
A High-School Programme in
Software Engineering*

BRURIA HABERMAN
Computer Science Department, Holon Institute of Technology, and
Department of Science Teaching, The Weizmann Institute of Science,P.O.B 26 Rehovot 76100, Israel.
E-mail: bruria.haberman@weizmann.ac.il

AVI COHEN
Department of Information Science, Bar-Ilan University, Ramat Gan 52900, Israel.
E-mail: Avi@CSIT.org.il

We describe a comprehensive three-year programme in Software Engineering (SE) for high-
schools which has been operated in Israel for the last two decades. The aim of the programme is to
expose young students to computing, and to motivate them to continue their academic studies in
that field. The programme has evolved over the years in accordance with the changes in the
discipline of computing. It introduces students to scientific methods, principles of design,
implementation of computer systems. Currently it consists of a three-phase modular structure:
(a) natural sciences, (b) computer science, (c) advanced specialized topics in computing. During
the third year, students are required to develop as a final assignment a comprehensive software
project, namely a computer system in a specific, specialized domain.

Keywords: Software engineering, curriculum, project development, system-level perspective,
integrative knowledge, software design skills, evaluation.

PROGRAMME IN THE MAKING

EDUCATORS have noted the importance of
teaching software designing skills to high-school
computer science students [e.g. 13, 15, 28]. During
the last two decades, a programme in Software
Engineering (SE) especially designed for high-
school level has been in operation in Israel. Since
`computing has changed dramatically over time in
ways that have a profound effect on curriculum
design and pedagogy' [1, p. 1], the programme
presented here has evolved, similarly to others,
influenced along the way by changes in computing
and the development of computer technology.

High-school education in Israel
The education system in Israel is basically

centralized and the studies in high-schools have a
uniform basic structure. The schools are classified
according to one of three tracks: general
(academic, theoretical), technological (vocational)
and agricultural. Students attend classes 32±36
hours weekly and may study up to 15 subjects at
a time. Subjects are taught in instructional units of
90 hours. Upon completion of Grade 12, students
may take the matriculation exams. The require-
ments for obtaining the current Matriculation
Certificate are 20 units in a range of 20±25; a
minimum of 15 units in compulsory subjects are
required. In addition, students who take the tech-

nological track have to be examined in 7±15 units
in technological subjects in order to get a Techno-
logical Certificate in addition to the Matriculation
Certificate.

One of the outcomes of the education system's
centralization is that programmes of all the tech-
nological sub-tracks have always had a common
modular structure, which evolved in accordance
with the development of technology. Currently, all
technological programmes consist of the following
3-phase general structure:

(a) an elective topic in natural sciences/introduc-
tion to technology sciences;

(b) a basic mandatory specialized topic;
(c) an elective advanced specialized topic.

In spite of its uniform structure, the programme
allows flexibility to some extent. It includes,
besides mandatory units, elective units, meaning
that teachers in each school are entitled to prepare
a programme according to their professional
preference that suits their students' background,
abilities, interests and needs.

The programme's evolution
Originally, The Software Engineering

programme for high-schools was uniform and
consisted of three mandatory topics: Introduction
to CS, Management Systems Analysis, Design &
Programmng (D&P) of Information Management
Systems. COBOL was chosen as a suitable
programming language to teach the implementa-* Accepted 18 October 2006.

15

Int. J. Engng Ed. Vol. 23, No. 1, pp. 15±23, 2007 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2007 TEMPUS Publications.

tion of systems of that type. Although the main
learning objectives of the software were to teach
the basics of the development and implementation
of information management systems (e.g. system
modelling and analysis, data organization, and
system's life cycle) it mostly emphasized technical
aspects of programming at the expense of discuss-
ing the basic concepts and principles of the science
of computing.

In the early 1990s, as a result of the computing
field's expansion, a special committee selected by
the Ministry of Education recommended modify-
ing and updating the curriculum. The committee
stated that advanced specialized topics should be
elective, and suggested syllabuses for three addi-
tional specialized topics: Computer Graphics,
Operating Systems and Expert Systems [4]. The
committee also recommended that students should
learn natural sciences as additional enriching
topics. However, that recommendation was
avoided by many principals who operated the
programme in their schools mostly because of:

(a) pedagogical considerationsÐthey were afraid
that learning an additional advanced scientific
topic might be a burden for the students and
might cause a cognitive overload;

(b) budget constraintsÐbased on local institu-
tional priorities and specific problems related
to management.

