Int. J. Engng Ed. Vol. 22, No. 4, pp. 829-838, 2006
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2006 TEMPUS Publications.

Integrating Multimedia Technology into
the Undergraduate Curriculum*

PHILIP K. MCKINLEY, BETTY H. C. CHENG and JUYANG WENG
Dept. of Computer Science and Engineering, Michigan State University, East Lansing, Michigan 48824,

USA. E-mail: mckinley@cse.msu.edu

Given the ubiquity of multimedia technology, it is important that Computer Science students not
only learn the basics of multimedia design, but also gain hands-on experience with applications of
the technology. This paper describes the integration of multimedia concepts and tools into a
Computer Science curriculum. An NSF-sponsored Multimedia Laboratory was established and
used to support three senior-level courses: software engineering, computer graphics, and computer
networks. Curriculum development activities, laboratory exercises, and the role of course projects

are described.

INTRODUCTION

IN MULTIMEDIA applications, computers are
used to manipulate, distribute, and present data to
human users in multiple forms, including text,
images, audio, video and graphics. Recent
advances in workstations and computer networks
have made such applications not only feasible, but
also accessible to a large number and wide variety
of users. One need only consider the explosive
growth of the World-Wide Web in the last few
years to appreciate the increasing demand for
multimedia applications.

Computer scientists join millions of other people
as users of multimedia applications. However, it is
also their responsibility to be the designers of next-
generation multimedia applications, which
requires new approaches to the design of software
for computing and communication [1]. We, as
educators in computer science, must prepare our
students to meet this challenge by augmenting the
curriculum to include experiences with state-of-
the-art multimedia technology [2].

The Department of Computer Science and En-
gineering at Michigan State University (MSU)
created a Multimedia Laboratory to support
undergraduate education. The Laboratory was
supported by an NSF Instructional Laboratory
Improvement (ILI) grant and matching funds
from MSU. Over the past few years, we have
used the laboratory to support multimedia exten-
sions to three senior-level courses: Software En-
gineering, Computer Graphics, and Computer
Networks. This paper describes the integration of
multimedia technology into the three courses,
including both curriculum development and
laboratory exercises/projects.

An important aspect of this project, and the

* Accepted 16 May 2005.

829

major emphasis of this paper, is the use of existing
multimedia tools. Tools are used:

1. to directly manipulate data and demonstrate
physical and system behavior

2. to support the development of software

3. as components in large-scale multimedia appli-
cations developed by students.

MULTIMEDIA LABORATORY OVERVIEW

The Department of Computer Science and
Engineering at MSU serves approximately 500
computer science undergraduate majors and
approximately 150 graduate students. In addition,
the Department jointly administers an undergrad-
uate program in computer engineering, which has
approximately 280 majors. The Department also
serves a large number of non-majors through
service courses and courses open to other majors.

The MSU Multimedia Laboratory described
herein contained a collection of networked Silicon
Graphics Indy workstations and a variety of
support peripherals. The SGI systems were
equipped with video cameras, graphics accelera-
tors and hardware support for video compression.
Also, these systems were configured with a wide
variety of multimedia software packages: the
Indigo Magic multimedia desktop user environ-
ment, the CASEVision Workshop suite of soft-
ware development tools, the IRIS Explorer
modular application builder, the IRIS Showcase
multimedia presentation composer, the Rapi-
dApps prototype development package, and the
ClearCase configuration management framework.
In addition, Cosmo Software provides a graphical
development environment for web documents, and
the IRIS Inventor tool and Alias/Wavefront
PowerAnimator provide high-level facilities to
develop user interfaces and sophisticated graphics.

830 P. McKinley et al.

Our use of the multimedia laboratory has been
based on a three-part model of multimedia appli-
cations: computing, presentation, and commun-
ication. Figure 1 illustrates the relationship
among these parts; each block represents a
single-user computing platform. Multimedia
computing refers to the management and process-
ing of multimedia data; multimedia software must
be able to accommodate audio, images and video
as data types. Multimedia presentation concerns
those aspects of the application with which the
user interacts, such as graphical user interfaces,
scientific visualization tools and graphics for
object-oriented design and animation. Finally,
multimedia communications is needed for applica-
tions that are distributed in nature or which
require data from remote sites; functions include
digitization, data compression, real-time delivery,
and integration of multiple data types. The combi-
nation of these three components make multime-
dia applications fundamentally different from
other computer applications.

