
A Partial Differential Equation Solver
for the Classroom*

CHUNG-YAU LAM and F. H. ALAN KOH
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue,
Singapore 639798. E-mail: mcylam@ntu.edu.sg

This paper presents a solver for partial differential equations that was developed in Microsoft
Excel. The solver consists of selected finite-difference numerical methods for the three types of
partial differential equations: namely the elliptic, parabolic and hyperbolic equations. The partial
differential equations and the finite-difference methods implemented are commonly used in class-
room teaching. Regular cell arrangement in worksheets represents the finite-difference grid. The
computational procedures were translated into Visual Basic for Application code to automate the
methods. The solver can handle problems with Dirichlet and Neumann boundary conditions. A
graphical user interface accepts problem parameters while worksheets and charts display the
numerical solutions. The solver requires minimal spreadsheet knowledge from the users. Various
numerical experiments such as divergence and stability testing can be performed easily. These allow
users to concentrate on the numerical aspects of their problems, which enhances the learning of the
numerical methods.
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INTRODUCTION

THERE ARE a number of commercial software
packages available for solving partial differential
equations (PDEs). While they are fast and power-
ful solvers, which can tackle problems with
complex geometries and complicated boundary
conditions, they tend to have a steep learning
curve and are expensive. For classroom purposes,
where simpler problems are used, a more cost-
effective and simple solution is desired.

Spreadsheets were used in recent years as an
educational tool in various engineering problems.
Some examples in heat transfer are Planck's black-
body radiation [1] and thermal radiation in enclo-
sures [2]. For electrical engineering, an example is
an antenna design [3]. Mathematics examples
include discrete and fast Fourier transforms [4]
and complex transformations [5]. Many features
of the spreadsheet such as circular reference,
matrix inversion and solver have been used
successfully in these applications. A drawback of
spreadsheets is the inability to symbolically
manipulate formulas.

Through the use of macros, spreadsheet
programs can be made to function similar to
programs written in conventional programming
languages. Harnessing this ability, a spreadsheet
application for solving PDEs was developed in
Microsoft Excel. The availability of user
forms for graphical user interface and macros for

automation are the main contributors to make this
application functioning like a programme. Finite-
difference methods transform partial derivatives
into difference expressions, allowing PDEs to be
recast as simple algebraic expressions. A total of
seven finite difference methods commonly used in
the classroom were selected and implemented for
the elliptic, hyperbolic and parabolic PDEs. The
solving procedures were coded in Visual Basic for
Application (VBA) and programmed into macros
that run automatically. User forms provide an
interactive and familiar appearance to the applica-
tion. This separates user from the worksheets and
directs the user to place problem parameters in the
right places. The user forms request all problem
parameters before solving begins.

The native layout of rows and columns of
spreadsheet cells is ideally suited to represent the
finite-difference grid. The spreadsheet cells of the
worksheet also behave like `variables' and hold
data. Calculation goes on in either the cells or the
background and the problem solutions are
presented on the worksheets. Charts are also
used to present the solution graphically.

NUMERICAL FORMULATIONS

The finite-difference methods implemented in
the solver are commonly used in the classroom.
Details of the methods can be found in many
textbooks, for examples see [6±8]. The essences of
the methods are given below.* Accepted 4 November 2005.
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Poisson equation
The Poisson equation is:

uxx � uyy � f �x; y� �1�
Using central-differencing, the finite-difference
equation for (1) is given by:

ui�1; j ÿ 2ui; j � uiÿ1; j

��x�2 � ui; j�1 ÿ 2ui; j � ui; jÿ1

��y�2 � f �x; y�

(2)

where �x and �y are the grid sizes in the x and y
directions respectively; the subscripts i and j denote
the x and y stations respectively.

For the Gauss Seidel method, Equation (2) is
rearranged to:

uk�1
i; j �

��y�2�uk
i�1; j � uk�1

iÿ1; j��
��x�2�uk

i; j�1 � uk�1
i; jÿ1� ÿ ��x�2��y�2f �x; y�

2���x�2 � ��y�2�
�3�

where the superscript represents the iteration
number.

For the Successive Over-Relaxation method
(SOR), we use:

uk�1
i; j � !�uk�1

i; j �GS � �1ÿ !�uk
i; j �4�

where!�1 < ! < 2� is the over-relaxation factor and
�uk�1

i; j �GS are the Gauss Seidel values as calculated
from Equation (3).

For the Alternate Direction Implicit method,
Equation (2) is rearranged to:

��y�2uk�1
i�1; j ÿ 2���x�2 � ��y�2�uk�1

i; j � ��y�2uk�1
iÿ1; j

� ÿ��x�2�uk
i; j�1 � uk

i; jÿ1� � ��x�2��y�2f �x; y�
�5a�

and

��x�2uk�1
i; j�1 ÿ 2���x�2 � ��y�2�uk�1

i; j � ��x�2uk�1
i; jÿ1

� ÿ��y�2�uk
i�1; j � uk

iÿ1; j� � ��x�2��y�2f �x; y�
�5b�

Equations (5a) and (5b) represent calculations
along the j-th row and i-th column of grid points
respectively. These equations are used alternatively
until solution converges.

