. The student's knowledge has different levels of granularity. It is organized in a hierarchical structure, from themes to sub-
themes, and from sub-themes to knowledge items. The figure shows the concepts related to experiment 1.
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Virtual laboratory evaluation.
We have concluded a user study with the semi-

open learning environment. In particular, we eval-
uated the tutor and the student model, using the
virtual robotics laboratory. By analyzing the lear-
ners' explorations as they used the system, we
gained some insight into the general effectiveness
of the experiment's performance. We obtained
quantitative and qualitative results that give
some measure of the prediction capabilities of the
proposed student model, and of the utility of the
tutor in a semi-open learning environment.

. Participants. The subjects were EE and CS
undergraduate students at the sophomore and
senior levels. A total of 20 subjects enrolled in a
basic robotics course participated in the study.
Although there were few students, we decided to
divide them into a control and an experimental
group, to test the VL issues with ITS and with-
out ITS.

. Experiment design. In the experiment, all sub-
jects used the virtual laboratory, described in the
semi-open learning environment section. We
introduced the academic background of each
student to the system. The system, using the
probabilistic model, applied the pre-categor-
ization process for each student. Both the con-
trol and experimental group students were
divided into two categories: novice and inter-
mediate. We then applied the pre-test after a 60-
minute lecture on basic robotics concepts. The
pre-test is a paper-and-pencil test designed to
evaluate the learners' knowledge of the objects
targeted by the virtual laboratory. It consisted of
25 questions organized in the same way as the
knowledge objects of the student model. Both
the control and experimental groups partici-
pated in a session (30 to 60 minutes), performing
experiments with the virtual laboratory. The
experimental group had the support of the
tutor during the experiments, while the control
group explored the virtual lab without a tutor.

. The post-phase. The post-test consisted of a test
analogous to the pre-test, with 25 questions
organized in the same way as the knowledge
objects of the student model, and of a ten-item
questionnaire seeking students' opinions about
their virtual laboratory experience. In addition,
the system produced log files that capture the
sessions at the level of basic exploration actions
and experiment performance results.

Results
Figs. 15 and 16 show the initial categorization

results versus the pre-test for the first knowledge
objects targeted by experiments 1 and 2 (the graphs
show the averages of the 20 students). The know-
ledge values for the pre-categorization model were
defined based only on academic background. For
the students categorized at the intermediate level
(Fig. 16), the predictions of the model are very
good for almost all the knowledge items. For the
novice student, we found that, in general, the
predictions are below the test results. However, a
lecture was given just before the pre-test was
applied, so we think that this affected the results
in particular for the novices.

Figs. 17 and 18 summarize the results after
experiments 1, 2, 3 and 4, for the control and
experimental groups. The graphs of tutor and
without tutor represent the knowledge objects
(items, sub-themes and themes) assessed inside
the virtual laboratory for the control and experi-
mental groups.

The graphs of the pre-test represent the know-
ledge objects assessed by a paper-and-pencil test
before students complete the experiments using the
virtual laboratory. The results for novice students
(according to the initial categorization) are shown
in Fig. 17, and those for intermediate students are
shown in Fig. 18. The results show that the
students that explored the virtual environment
with the help of the tutor performed better. As
shown in these figures, students with intelligent

Fig. 15. Initial categorization versus pre-test for novices.
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Fig. 16. Student categorization versus pre-test for intermediate students.

Fig. 17. Results for novice students after performing experiments 1, 2, 3 and 4.

Fig. 18. Results for intermediate students after performing experiments 1, 2, 3 and 4.
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support significantly improved their knowledge
level of the targeted knowledge objects.

Additionally, based on a questionnaire, most of
the students consider that the virtual laboratory is
useful in learning the relevant concepts, and 80%
enjoyed the learning environment.

Course evaluation
We evaluated the course in general using

students' opinions, based on institutional question-
naires. These questionnaires have 28 specific ques-
tions related to teacher skills, the skills developed,
the teacher±student relationship, and academic
quality. The assessment range is from 1 to 7,
where 1 is excellent and 7 is worst. The average
assessment in the last term was 1.33.

The results of the team participation in several
national competitions during the last three years
were good, in general. For instance, they obtained
second and third places in line maze competitions
in 2003 and 2004, and second place in obstacle
avoidance in 2002. These are good results, consid-
ering that our students were competing with
experienced participants and graduate students,
while our students were enrolled in their first
robotic course; they were also competing for the
first time.

CONCLUSIONS AND FUTURE WORK

We have developed a course for teaching basic
robotics at undergraduate level with several didac-
tical and technical enhancements, helping the
students lo learn in a more effective way. The
first part of the course uses an intelligent tutoring
system coupled with a virtual laboratory for
mobile robots. This semi-open learning environ-
ment1 provides the student with the opportunity to
learn through free exploration, but with specific
performance criteria that guide the learning
process. In virtual laboratories, the student has
the liberty to explore different parameters to
observe their effects inside the virtual laboratory.

The semi-open learning environment also has
several advantages: flexibility, which allows differ-
ent models to be considered for each student in a
common framework; adaptability, whereby an
initial model of a new learner is obtained by
considering similar student models; and modular-
ity, allowing it to be easily extended to include
more students, more experiments and other
domains.

The intelligent tutoring system keeps track of
the students' knowledge at different levels of
granularity, combining the performance and
exploration behavior in several experiments, in
order to decide the best pedagogical processes.
We have evaluated the system with an initial
group of students. The results show that students
who used the semi-open virtual environment with
the help of a tutor performed better, and students
with intelligent support significantly improved
their knowledge level of the targeted knowledge
objects.

We are currently extending our evaluation of
the tutor with more experiments and validating
the best pedagogical methods for the tutor. We
are integrating an affective behavior model with
the intelligent tutoring system in order to
provide students with a suitable response from
a pedagogical and affective point of view [26].
We are also adding collaborative capabilities for
student interaction in the semi-open virtual
laboratory. Finally, we are introducing new
domains to the generic architecture, in basic
education and in medicine.
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