We have used this framework to incorporate
multimedia experiences into three existing senior-
level courses:

® Software Engineering introduces students to all
phases of software development, including spe-
cification, design, coding, testing, and verifica-
tion.

® Computer Graphics covers a wide range of
graphics topics, including graphics hardware,
raster graphics, 3-D graphics, user interface
design, object representation, and object model-
ing.

® Computer Networks covers a wide spectrum of
topics in computer communications, from physi-
cal transmission media, to network protocols, to
applications.

In each of these courses, we have followed a three-
pronged approach to the incorporation of multi-
media content: teach students fundamental prin-
ciples (theory, algorithms, techniques), have

students apply these principles in the software
components that they build themselves, and let
students work with production-level tools and
applications that also demonstrate these principles.

CURRICULUM DEVELOPMENT

This section describes how the three courses
have been re-engineered to add a multimedia
dimension.

Software engineering

Our software engineering course is designed to
teach students the fundamentals of software devel-
opment, beginning with problem identification and
requirements analysis through design and testing.
The course places significant emphasis on object-
oriented analysis and design techniques and on the
use of advanced software development tools. In
addition to lectures and weekly laboratory assign-
ments, students work in teams on three deliver-
ables for a large-scale project: a requirements
analysis document including a prototype, a high-
level design document, and a user manual. In a
subsequent software engineering capstone course,
the students apply the techniques learned in this
course to an industry-sponsored project.

The recent focus of the course projects has been
on software development techniques specific to
embedded systems [3]. Students are asked to
model an embedded system using the object-
oriented modeling technique (OMT) [4]. The
Multimedia Laboratory plays a key role in this
process. The RapidApps rapid prototyping utility
available on the SGIs enables students to gain an
accurate understanding of the behavior of the
system, since students can build interactive proto-
types that provide graphical animation for sensor
input and actuator responses. The students also
gain experience with configuration management
software using the ClearCase framework to
manage different types of artifacts. Finally, we

Fig. 1. Model of multimedia applications.

Integrating Multimedia Technology into the Undergraduate Curriculum 831

used the World-Wide Web to support project
status communication among team members,
between the students and the instructor, and
between the students and their industrial custo-
mers. The Cosmo Software package on the SGIs
provides graphical user interfaces that enable
developers to quickly build sophisticated web
pages and generate Java applications.

Computer graphics

As computer graphics is increasingly used in
computing and communications, instruction in
computer graphics must remain at the forefront
of technology in order to prepare students for the
challenging tasks of the present and the future.
While our computer graphics course emphasizes
basic graphics algorithms, such as rasterization
algorithms for lines and curves, shading algo-
rithms, and ray tracing algorithms, it previously
did not provide students with sufficient exposure
to professional graphics computing environments
and the design issues associated with professional
graphics software. We have redesigned our compu-
ter graphics course to address this problem
through the use of the SGI programming environ-
ment. A key question that we had to address was
how to provide these experiences in generating
complex graphics objects and their animation
without requesting students to devote an unrea-
sonably large amount of time to the course.

The solution to this problem lay in the proper
integration of tools into the curriculum. In addi-
tion to providing low-level graphics systems, such
as X and Motif, the SGI programming environ-
ment provides two {3-D} graphics systems,
OpenGL and Openlnventor. The former provides
more freedom for designing {3-D} graphics, while
the latter provides more high-level graphics objects
and tools that enable the programmer to produce
complex graphics content in much less time.
Another advantage in using the SGI platform is
the availability of a wide array of professional
user-level graphics software. For example, we
acquired and installed a software package from
Wavefront/Alias that includes three professional
graphics tools: PowerAnimator, Studio Paint {3-
D}, and Composer. Such software enables us to
provide students with experiences that go well
beyond those of a typical computer science under-
graduate graphics course.

We revised the structure of the course to em-
phasize four graphics systems that are designed for
different levels of graphics applications: X/Motif,
OpenGL, Openlnventor, and Alias/Wavefront
PowerAnimator. We restructured the lecture mate-
rial in such a way that it covers the basic concepts
and major characteristics of each of the four
graphics systems. Through these lectures, the
students can gain a general understanding of the
important concepts in each system. Students then
have the opportunity to work with each of these
graphics systems through the laboratory assign-
ments, as discussed later.