A significant change aimed at establishing a scien-
tific background for the program and at promot-
ing students' understanding of the scientific
method was initiated by the first author, who
served (1996±1998) as the head of the computer
science and information technology section of the
Ministry of Education. To promote the studies of
natural sciences by SE students, it was decided to
change previously mandatory management
systems analysis topic to be an elective topic
together with the natural sciences topics (physics,
chemistry, biology). Nevertheless, a 90-hour learn-
ing unit, which was part of the management
systems analysis topic and concentrated on intro-
duction to information systems implemented in a

(computing) application builder (e.g. ACCESS),
was declared mandatory for all SE students.
Consequently, since then, most of the students
who had specialized in information management
systems chose to learn the original syllabus of the
management systems analysis topic, whereas most
of the students who specialized in computer
graphics, operating systems and expert systems
instead chose to study natural sciences. Since the
science-oriented high-school studies have always
been highly appreciated by the Israeli academic
system, this change markedly promoted the status
of the SE high-school studies. As a result, there
was a significant ongoing growth in the number of
schools that decided to operate the software en-
gineering programme and in the number of
students who chose to participate in it (Fig. 1).

The next change in the programme occurred in
the early 2000s as part of substantial organ-
izational changes that were made in the technolo-
gical track. The Ministry of Education decided to
reduce the gap between the general (academic,
theoretical) track and the technological track to
enable student movement between tracks. The
underlying objective was to motivate science-
oriented students in the academic track to specia-
lize in advanced technology topics. The need for an
adequate scientific background for taking the
technological track was noted, and all the techno-
logical sub-track programmes were reorganized in
a common modular science-based structure,
previously described. Specifically, changes were
made in the software engineering programme: the
management systems analysis elective topic and the
mandatory introduction to the information systems
learning unit were removed and the programme
consisted of the following components:

(a) an elective topic in natural sciences/introduc-
tion to technology sciences;

(b) computer science;
(c) an elective advanced specialized topic in com-

puter science.

As a result, the programme was now based on
scientific foundations and can be viewed as an

Fig. 1. Number of schools/students attending the SE programme (Grade 10±12)

B. Haberman and A. Cohen16

extension of the computer science programme
described in [13, 14]. In addition, the second
author, who currently serves as the head of the
computer science and information technology
section in the Ministry of Education, decided to
extend the programme with new elective specia-
lized topics, the aim being to reflect and incorp-
orate the latest developments in computing
technology: XML Web Services and D&P of
Network Systems.

Currently, the target population of the software
engineering programme consists of:

(1) students from the technological track who
decided in advance to specialize in computing;

(2) students from the general-academic track who
chose to learn computer science as an elective
topic and became interested in expanding their
knowledge of the subject.

Further studies
The SE graduate students may continue in a

special study track: a one-year programme
towards achieving a SE technician diploma, or a
two-year programme towards a SE practical engi-
neer diploma. Graduates of the two-year continua-
tion programme may get accreditation in various
academic computing studies, depending on their
achievements (e.g. B.Sc. in computer science or
software engineering).

DESCRIPTION OF THE PROGRAMME

The Joint Task Force on Computing Curricula
2001 stated the following guidelines:

Computer science, after all, is an ever-expanding field
that includes many activities beyond programming.
Courses that emphasize only this one aspect fail to let
students experience the many other areas and styles of
thought that are part of computer science as a whole
[1, p. 35].

Because of the importance of computer systems and
the wide applicability of computer-based skills, intro-
ductory computer science experience should certainly
expose students to the design, construction, and
application of computer systems and offer them
training in skills that have demonstrated utility. [1,
p. 26].

The software engineering programme for high-
schools presented here was developed following a
similar pedagogical approach.

Objectives and underlying principles
The main goal of the programme is to open a

window for young students into computing, and to
motivate them to continue their academic studies
in this field. The programme was not designed to
train students to become software professionals;
instead, its aim is to expose the students to a
fundamental scientific domain whose principles
are characteristic of algorithmic thinking as well
as system-level perception. It introduces the
students to a sort of `high-level scientific language'

for algorithmic problem solving, knowledge
representation and formalization of processes.
Specifically, its aim is to:

(a) enhance students' problem-solving abilities
and reasoning skills;

(b) promote their creativity;
(c) help them gain a system-level perspective and

a basic understanding of larger systems and
their organization principles;

(d) enable them to construct an integrative and
generative knowledge of a variety of computer
science topics.

Since educators found a large disparity between
the thinking habits and attitudes toward system
development processes of young students and
those of expert software developers [e.g. 12], it
is important that students (even if not trained
specifically to become software professionals)
should `acquire correct programming habits, suit-
able for the development of large complex
programmes. . . . [so that they will be able to]
cope with developing large software systems in
the future' [15, p. 26].

The following underlying principles of the
CC2001 curriculum reflect the objectives and the
pedagogical approach of the presented
programme:

. System-level perspectiveÐGraduates must
develop a high-level understanding of systems
as a whole: the structure of computer systems
and the processes involved in their construction
and analysis.

. Understanding the interplay between theory and
practiceÐGraduates must understand not only
the theoretical underpinnings of the discipline
but also how that theory influences practice.
Accordingly, conceptual and experimental
issues should be interwoven throughout the
programme [13].

. Familiarity with common principlesÐGradu-
ates must recognize recurring concepts and prin-
ciples such as recurring themes, e.g. abstraction,
complexity, modularity and reusability.

. Integrative knowledgeÐTo ensure that gradu-
ates can successfully apply the knowledge they
have gained throughout the programme, they
must be involved in at least one substantial
software project.

