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This paper introduces a new methodology to analyze grading discrepancies in PBL software-
engineering courses with a high student-to-faculty ratio. The methodology is based on a quant-
itative analysis of the more relevant software features according to the grades assigned by each
instructor. In order to reduce the discrepancies detected, a new grading consensus has to be built,
and automatic analysis tools must assist the instructors when grading. The evaluation of the
methodology in two academic years revealed a 62% reduction of the grading discrepancies,
achieving an average inter-instructor discrepancy of 0.10 in a scale from 0 to 1.
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INTRODUCTION

PROJECT-BASED LEARNING (PBL) fosters
student initiative and increases student involve-
ment in the learning process when compared to
traditional techniques in technical and engineering
courses [1±4]. Students' acquisition of knowledge
and habits is greater in PBL than in traditional
techniques, especially when new technologies
support the PBL technique. These new technolo-
gies are focused on dealing with a higher teaching
workload (in management and coordination) and
the more difficult evaluation process that is
required in this case.

When a relatively large number of instructors
(7±10) have to grade a huge number of student
teams (around 200) in an engineering PBL course,
some bias in assessment (or grading discrepancies)
can appear. The main reasons for these discrepan-
cies are the following:

. When student teams develop complex systems
involving multidisciplinary knowledge (com-
munications, control, user interfaces . . . ), as
these systems are very difficult and time-con-
suming to evaluate, this increases the risk of
grading differences between instructors.

. In the grading process, not only functional
aspects should be evaluated but also non-func-
tional ones such as: software quality, flexibility
for improving the functionality, ease of main-
tenance . . . However, these non-functional
aspects are difficult to measure in an objective
way and the evaluation depends strongly on
instructor experience.

. In a PBL course with a high student-to-faculty
ratio (which could be 50 to 1, or even higher),
the number of projects to assess is too large for
the available advising hours, so the usual proce-
dure adopted is to have a large number of
instructors involved in the course. Nevertheless,
the larger the number of instructors, the higher
the risk of grading discrepancies. This fact is
especially relevant when the grading workload is
large and does not allow each project to be
assessed by several instructors.

. When assessing multidisciplinary projects,
instructors with different backgrounds can
focus on different aspects of the project and
they can use different grading criteria.

These discrepancies have traditionally been
analyzed by calculating and comparing the mean
and variance of the grades of each instructor [5].
As will be shown throughout this paper, this
solution does not consistently take into account
the fact that the quality of the subsets of projects
graded by different instructors can vary greatly
from one subset to another. In addition, the
mean-and-variance strategy does not detect those
cases where the mean and variance of grades are
similar, but the evaluation criteria are rather
different.

As an alternative to this, the instructors could be
provided with `standard samples' of project reports
for assessment; if, at the time of assessment, the
expected grading scores were known by the
researchers (but not by the instructors), this
could be another method for detecting bias. This
method has proven useful in other contexts [6], but
it seems to be impractical in the evaluation of
multidisciplinary projects in PBL courses, where* Accepted 20 November 2005.
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more than one hour of work is needed for a
thorough assessment of just one team.

For solving these grading discrepancies, the
most extended solution is to consider a small
number of instructors to assess the same subset
of projects [7, 8]. Generally, the independent
assessments are arithmetically averaged to get the
final numerical grade, but in the literature one can
find other strategies for combining the instructors'
grades [9, 10].

In [8], Woods presents an iterative processing
algorithm to detect and correct biases in the
assessments performed by several instructors.
From our point of view, this strategy does not
provide a complete solution in PBL courses involv-
ing multidisciplinary projects and a high student-
to-faculty ratio, because:

. When only a small number of instructors assess
a complex project, only the criteria of these
instructors are accounted for in the grading
process, setting aside the criteria of the remain-
ing instructors.

. If a number of instructors assess only a subset of
the projects, they do not have a global view of all
students, so they cannot take into account the
variation in quality between different subsets of
projects.