Computer networks

The senior-level computer networks course
combines both theory with practice. The theoretical
aspects of the course emphasize topics that are long-
term in nature and which may be applied in a
variety of ways. Such fundamentals include under-
lying algorithms and protocols used in digital
encoding, error detection and correction, access
control, network routing, flow control and relia-
bility. However, an equally important part of the
course is to present specific examples of how these
fundamentals are applied in real networks. Lectures
include many examples drawn from both the Inter-
net research community as well as from industry,
and laboratory assignments give students hands-on
experience with these concepts. Given the rapid
pace of change in computer networking, the content
of the practical side of the course has evolved over
the years. Extending the course materials to em-
phasize multimedia communications was a natural
part of this evolution.

The multimedia extensions are grouped into
three main categories: enabling technologies,
network-level protocols, and application-level
protocols. Example topics in the first category
include encoding schemes for fast modems, signal-
ing in Fast Ethernet and Gigabit Ethernet, design
and operation of switched LANSs, an overview of
ATM services and switch architectures, and an
overview of cellular telephony. In terms of
network-level protocols, the primary focus of the
course is on the TCP/IP protocol suite; in addition
to standard IPv4 operation, we now include exten-
sive discussion of IPv6, IP multicast, and IP over
ATM/SONET. Finally, the course has long
included extensive treatment of application level
protocols such as FTP, SMTP, NNTP. We have
extended this part of the course to include JPEG
and MPEG compression, public key encryption,
and HTML/HTTP, as well as an overview of
object-based middleware technologies such as
CORBA, DCOM, and the Java/RMI.

LABORATORY EXERCISES AND
PROJECTS

As mentioned previously, tools played an inte-
gral role in adding the multimedia dimension to all
three courses. Below is a brief description of the
tools that were used in each course.

Software engineering

The software engineering course includes two
laboratory components. First, weekly laboratory
assignments are designed to teach each student
how to use different methods and tools needed in
software development. Second, the students work
in teams on large-scale projects, where they apply
their collective knowledge of software engineering
and associated tools.

In the laboratory exercises, students apply
object-oriented modeling and design techniques

832 P. McKinley et al.

to sample problems. The exercises also expose
students to new tools that facilitate the delivery
of their projects to their respective customers in the
form of prototypes, user guides, and presentations.
The course projects are obtained from industrial
contacts in two main domains: household appli-
ances and automotive systems. Past projects
include design of controllers for washing machines,
dishwashers, ovens, ABS brakes, a climate control
system, a driver notification system, cruise control,
and a monorail system. Based on a brief (2-3 page)
project description, students are first expected to
perform domain research to better understand the
requirements and scope of their respective projects.
The students must gain approval of the require-
ments from the ‘customer’ (either a teaching assis-
tant or the instructor) before proceeding to the
design stage.

Software tools available on the systems in the
Multimedia Laboratory are important to both the
laboratory exercises and the projects. First, in
order to facilitate the requirements analysis stage,

project prototypes are built using the SGI Rapi-
dApps software, whose graphical front-end enables
students to easily build user interfaces for their
prototypes. In addition, interactive functionality
can be attached to the graphical entities, thus
making the prototypes executable. Figure 2 shows
the interface developed for the Driver Information
Notification System project [7], and Fig. 3 contains
the Monorail Control interface [7]. Both of these
functional prototypes were developed using Rapi-
dApps, thus helping the project teams and the
customers to better understand the requirements
of the respective projects. The students were able to
model the user interface, the sensors, and the
actuators for the systems. Second, the ClearCase
configuration management framework is useful in
maintaining version control between the models
used in the requirements document versus those
used in the design document. Third, the Cosmo
software significantly decreases the learning curve
associated with building the web pages and appli-
cations. Towards the end of the semester, using

LIsEs

Extemal Infosmation

DINS

READOUT

Intemal Sensom

Tempmralurn

Fig. 2. RapidApps prototype for driver information notification system.

Integrating Multimedia Technology into the Undergraduate Curriculum 833

=
TRAIM STATUS

Tealn Sgssl

Chear - Oan - ook Hean ik ear - e
F ¥ -

MASTER CONTROL PAMEL

TRAIN | O LATEDH

rain 1 Irain ¥
Tiraln ¥ Cruising Speed

Train 1; Currend Spapd

Distanae Clesr Ahead

Eurrend Lacitlon Traie Slala

Climate Conlral

TEmEErature

MPH

MPH

Fig. 3. RapidApps prototype for the monorail control system.