Heat (diffusion) equation
Consider the heat equation:

ut � c2uxx �6�
where c is a constant.

In the Explicit Forward-Time-Centered-Space
method, the forward-difference approximation is

used to replace the time derivative and the
centered-difference approximation is used to
replace the spatial derivative. This yields:

u
j�1
i ÿ u

j
i

�t
� c2 u

j
i�1 ÿ 2u

j
i � u

j
iÿ1

��x�2 �7�

where the subscript represents the station in the
spatial x-direction and the superscript represents
the step in the time t-direction.

Rearranging Equation (7) explicitly,

u
j�1
i � 1ÿ 2c2 �t

��x�2
" #

u
j
i � c2 �t

��x�2 �u
j
i�1 � u

j
iÿ1�

�8�
This method is stable when the grid Fourier
number:

c2 �t

��x�2 �
1

2

In the Crank Nicolson method, the centered-differ-
ence approximation, calculated from time steps j to
j� 1, is used to replace the time derivative while
the average of the centered-difference approxima-
tion at time steps j and j� 1 replaces the spatial
derivative. This yields:

u
j�1
i ÿ u

j
i

�t

� c2 1

2

u
j�1
i�1 ÿ 2u

j�1
i � u

j�1
iÿ1

��x�2 � u
j
i�1 ÿ 2u

j
i � u

j
iÿ1

��x�2
" #

(9)

Rearranging,

ÿ c2 �t

��x�2 u
j�1
iÿ1 � 2 1� c2 �t

��x�2
" #

u
j�1
i ÿ c2 �t

��x�2 u
j�1
i�1

� c2 �t

��x�2 u
j
iÿ1 � 2 1ÿ c2 �t

��x�2
" #

u
j
i � c2 �t

��x�2 u
j
i�1

(10)

At each time step, a system of simultaneous equa-
tion results from applying Equation (10) at each
station in the spatial direction. The solution of
system of simultaneous equation gives the func-
tional values at the next time step. The Crank
Nicolson method is unconditionally stable.

In the Backward-Time-Centered-Space method,
the backward-difference approximation is used to
replace the time derivative while the centered-
difference approximation is used to replace the
spatial derivative:

u
j�1
i ÿ u

j
i

�t
� c2 u

j�1
i�1 ÿ 2u

j�1
i � u

j�1
iÿ1

��x�2 �11�
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The method yields

ÿ c2 �t

��x�2 u
j�1
iÿ1 � 1� 2c2 �t

��x�2
" #

u
j�1
i

ÿ c2 �t

��x�2 u
j�1
i�1 � u ji �12�

Similar to the Crank Nicolson method, a system of
simultaneous equation results from applying
Equation (12) at each station in the spatial direc-
tion at each time step. The solution of system of
simultaneous equation gives the functional values
at the next time step. This implicit method is
unconditionally stable.

Wave equation
The wave equation is:

utt � c2uxx �13�
where c is a constant.

Using centered-difference approximation for
both the time and spatial derivatives, the finite-
difference equation for Equation (13) is:

u
j�1
i ÿ 2u

j
i � u

jÿ1
i

��t�2 � c2 u
j
i�1 ÿ 2u

j
i � u

j
iÿ1

��x�2 �14�

where the subscript represents the station in the
spatial x-direction and the superscript represents
the step in the time t-direction. Rearranging:

u
j�1
i � 2 1ÿ c2 �t

�x

� �2
" #

u
j
i

� c2 �t

�x

� �2

�u j
i�1 � u

j
iÿ1� ÿ u

jÿ1
i �15�

This Centered-Time-Centered-Space method is
stable for:

c2 �t

�x

� �2

� 1

USER INTERFACE DESIGN

The user interface is based on the requirement
that it must be simple, easy to use and foolproof. It
should not hinder the learning of the numerical
methods.

Form-based user interface
Form-based graphical user interface (GUI) is

adopted for this application in Excel since such
interface tends to improve user friendliness. The
GUI provides an interactive environment for user
input. The form for selecting the PDE is shown in
Fig. 1. As the user cycles through the choices on
the list located on the top left of the form, the
corresponding equation is displayed to the right of
the list. The fields on the lower half of the form
also respond to the selected equation by displaying
a white or gray background, indicating if the field
is applicable or not. The GUI's response to the
user guides the user and increases user confidence
in using the solver.

The form in Fig. 2 shows an elliptic equation
being selected, for which the user must specify the
boundary conditions along the edges of the solu-
tion domain and the starting values for iteration.

Input of mathematical expressions
To enhance user friendliness, a mathematical

function input form as shown in Fig. 3 has
been created for the user to input mathematical

Fig. 1. Form for selecting PDE.
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functions by selection. Upon selection, the corres-
ponding function is translated and displayed in
Excel syntax automatically. This is helpful when
specifying boundary or initial conditions
prescribed by mathematical functions. With this
form, the user is not required to have a prior
knowledge of excel syntax for mathematical func-
tions. This form is called by clicking on the `f(?)'
button, as indicated in Fig. 2. Such buttons are
provided when needed.