A solution to the assessment problem could be
achieved by splitting the proposed projects into
several non-overlapping and equally-sized subpro-
jects. This way, each instructor could evaluate the
same subproject for all students, diminishing the
grading discrepancies. Nevertheless, this solution
would require a large amount of work (especially
in engineering PBL courses) and it is not feasible
because of time limitations. Because of this, it is
necessary to develop new detailed studies,
supported by automatic tools, in order to reduce
the amount of time necessary for the analysis.

In the last few years, there have been several
works focused on developing automatic tools to
assist instructors in their grading work [11±13].
Generally, these tools are applied to non-PBL
software assignments or to circuit simulations.
In these cases, it is possible to verify the software
or hardware functionality in a fully automatic
way, using test vectors (a test vector is a set of
inputs a system can receive and the corresponding
correct outputs the system must generate as a
response to these inputs; if the output of the
system is correct for every input, then the
system is functionally correct). When someone
wants to develop similar tools for engineering
multidisciplinary PBL courses, the following
problems can arise:

. In an engineering project, planned for a seme-
ster, students have to develop a complete com-
munication or control system. These kinds of
systems need interactive verification of the func-
tionality that is very difficult to automate by
means of test vectors.

. In PBL, one of the targets is to foster student
initiative and creativity. Because of this, the final
systems can exhibit important differences in
functionality from team to team; therefore, it is
very difficult to make an automatic verification
based on standard test vectors. In our course, a
relevant portion of the functionality is due to
student creativity and this portion can account
for more than 15% of the total numeric grade.

. Finally, an evaluation process based on test
vectors focuses only on the functionality or the
response time. However, this evaluation does
not take into account other non-functional
aspects of software development such as the
structure of the developed system, the manage-
ment of available resources, or the scalability of
the proposed solution.

This article describes a new methodology to
perform a detailed analysis of the grading discre-
pancies and their causes, fully supported by auto-
matic tools. These tools provide a fine-grained
analysis of an engineering PBL course where the
grading process is costly and time consuming.

DESCRIPTION AND CONTEXT OF THE
COURSE

This methodology has been used in a course
called LSED (Laboratory of Digital Electronic
Systems) of the Department of Electronic Engin-
eering 1 at the Telecommunication Engineering
School 1, of the Technical University of Madrid
(UPM) 1. This Department is also responsible for
several courses focused on the design of electronic
systems such as Digital Electronic Systems (taken
in the 5th semester, this is a theoretical course on
the same microprocessor as LSED (Motorola
68000) and a common set of peripheral devices)
and Laboratory of Electronic Circuits (in the 5th
semester, on the design and implementation of
analog and digital electronic subsystems). In the
first and second semester, students must pass one
course and one laboratory on standard program-
ming issues, based on the Java language.

LSED is a mandatory laboratory the students
take in their 6th semester. There are about 400
students attending each year, and it involves a
number of instructors ranging from 7 to 10. The
students, grouped in teams of two, have to design,
build, test, and document a complete multidisci-
plinary microprocessor-based system (including
some hardware but predominantly software).

The starting point is a written description of the
system to be implemented (about 30±40 pages). It
includes the functional specifications and require-
ments of the system, a modular description of the
system and the main subsystems, some guidelines
for the implementation (a proposal for a basic
software architecture) and a tentative planning
schedule to help students on how to manage the
available laboratory sessions in order to achieve
the objectives on time.
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The students must complete the analysis of
the system (the initial specification is always
incomplete) and they must make the design,
implementation, tests and associated documenta-
tion. The target system changes every year and the
students must develop a fully functional prototype.
Some of the specifications are open to student
creativity. In order to achieve the maximum
grade, the students must implement some optional
functionality improvements on the basic proposed
system; these improvements can account for more
than 15% of the total score, as stated above.

The evaluation process of each team of students
is comprised of two steps:

. The first is the evaluation of intermediate
reports during the semester. These reports help
instructors verify the evolution and authorship
of the work.

. The second is the final evaluation, based on the
complete documentation of the system and an
oral examination. The instructors must verify
that the prototype follows the specifications of
the assignment, and they must make individua-
lized questions to determine the capacity of each
student to explain the obtained results, to deter-
mine his/her degree of involvement in the
development of the system, etc. Other factors
evaluated are: writing quality, skills for oral
communication and teamwork, etc.