CosmoCode and RapidApps, the students build
functioning Java prototypes of their respective
embedded systems in approximately two weeks.
As part of their user manual requirements, students
use Showcase, a presentation software package on
the SGIs that supports the construction of narrated
videos. Each group develops a tutorial video for
their project that included animated sequences of
sample sessions with their prototypes.

The course concludes by having students give
presentations and demonstrations of their respec-
tive projects. The students gain experience in
giving concise and team-oriented briefings to
their peers. Students use popular presentation
software (Microsoft’s PowerPoint) with an
LCD projector; an SGI system is connected to
the Internet for demonstrations of their Rapi-
dApps prototype. Each group also played its

834 P. McKinley et al.

@)

(k)

Fig. 4. Example of 3-D model of a computer speaker; (a)-(h) show the images used to generate the model, and (i)-(k) show three views
of the 3-D model that are different from all views in (a)—(h).

respective Showcase tutorial video during the
presentation.

Computer graphics

Prior to the existence of the Multimedia Labora-
tory, students in this course learned basic graphics
concepts and algorithms. For laboratory assign-
ments, the students learned to use the X-window
system, Motif, and PHIGS. While the X-window
system is a basic raster-level 2-D windowing
system, Motif provides widget sets built atop the
X-window system for 2-D graphics, and PHIGS is
a 3-D windowing system that also deals with 3-D
graphics objects and their rendition [5]. Students
were required to implement graphics programs and
render the result using these window systems.
However, these tools are not efficient enough for
production-level use. Due to the limited time that
each student can spend on each program assign-
ment these programming assignments involved
only simple graphics objects, such as lines and
cubes.

Commercially available user-level graphics soft-
ware can greatly facilitate the graphics content
creation, rendition, and animation. The availabil-
ity and the quality of these commercial graphics
software systems depend very much on the hard-
ware platform. The SGI environment is the
preferred system for production-level graphics
design.

As mentioned earlier, we designed four new
laboratory assignments for the course, one to

emphasize each of the graphics systems presented
in lectures: X/Motif, OpenGL, Openlnventor and
Alias/Wavefront PowerAnimator. Example
assignments include design of an X/Motif
window interface, interactive building and editing
of various shapes and objects, 3-D graphics
programming of wireframe models, and an anima-
tion program that can generate 3-D polygonal
objects with different surface color and reflectance.

Each laboratory exercise was designed with the
following objectives in mind:

1. the students learn the major characteristics of
the system;

2. the graphics content is both interesting and
challenging;

3. the balance between new concepts and pro-
gramming is appropriate.

We have developed two sets of materials for each
laboratory assignment, (a) a tutorial for the parti-
cular graphics system; (b) a description of the
laboratory assignment. The tutorial is supplemen-
tary to material covered in lectures, and provides
pointers for further reading. Thus, after taking the
course, the students are prepared to learn further
about these graphics systems whenever the need
arises.

Based on course evaluations, the students
enjoyed the laboratory experiences, which offered
them the opportunity to use professional graphics
software in the design of realistic 3-D graphics and
animations. Moreover, the students learned which

Integrating Multimedia Technology into the Undergraduate Curriculum 835

types of advanced tools are required for efficient
graphics content generation, and what issues must
be addressed for user-level graphics software.
Thus, the students not only gained experience in
basic graphics algorithms, but also were shown
how these algorithms are integrated into profes-
sional graphics environments.

Figure 4 shows an example system developed by
a student using methods that he learned in the
computer graphics course. This system, called
Camera-Aided Virtual Reality Builder (CAVRB),
constructs a 3-D graphics model from a real object
from a number of images taken by a camera at
different viewing positions and angles. Using these
images, the user interacts with the CAVRB graphi-
cal userface to specify the correspondence of
surface patches from one image to the next by
specifying the corner points of each surface patch
in the image plane. Next, CAVRB automatically
computes the camera positions and angles and the
3-D position of these feature points from images.
Finally, CAVRB computes the texture map of the
reconstructed 3-D graphics model by back-project-
ing image textures onto the curved surfaces in the
3-D model. Figure 4 shows eight real images of a
computer audio speaker and three views of a 3-D
model constructed using those images. Similarly,
Figure 5 shows three real images of a human face
and two views of the CAVRB-generated 3-D
model.