Spreadsheet display
The spreadsheet represents an array, which

stores the functional values at the grid points in
the solution domain. The mathematical functions
take values form the cells of the spreadsheet and
return the calculated values to the appropriate cells

according to the respective numerical schemes.
Other essential information pertaining to the
respective scheme is also included. Examples for
the SOR scheme for solving the Poisson equation
r2u � 12xy, and the Crank Nicolson scheme for
solving the parabolic heat equation ut � c2uxx, are
shown in Figs 4 and 5 respectively. In these figures,
in addition to the numerical solution, all user input
such as step sizes, boundary conditions, initial
conditions, mathematical function needed, like
f �x; y� of the Poisson Equation, are displayed.
Colur schemes indicate the x- and y-axis, the
type of boundary conditions along the edges of
the solution domain and the relative magnitude
of the value of f �x; y� over the solution domain.
The numerical solution and the associated bound-
ary and initial conditions are displayed at their

Fig. 3. Input form for mathematical functions.

Fig. 2. Input form for elliptic PDE.
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respective geometric locations. This, together with
the colour scheme used, aids interpretation of the
numerical solution.

For implicit methods such as the Crank Nicolson
scheme, it is necessary to solve a system of simulta-
neous equations. In such a situation, the worksheet
functions minverse( ) and mmult( ) are extremely
useful. The system of linear equations is put into
matrix form to obtain the coefficient matrix, which
is inverted using minverse( ). The coefficient matrix
is displayed on the spreadsheet to facilitate the use
of these worksheet functions. This intermediate
working is retained to reflect the implicit nature of
the selected method and to facilitate checking.

Graphical display
A graphical form of the solution greatly

improves its interpretation. The charts in Excel
are used to display the numerical solutions graphi-
cally. These charts are generated automatically by
macros, when requested by the users. The numer-
ical solutions in Figs 4 and 5 are shown graphically

in Figs 6 and 7 respectively. A color scheme is also
provided. Hyperbolic PDEs are displayed in the
same style as parabolic PDEs, where the solution is
plotted at each station in the spatial direction for
each time step.

MACROS IN VISUAL BASIC FOR
APPLICATION

Visual Basic for Application (VBA) is the script-
ing language used to create all macros in this
application. The macros were written either from
scratch or by editing pre-recorded macros. The
first example of code describes a function that
replaces variables in a mathematical expression
with numerical values, which was very helpful in
the evaluation of f �x; y� for the Poisson equation.
The second example is a segment of code that
breaks up a surface plot into ten regions and
assigns a specific colour to each region. The
outcome is shown in Fig. 6.

Fig. 5. Spreadsheet display for solution of ut � uxx using the Crank Nicolson method, with �x � 0:2 and �y � 0:04:

Fig. 4. Spreadsheet display for solution of r2u � 12xy using SOR method, with �x � �y � 0:25 and ! � 1:25.
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Example Code 1

Example Code 2

CONCLUDING REMARKS

The solver, developed in a spreadsheet program,
provides seven finite-difference methods for
solving all three different types of PDEs. Macros
were created to execute repetitive calculations and

Fig. 7. Chart display for solution of ut � uxx using the Crank Nicolson method, with �x � 0:2 and �t � 0:04.

Fig. 6. Chart display for solution of r2u � 12xy using SOR method, with �x � �y � 0:25 and ! � 1:25.
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procedures, which removes the burden of
programming the solving methods. The resem-
blance of the layout of worksheet cells to the
finite-difference grid facilitates placing the numer-
ical solution on the worksheet, providing a simple
and quick visualisation of the behaviour of the
solution. Graphical display of the numerical solu-
tions is made possible through standard chart
options in Excel. The use of colours enhances
presentation of solutions. With the aid of the
user-friendly graphical user interface, little prior
knowledge is required to use the application. Users
are freed to focus on their PDE problems, which
must be completely defined before solving begins.

Various aspects of the numerical methods can be
studied easily. Comparisons can be made in the

accuracy between different numerical methods.
The stability and convergence characteristics of a
numerical method can also be examined easily with
the solver. An example to study the stability of the
Explicit Forward-Time-Centered-Space method
for the heat equation ut � uxx is shown in Fig. 8
which was obtained by solving the equation delib-
erately with a grid Fourier number of 10, which
violates the stability requirement.

To study the convergence characteristic of the
solution for Elliptic PDEs, a feature has been
incorporated in the program to automatically
generate the convergence history by displaying
the sum of the magnitudes of the differences
between successive iterates at all grid points in
the solution domain at every iterative loop. An

Fig. 8. Chart display for solution of ut � uxx using Forward-Time-Centered-Space method, with grid Fourier number� 10 and
�t � 0:1 s.

Fig. 9. Divergence of solution for r2u � 12xy obtained by SOR with ! � 2:75.
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example for the solution of r2u � 12xy obtained
by SOR with ! � 2:75 is shown in Fig. 9 which
clearly shows the diverging behavior of the
solution.

As Excel is readily available, using such a solver

as an educational tool can be suitable for the
classroom without incurring the cost of acquiring
additional commercially developed software which
is also harder to learn. Copies of the solver may be
requested from the author.
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