Typically, the proposed project is a simplified
version (both economically and in terms of devel-
opment effort) of a consumer system. In 2002±
2003, the proposed system was a talking calculator
based on a Motorola 68000 microprocessor. The
system was able to add, to subtract and to multiply
the numbers a user typed on a matrix keyboard,
and it was able to read out loud the operators and
operands through a loudspeaker, as the user
pressed the keys (without missing keystrokes or
degrading the voice quality. During the 2003±2004
academic year, the students had to implement a
chat system based on an infrared link and a
Motorola 68000. The user typed a message on
the matrix keyboard of one of the chat terminals,
in a several keystrokes-per-symbol fashion (as in
mobile SMS phones); the typed message was
transmitted to the other chat terminal that
displayed the message. The infrared commun-
ication was based on a simple serial protocol.

METHODOLOGY DESCRIPTION

The assessment methodology proposed in this
paper is made up of three main steps:

. A quantitative analysis of the relationship
between the assigned grades and certain soft-
ware features (using automatic tools) in order to
determine which features characterize high-
quality software. In this analysis, the relevance
of each feature is obtained by computing the
Pearson correlation between the feature's values

that were automatically measured in each stu-
dent program and the numeric grades assigned
by the instructors to these programs. As a result
of the analysis, a general vector of feature
relevance is obtained. Section 3.1 will describe
more in detail the computation of the relevance
of each feature.

. A discrepancy analysis. In this step, the same
numeric analysis of feature relevance is carried
out only for the grades assigned by each instruc-
tor, obtaining one specific relevance vector per
instructor. The differences between the general
relevance vector and specific ones or between
each pair of instructors' vectors, reveal the
criteria discrepancies. Section 3.2 will provide
the mathematical description of this analysis.

. A discrepancy reduction task. In order to reduce
these discrepancies, a new detailed evaluation
criterion must be achieved with the consensus of
all instructors. In this process, the general rele-
vance vector (computed in the first step) should
be considered as the starting point for discussion
and agreement. In addition to this new criterion,
automatic tools must assist instructors when
grading. Section 3.3 will provide the description
of the discrepancy reduction we have obtained
when using this methodology.

Quantitative software feature analysis
It is not easy to make a precise definition of

software quality, although experienced instructors
are able to estimate software quality and classify
programs in terms of it. To avoid the difficulties
of an explicit formal definition, one can use the final
grades assigned by instructors in previous academic
courses as a source of expert knowledge 1.

There are many quantifiable features that can be
computed on a program which could be related to
software quality. In this step of the methodology, a
large set of characteristics is gathered and their
relevance is computed according to the grades of
the instructors, using the automatic tools imple-
mented as described in 1. Up to 48 basic features of
programs have been analyzed:

. The use of CPU resources: that is, the efficient
use of the data and address registers, the set of
available instructions, the diversity of addressing
modes . . .

. The data structures used by the programmer: the
number of declared variables, the number of
constants, tables or messages . . . which help
the programmer provide an elegant solution

. The structure of the code: such as the number
and average length of the subroutines (or the
interrupt service routine), the average number of
exit points and entry points per subroutine, the
average and the maximal length of a jump . . .
which make the programming code easier to
read and maintain.

. The comments inserted in the programming code:
line comments, block comments . . . which also
improve the readability of the code.
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Using the data collected in the 2002±2003
academic year, we computed the relevance of
each feature as the Pearson correlation coefficient
between the numeric values of each feature and the
numeric grades assigned by the instructors. This
way we obtained one coefficient or relevance value
for each feature. The Pearson formula is:

Cf �
P �PP

p�1 Ffp � Gp ÿ
PP

p�1 Ffp

� �
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(1)

where coefficient Cf is the relevance coefficient of
feature f, Ffp is the value of this feature f that was
automatically measured in program p, Gj is the
grade assigned to this program p by the instructors
and P is the total number of programs that have
been graded and analyzed. This coefficient Cf

measures the relative importance of each feature
f: it tells you which values of feature f characterize
the best programs, and which ones are more
common in the worst ones.