Computer networks

Although laboratory activities have been an
important part of our computer networking
course for many years, the availability of the
Multimedia Laboratory enabled us to expand
this component of the course. The laboratory
assignments can be divided into two categories.

The first set comprises relatively short assign-
ments, usually one or two weeks, on topics that
directly relate to lecture materials. The second set
involves projects that are larger in scope and
require the students to integrate multiple concepts
in the design of a networked application.

We revised these laboratory assignments to
make use of multimedia libraries and tools. Early
assignments gave the students experience with the
environment, such as the SGI graphical debugger;
the material covered in these assignments would
serve the students throughout the course. In later
assignments, we used tools on the SGIs to rein-
force concepts related to signaling, sampling, and
encoding. For example, the SGIs provide multi-
media support as a standard part of the operating
system, and these tools allow one to input, manip-
ulate, and convert audio files. Students used Soun-
dEditor, SoundPlayer, and MediaConvert tools
(as well as some home-grown error generating
software) to conduct a number of experiments
with digitally sampled audio involving sampling
rates, storage requirements and error tolerance.
Additional one-week assignments gave students
experience with screen capture facilities and
audio and video players, which were later incorpo-
rated into projects.

The course projects require students to apply
knowledge gained in previous laboratory assign-
ments to the development of larger software
systems. Typically, the students build a complete
application by integrating their own code with
other provided software packages and third-party
programs. In addition, these projects always
involve an experimental component (usually
performance evaluation) and require an accompa-
nying report describing the design and the results
of the experimental study.

(d

©

Fig. 5. Example of 3-D model of a human face; (a)-(c) show the images used to generate the model, (d)—(e) show the 3-D model from
two different views.

836 P. McKinley et al.

Fig. 6. Synchronous collaborative browser operation—all URLs displayed on the instructor browser are multicast to programs
controlling the student browsers, where they are displayed simultaneously.

The theme of these projects varies from term to
term. One semester, the students conducted a study
of data compression. They implemented the core
algorithms in the JPEG image compression stand-
ard (specifically, they implemented the discrete
cosine transform, quantizer, and binary encoder)
and linked their code to a provided set of functions
in order to create an image compression library.
The students then used their code, with different
quantization levels, to transmit images across the
network, dynamically compressing the images
prior to transmission. Students measured the
compression and network delays and evaluated
the tradeoff between delays and image quality in
their reports. During another semester, the
students, having already built a simple file transfer
protocol (ftp) program, converted it into a multi-
media ftp program. In addition to saving files to
disk, this program enabled the user to dynamically
play audio and video files, which are streamed over
the network in response to user commands.
Students accomplished this task by integrating
their programs for streaming data with existing
audio and video players.

Finally, in one of the more interesting projects,
we gave the students an assignment intended to
enhance their experience with a specific network
service (IP multicast) and enable them to create a
relatively complicated networked application. The
students were asked to implement a synchronous
web browser, as might be used in distance educa-
tion; see Figure 6. The tool treats a browser as a
multimedia blackboard: all web resources brought
up on an ‘instructor’ browser is displayed simulta-
neously a set of ‘student’ browsers. The students
developed two programs. The first monitors the

instructor browser and multicasts any changes in
URLs, downloaded files, and so on, to the student
machines. The second program, which executes on
each student machine, receives these changes and
feeds them to the student browser. We provided
the students with code to interact with the browser,
and asked them to implement the main thread of
control as well as the communication-related code.
This project was not only very popular among the
students, but also led to the development of a
production-level version of the tool, called
WebClass, for use in instructional laboratories [6].

In summary, the new Multimedia Laboratory
has enabled us to expand the scope of the both the
laboratory assignments and projects in the compu-
ter networks course. State-of-the-art visualization
tools enable students to observe and interpret low-
level communications phenomena in ways not
previously possible. Moreover, by integrating
third party packages and components, such as
off-the-shelf web browsers and audio tools,
students are able to develop large-scale applica-
tions efficiently, spending most of their time on the
networking aspects of the program.

CONCLUSIONS

In this paper, we have described our experiences
with an NSF-sponsored Multimedia Laboratory.
Using the new laboratory, we have integrated
multimedia technology into our computer science
curriculum by expanding the content and labora-
tory components of three courses: software engin-
eering, computer graphics, and computer
networks. A key part of this project is the use of

Integrating Multimedia Technology into the Undergraduate Curriculum 837

existing software components and multimedia
tools. In a field as fast-paced as computer science,
it is important that students learn fundamental
principles that can be applied to many problems.
However, we feel that it is also important to show
students how those principles are being applied in
the current state of the art. Ours is a three-pronged
approach, teaching students fundamental prin-
ciples, requiring students to apply these principles
in the software that they build themselves, and
giving students experience with existing software
packages and commercial tools that also incorp-
orate these principles.