This relevance coefficient ranges from ÿ1 (the
student programs with a higher value in the feature
have always received the lower grades and vice
versa) to +1 (the student programs with a higher
value in the feature have always received the higher
grades and vice versa). When the absolute value of
the relevance is close to 0, the feature and the
grades are uncorrelated: the feature is not relevant
in terms of software quality, so we can discard it.

Table 1 shows some feature values and the
grades of a few student programs, and the instruc-
tors that graded these programs (in a 0±100 scale).

F1 is the feature called `Number of subroutines
included in each program' and F2 is `Average
length of jumps in each program'. The table
shows that the first student team included only 7
subroutines in their program and their jumps
averaged 40 lines per jump. When comparing the
whole sequence of values of F1 (7, 8, 25, 20, . . . )
and the corresponding numeric grades assigned by
the instructors (75, 70, 95, 92, . . . ), we find a
positive correlation between feature F1 and the
grade: the students with a higher F1 have generally
obtained a higher grade, and the students with a
lower F1 have generally received a lower grade.
However, the behavior of feature F2 is just the
opposite (negative correlation): the higher the F2
value, the lower the grade. Table 2 shows the
relevance of the most important features according
to the final numeric grades. According to Table 2,
F1 and F2 are two of the most relevant features for
identifying high-quality programs.

The Pearson coefficient does not depend on the
mean or the range of the feature values (this is an
important property for a feature relevance estima-
tor because, otherwise, the relevance of different
features could not be compared), it does not
depend on the average numeric grade (otherwise,
as the proposed project changes from year to year,
the results could be affected by a certain bias in one
specific academic year, and the relevance vectors of
two academic years could not be compared), and it
is also invariant to any linear transformation of
them.

When computing the relevance of a software
feature according to the final grades assigned to
the student programs, we are gathering informa-
tion on how the values of these features affect the
grades. From this computation, we can extract
numeric information on which are the most rele-
vant aspects of a software program according to
the average instructor and, so, what has been the
general grading criterion of the instructors.

Discrepancy analysis
From the software feature analysis performed in

the previous section, we obtained a relevance value
Cf for each feature considered in the study. In this
section, we describe how to use this feature rele-
vance values to analyze the evaluation discrepan-
cies between instructors.

Table 1. A subset of the data used for computing the relevance
of two features F1 and F2, according to the grades assigned by

the instructors

Feature values
Student Team
Code F1 F2 . . . Grade Instructor

1 7 40 . . . 75 I5
2 8 45 70 I5
3 25 15 . . . 95 I6
4 20 21 92 I7
. . . . . . . . . . . . . . . . . .

Table 2. Relevance of the main features in 2002±2003.

Feature category Feature name (f) Feature relevance Cf

CPU resources Complex addressing modes 0.19
Number of instructions 0.53

Data structures Number of complex data structures 0.19
Code structure Number of subroutines (F1) 0.48

Number of exit points per subroutine ÿ0.15
Number of interlaced subroutines ÿ0.26
Average length of jumps (F2) ÿ0.32

Comments Number of commented lines ÿ0.18
Lines of code Number of lines of code 0.55
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By compiling the feature relevance values in a
vector,weobtain the General CriteriaVector (GCV):

GCV � �C1;C2; . . . ;Cf ; . . . ;CN� �2�
where Cf is the relevance of feature f and N is the
number of automatically measured features
considered in the study. It is important to notice
that, as mentioned above, the components of this
GCV have been computed by taking into account
all the software programs graded by the instruc-
tors. The values of the main components Cf of this
vector were presented in Table 2.

For every Instructor i, it is also possible to define
a specific Instructor Criteria Vector (ICVi) by
computing the relevance of every feature only on
the software programs graded by that instructor:

ICVi � �Ci1;Ci2; . . . ;Cif ; . . . ;CiN� �3�
Cif is the relevance of feature f according to the
grades assigned by Instructor i to the subset of
programs that were graded by him or her, and N is,
again, the number of features.

For computing the discrepancy between one
instructor and the others, we propose Equation
4, where PCi(ICVi,GCV) is a new Pearson coeffi-
cient that now correlates vector ICVi (ICV of
Instructor i) and vector GCV, in order to find
out whether they are similar or not. As the correla-
tion ranges from ÿ1 to +1, the discrepancy
measurement ranges from 0 (no discrepancy) to
+1 (highest discrepancy).

Discrepancy�ICVi;GCV� � �1ÿ PCi�ICVi;GCV��
2

�4�
No discrepancy means that both the most relevant
features and the least relevant ones according to
Instructor i are exactly the same as those of an
average instructor. If the discrepancy were as high
as +1, the most relevant features for Instructor i
would be the less relevant ones according to the
general criterion and vice versa. An intermediate
value (0.5) shows that half of the more relevant (or
irrelevant) features according to Instructor i were
considered as irrelevant (or relevant) by the others
(or, the other way around, only half of the relevant
and irrelevant features according to the general
criterion of the instructors were also regarded the
same way by Instructor i).

Table 3 shows the discrepancies between ICVi

and GCV for the instructors involved in the 2002±
2003 academic year.

The main conclusions that can be drawn from
these results are:

. As the discrepancy ranges only from 0 to 1, the
discrepancies are rather high. These figures
reveal important differences in the evaluation
criteria applied by each instructor.

. In Table 3, one can distinguish several types of
instructors:
± In 2002±2003, I10, I11, I7 and I8 were new

instructors in this complex PBL course. This
fact can explain why I10 and I11 exhibit
important discrepancies.

± The remaining instructors (I5, I6 and I9),
although having greater experience in this
course, had evaluation criteria that also exhib-
ited important differences.

± The reasons for these differences can be found
in the different attention that some instructors
have paid to some software quality features
that were considered very relevant (or abso-
lutely irrelevant) by most of the instructors.
For example, the relevance of the feature
called `number of subroutines' for I6 is very
high (0.40), but for I11 is irrelevant (0.03). In
this case, I11 has not paid enough attention to
this aspect of software quality.

These results suggest an important warning: there
are significant discrepancies in the evaluation
criteria applied by instructors, which is not a
desirable situation. Because of this, instructors
decided to make a significant effort to address
this problem by consensus in the following
academic year.

As mentioned in the introduction, the grading
discrepancies have been traditionally analyzed by
computing the average grade assigned by each
instructor. Table 4 shows these average grades
per instructor in the 2002±2003 academic year.

From this analysis, one could think that I5, I7
and I8 are the instructors that show the higher
discrepancies. However, we need to take into
account that the distribution of the students
among the instructors was uneven (although
these instructors had to grade a randomly selected
subset of students, the sample is too small to
guarantee an even distribution):

The highest grade (100 in our grading system,

Table 3. Discrepancy between each Instructor Criteria Vector and the General Criteria Vector

I5 I6 I7 I8 I9 I10 I11

Discrepancy between ICVs and GCV 0.17 0.23 0.21 0.24 0.15 0.33 0.58

Table 4. Average grades given by every instructor in the 2002±2003 academic year, on a 0 to 100 scale

I5 I6 I7 I8 I9 I10 I11 GLOBAL

Average grade in a 0 to 100 scale 72.6 75.4 79.9 80.6 75.7 73.5 74.9 76.0
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corresponding to the top 10% students) is assigned
by consensus of all instructors: none of the
students that were examined by I5 achieved this
highest grade after the consensus. However, the
percentage of students achieving the highest grade
was as high as 15.2% for other instructors.

The percentage of students that failed the exam-
ination (also after a general consensus) varies from
as low as 0% (for the students examined by I7) to
as high as 10.0% (I5).

The percentage of students that implemented an
improved system (not just the basic one proposed
in the assignment) also varies greatly from the
instructors that examined only a few improved
projects (38.5% for I11 and 50% for I10) to the
instructor with more improved systems to grade
(85.7% for I7).

Finally, the average grade due to these improve-
ments is 14.7 for I8, but only 10.0 for I10 (a
consensus was also built upon how to grade these
improvements). These objective figures show that
I8 graded some of the best systems, systems that
were much better than those graded by I10.