Our experiences with the laboratory have been
overwhelmingly positive. It has strengthened our
curriculum and enabled us to provide students
with a much richer set of experiences than
previously possible. While laboratory exercises
have always been an important part of our compu-
ter science curriculum, the multimedia extensions
are particularly motivating for the students. This
observation is supported by course evaluation
feedback forms that included supplementary sets
of questions on the laboratory-related activities.

The level of interest in this type of material
among students, and the experiences gained in
the three target courses, have resulted in the
development of a new undergraduate multimedia
course. This course, which was offered for the first
time in Fall 1998, exposes students to the different
dimensions of multimedia computing and com-
munication, including digital libraries, data trans-
mission, storage and retrieval, image and audio
processing, virtual reality, media transformation,
and the group development of multimedia
projects. The course makes use of many of the
same software packages, laboratory modules, and
project assignments that were used in the three
target courses.

Acknowledgements—The authors would like to thank the
National Science Foundation for their support of the Multi-
media Laboratory under NSF grant DUE-9551180. We would
also like to thank several faculty members and students who
contributed to the development of course and laboratory
materials, including: George Stockman, Kurt Stirewalt, Nas-
rollah Alavi, Barbara Birchler, Robel Barrios, Nicholas Basker,
Gretel Coombs, Scott D. Connell, Barb Czerny, David J.
Hammond, and Juana E. Nakfour.

REFERENCES

1. W. H. Graves, Toward a national learning infrastructure, Educom Review of Learning, Commun-
ications and Information Technology, 29, March/April 1994, pp. 32-37.

2. Course on designing a senior level or graduate course in interactive multimedia, Second Annual
ACM Multimedia Conference, San Francisco, CA, October 1994.

3. B. H. C. Cheng, D. T. Rover and M. W. Mutka, A multi-pronged approach to bringing embedded
systems into undergraduate education, Proc. ASEE Conf., June 1998.

4. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object-Oriented Modeling and
Design, Prentice-Hall, Englewood Cliffs, New Jersey (1991).

5. ANSI (American National Standards Institute), American National Standard for Information
Processing Systems—Programmer’s Hierarchical Interactive Graphics System (PHIGS) Functional
Description, Archive File Format, Clear-Text Encoding of Archive File, ANSI X3.144-1988, ANSI,

New York (1988).

6. P. K. McKinley, R. R. Barrios and A. M. Malenfant, Design and performance evaluation of a
Java-based multicast browser tool, Proc. 19th Int. Conf. Distributed Computing Systems, Austin,

Texas, 1999, pp. 314-322.

7. Software engineering course projects for CSE 470, Fall 1997. http://www.cse.msu.edu/~cse470/

F97.

Philip K. McKinley is a professor in the Department of Computer Science at Michigan State
University and was previously a member of technical staff at Bell Laboratories in
Naperville, Illinois. Dr. McKinley serves as an Associate Editor for IEEE Transactions
on Parallel and Distributed Systems and is co-chair of the program committee for the 2003
IEEE International Conference on Distributed Computing Systems. His current research
and teaching interests include distributed systems, mobile computing, and network

protocols.

Betty H.C. Cheng is a professor in the Department of Computer Science and Engineering at
Michigan State University. She serves on the editorial boards for IEEE Transactions on
Software Engineering, Requirements Engineering Journal, and Software and Systems
Modeling. Her research and teaching interests include formal methods for software
engineering, software development environments, object-oriented analysis and design,
embedded systems development, multimedia systems, visualization, and distributed com-

puting.

838

P. McKinley et al.

Juyang Weng is a professor in the Department of Computer Science at Michigan State
University. He is an Associate Editor of IEEE Trans. on Pattern Recognition and Machine
Intelligence and he is the chairman of the Autonomous Mental Development Technical
Committee of the IEEE Computational Intelligence Society. His research and teaching
interests include computer vision, computer graphics, artificial intelligence, mobile robots,
human-robot interaction using vision, audition, touch, speech, languages and actions.