These figures could explain that I5 had to assign
the lowest average grades, and why I8 and I7
assigned the highest ones, but no significant grad-
ing discrepancy has been detected (as compared to
GCV). However, the results for I10 and I11 may
not be as coherent, because they seem to have
examined the worst students. Average grades of
I10 and I11 are very close to the global average
grade, but their criteria have been very different

from the rest (Table 4). This problem may be
frequent in PBL courses where instructors can
focus on different aspects when grading multi-
disciplinary projects

With the discrepancy analysis strategy proposed
in this paper (supported by automatic tools), it is
possible to make a detailed analysis to detect the
real causes of these disagreements (not just detect
disagreements). These differences not only appear
in the average grade but also in the relevance or
importance assigned to each feature by one
instructor. It is possible to analyze which coeffi-
cients (feature relevance) are affecting the differ-
ence between criteria vectors in a greater way.

Achieving a consensus on a new detailed evaluation
criteria

After the analysis of 2002±2003 academic year,
the instructors analyzed the results and suggested
several solutions to this problem.

The first was to build a new consensus on
evaluation criteria: what features should be
judged more important (as providing the best
information related to software quality) and what
is their relevance. For this analysis, instructors
accounted for the GCV (General Criteria Vector)
obtained from the results. This GCV gathers the
contribution of the complementary backgrounds
of every instructor. In their collective opinion, the
most important features were the number, length
and structure of the subroutines, the use of

Fig. 1. A simplified example of a detailed evaluation sheet of LSED (Laboratory of Digital Electronic Systems).
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complex data structures or addressing modes, and
the number of comments in the code.

Secondly, instructors defined a detailed evalua-
tion sheet (0) by consensus. The global evaluation
was ranged in a 0±100 scale but included many
evaluation items with smaller scales (0±3, 0±5, etc).
The granularity of these evaluation criteria
increases the objectivity of the evaluation process.
This sheet or rubric is offered to all the instructors
as a guide (not as a rule) for the grading process.

APPLICATION TO A NEW ACADEMIC
COURSE AND DISCUSSION

In the 2003±2004 academic year, the instructors
used the automatic tools developed in the previous
analysis to supervise the students though the
course (for detecting bad programming habits or
errors). Two analyses of the students' software
were made and two brief reports on the software
characteristics of each team (Table 5) were sent to
instructors, including the relevance of each char-
acteristic (as defined by consensus the previous
year). The first analysis was performed after six
weeks; the target was allowing the instructor to
give feedback to the students on their coding

abilities. The second analysis was carried out
after ten weeks, at the end of the semester, just
before grading: then the target was to help the
instructor during the evaluation process. These
two analyses were possible with a very low work-
load, thanks to the automatic tools developed in
the previous academic year.

In Table 6, the discrepancies between ICVs
(Instructor Criteria Vectors) and GCV (General
Criteria Vector) for 2002±2003 and 2003±2004
academic years are shown.

From these results, one can conclude that:

. First, in 2003±2004 there were smaller discre-
pancies in the evaluation criteria when com-
pared to 2002±2003 (a 62% decrease, from 0.27
to 0.10). In the second year there were no
differences greater than 0.50 and four instruc-
tors were below average. The standard deviation
was also lower (0.15 versus 0.04) and some
significant differences seen in the previous year
were avoided in 2003±2004.

. Regarding the instructors that were involved in
both academic years, there is a reduction in their
discrepancy to the general criteria. This reduc-
tion was enabled by the consensus achieved. In
addition to this consensus, the automatic analy-
sis of software quality also helped to reduce the

Table 6. Discrepancies between each ICV and GCV for 2002±2003 and 2003±2004

Average
discrepancy I1 I2 I4 I5 I6 I7 I8 I9 I10 I11

ICVs±GCV
(2002±2003)

0.27 0.17 0.23 0.21 0.24 0.15 0.33 0.58

ICVs±GCV
(2003±2004)

0.10 0.09 0.11 0.11 0.03 0.15 0.07 0.07 0.18

Table 5. A sample of automatic report on software quality

Team code: VT-11

Feature Name Measured feature value Mean � Deviation

Total number of lines in the file 934 804 � 123.5
Lines of codeÐwith actual code 490 460.8 � 25.65

Software Quality Feature Name Measured feature value Mean � Deviation

Relative use of indexed addressing mode 0.19 0.25 � 0.24
Relative use of predecrement/postincrement mode 0.73 1.62 � 0.59
Number of different instructions 47 41.2 � 2.85
Number of complex data structures 11 7.3 � 2.85
Number of constants 35 14.5 � 19.47
Use of `magic numbers' 0 0.04 � 0.04
Length of Interruption/Main routines 67 82 � 16.15
Average subroutine length 17.65 18.65 � 0.95
Number of subroutines 27 21.3 � 4.27
Number of interlaced subroutines 0 0.76 � 0.72
Length of the longest subroutine 54 91.3 � 15.2
Number of RTS per Subroutine 1 1.01 � 0.03
Average jump length 9.67 13.86 � 3.98
Maximum jump length 41 62 � 19.95
Relative number of comments 0.32 0.3 � 0.03
Relative number of lines with comments 0.02 0.37 � 0.32
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grading discrepancies since:
± Software reports included the main feature

values of each team with the relevance of
each feature (in the general criteria). This
method was an efficient way of reminding
the instructors of the grading consensus.

± Every report also included the average value
of each software feature for all the teams
involved in the course. This information
provided the instructor with a global view of
all the students' teams, and this view allowed
the instructor to put the evaluated team in the
context of the whole set of teams.

± The intermediate analysis allowed instructors
to test the automatic tools before the final
grading, increasing their confidence in them.
This confidence allowed integrating quant-
itative measurements (obtained with the auto-
matic tools) in the final grading process.
These measurements helped increase both
objectivity and uniformity in the evaluating
criteria.

The GCV (General Criteria Vector) is a very good
reference for comparing the ICVs (Instructor
Criteria Vectors): it gathers the contribution of
the complementary backgrounds of every instruc-
tor, and it is very easy to obtain (it can be
computed automatically). These are two important
advantages when comparing this method to ones
that require several instructors to assess the same
set of projects [11, 13]. In such a system, the effort
is multiplied by the number of instructors and, when
a smaller subset of instructors is considered, it is not
possible to gather the opinion of all instructors
without increasing the effort exceedingly.

By increasing the detail of the analysis, it is
possible to compute the discrepancy between
each pair of instructors. For computing the dis-
crepancy between two instructors, one can use

Equation 5 where PCij(ICVi,ICVj) is the Pearson
Correlation between ICVs of Instructor i and
Instructor j.

Discrepancy�ICVi; ICVj� � 1ÿ PCij�ICVi; ICVj�
2

�5�

Tables 7 and 8 show the discrepancies between one
instructor and another one in the two academic
years 2003±2004 and 2002±2003. The average
discrepancy between pairs of instructors decreases
54% (from 0.44 in 2002±2003 to 0.20 in
2003±2004). A t-Student statistical significance
test shows that only the criteria vectors of two
instructors in 2002±2003 were significantly and
positively correlated (p< 0.01). However, in
2003±2004 there is a set of five instructors with
such significant correlation (their figures are high-
lighted in Table 7, I4, I5, I6 and I7.

In Table 7, this set (or sub-matrix) is typed in
bold font within shadowed cells. In 2002±2003
(Table 8) it is not possible to identify a similar
set. In addition to this, there is no pair of instruc-
tors with a discrepancy that is lower than 0.20
(average discrepancy in 2003±2004). On the other
hand, in 2002±2003 there are seven pairs of instruc-
tors with a discrepancy higher than 0.50 (negative
correlation). These results also show an important
discrepancy reduction between the 2002±2003 and
2003±2004 academic years.

The proposed discrepancy measurement only
accounts for the Pearson correlation between two
vectors (Equations 4 and 5). This correlation
provides information about the similarity in the
evolution of two number sequences (feature rele-
vance sequence) not taking into account a possible
offset between both vectors. In order to consider
this factor, a similar analysis was carried out by

Table 7. Discrepancy matrix of the instructors' grading vectors in 2003±2004

2003±2004 I1 I2 I4 I5 I6 I7 I8

I1 Ð 0.23 0.25 0.11 0.31 0.18 0.18 0.29
I2 0.23 Ð 0.16 0.20 0.26 0.16 0.11 0.34

0.25 0.16 Ð 0.17 0.21 0.19 0.18 0.24
I4 0.11 0.20 0.17 Ð 0.19 0.10 0.15 0.18
I5 0.31 0.27 0.21 0.19 Ð 0.17 0.19 0.26
I6 0.18 0.16 0.19 0.10 0.17 Ð 0.14 0.14
I7 0.18 0.11 0.18 0.15 0.19 0.14 Ð 0.23
I8 0.29 0.34 0.24 0.18 0.26 0.24 0.23 Ð

Table 8. Discrepancy matrix of the instructors' grading vectors in 2002±2003

2002±2003 I5 I6 I7 I8 I9 I10 I11

I5 Ð 0.36 0.27 0.28 0.31 0.55 0.62
I6 0.36 Ð 0.49 0.45 0.47 0.39 0.66
I7 0.27 0.49 Ð 0.20 0.30 0.61 0.47
I8 0.28 0.45 0.20 Ð 0.38 0.58 0.43
I9 0.31 0.47 0.30 0.38 Ð 0.35 0.60
I10 0.55 0.39 0.61 0.58 0.35 Ð 0.66
I11 0.62 0.66 0.47 0.43 0.60 0.66 Ð
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computing the Euclidean Distance between ICVs,
obtaining two matrixes similar to Tables 7 and 8.

These results show an average 20% distance
reduction: from 0.095 in 2002±2003 to 0.075 in
2003±2004. In the 2003±2004 matrix, it is possible
to identify the same cluster of instructors (I4, I5, I6
and I7), with a distance lower than 0.075 (average
for this academic year).

As is shown, for all the measurements analyzed
in this paper, discrepancies in the evaluation
criteria have been strongly reduced. The measures
adopted by the instructors have had a significant
impact on the results.

CONCLUSIONS

In this paper, the authors propose a new meth-
odology for carrying out a detailed analysis of
grading discrepancies and their causes, including
a strategy to reduce them.

The proposed methodology is especially
designed for PBL courses in software engineering,
where the students have to develop a whole system
involving multidisciplinary knowledge. The meth-
odology is comprised of three steps:

. A quantitative analysis stage that evaluates the
relationship between the assigned grades and
certain software quality features, to determine
which features are more relevant for predicting
the quality of the student programs. In order to
do so, automatic software quality analysis tools
were developed. As a result of this analysis, a
general vector of feature relevance is obtained.

. A discrepancy analysis stage calculates the rele-
vance of software quality features for each indi-
vidual instructor and it evaluates the
discrepancies by comparing each individual
vector of feature relevance with the general
one. Discrepancy measurements based on the

Pearson Correlation and the Euclidean distance
are proposed in this case.

. A discrepancy reduction stage, based on two
initiatives: the generation of a detailed evalua-
tion criterion with the consensus of all the
instructors, and the use of automatic tools to
feed back students on their coding abilities and
help instructors in their grading process.

In order to evaluate the proposed methodology,
the first two steps were carried out during the
2002±2003 academic year. The analysis of the
differences between the general relevance vector
and every instructor's vector revealed a clear
difference of criteria as the cause of grading
discrepancies. The third step was carried out in
the 2003±2004 academic year, resulting in a 62%
reduction of the discrepancies. The cause of this
overall improvement was the combined use of the
consensus on a new detailed evaluation sheet, and
the automatic software analysis reporting tools for
feeding back the students and for helping the
instructors in the evaluation process.

An additional and more detailed analysis based
on computing the discrepancy and the Euclidean
Distance between each pair of instructor criteria
vectors also showed an important reduction of
54% and 20% in the average discrepancy and
average distance respectively. In the 2003±2004
academic year, there were five instructors out of
eight with a significantly correlated criteria set,
compared to only two instructors out of seven in
2002±2003.
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