. Capabilities and skillsÐGraduates should
develop a wide range of cognitive capabilities
and practical skills, some of them related to
computer science and others of a general nature,
applicable in many other contexts as well.

Components of the programme
The three-phase programme is modular and

flexible and can easily be adapted to various
student populations (e.g. diverse classes and indi-
vidual students in heterogeneous classes). Phases A
and B consist of 3-unit modules (270 hours) or
5-unit modules (450 hours) each of which is
composed of compulsory and elective 90-hour

A High-School Programme in Software Engineering 17

instructional units. Phase C is a 5-unit complete
module of compulsory units. Its flexibility is
achieved by final projects which students may
develop in different levels (1-unit, 3-units, or
5-units). The flexibility of the programme allows
students to take matriculation exams at different
levels that are suited to their learning abilities. To
address successfully the requirements of the SE
track, students must pass three matriculation
exams (one of each phase) consisting of 7±15
units.

Phase AÐnatural sciences
According to the recommendations of Comput-

ing Curricula 2001 [1] a successful computer
science graduate needs skills beyond the technical
ones found in the CS body of knowledge. For
example:

. computer science students must have a certain
level of mathematical sophistication, familiarity
with the methods of science . . .

. Students must develop an understanding of the
scientific method and experience this mode of
inquiry . . .

. Students may acquire their scientific perspective
in a variety of domains, depending on pro-
gramme objectives and their area of interest [1,
pp. 40±41].

This approach is reflected in the SE programme
presented here, since students participating in the
programme are obliged to study 3±5 units of
mathematics and at least one advanced scientific
subject (e.g. physics, chemistry, biology) or a basic
subjectÐintroduction to technology sciences,
following a programme that was specially designed
for `non-scientifically oriented' students. Actually,
most SE students choose to study mathematics at
advanced level (4±5 units).

Phase BÐcomputer science
During the last decade a new programme in

computer science has been taught in Israeli high-
schools. The programme emphasizes the founda-
tions of algorithmic thinking, and introduces CS
concepts and problem-solving methods indepen-
dently of specific computers and programming
languages, along with the practical implementation
of those concepts and methods in programming
languages. The 5-unit (450 hours) programme is
modular and includes two mandatory modules:
Fundamentals of Computer Science (2-units; 180
hours) and Software Design (1-unit; 90 hours), and
two elective modules: Second Paradigm/Applica-
tions (1-unit; 90 hours) and Theory (1-unit; 90
hours). The underlying principles and pedagogical
framework of the programme are presented in [13];
the curriculum and course syllabuses are presented
in [14].

The advanced study unit of the curriculum,
Software Design, is actually an introductory
course in software engineering. It aims at taking
the students beyond stand-alone algorithms, and

introduces them to various aspects of software
systems design. One important goal of the unit is
to demonstrate `full integration of the conceptual
material and the actual hands-on experience in
designing and constructing a real system' [15].
After studying this unit the students are better
prepared to proceed to a higher level of system
design and development.

Phase CÐSpecialization in an advanced topic:
Phase C is designed to enable students to achieve

expertise in an advanced computer science topic.
The specialization phase is called: Design &
Programming (D&P) of Software Systems, since
it is designed to teach, in addition to theoretical
principles, design methods and implementation
tools that are suitable for the specific advanced
topic. Currently the programme suggests six alter-
native topics: Information Management Systems,
Computer Graphics, Operating Systems, Expert
Systems, Web Services and Network Systems.

Students study the advanced topic for 450 hours
during the two last years of high-school. Theore-
tical principles and practical experimental issues
are introduced and practiced in the laboratory.
The studies include the learning of a programming
language/environment that is suitable for imple-
menting on-topic theoretical material. During the
third year, students are required to develop as a
final assignment a comprehensive software project.

DEVELOPING SOFTWARE
DESIGNING SKILLS

The Software Engineering 2004 Curriculum
states that incorporating real-world elements (e.g.
case studies, project-based courses and capstone
courses) into the curriculum is necessary to enable
effective learning of software engineering skills
and concepts [3]. Specifically, capstone projects
have been recognized as an essential part of SE
education [7, 10, 22].

The academic CS community believes that the
role of projects in the curriculum is of great
importance, since it is a means for effective
learning, and also demonstrates the student's
mastery of skills appropriate to professional
practice [11, 22, 28]. Project development enables
students to construct knowledge and to enhance
cognitive and reflective skills; it also encourages
the student to become a creative and independent
learner. In addition, it enables students to
encounter real life experience as a project devel-
oper [9, 15, 25].

Software design skills and problem solving abil-
ities are gradually developed during the studies of
the presented programme:

(1) The Second Paradigm/Applications module of
the CS programme (phase B) requires a mini-
project in which the student has to utilize
specific knowledge acquired studying this
module.

B. Haberman and A. Cohen18

(2) When studying the Software Design module of
the CS programme, students solve problems
that focus on various aspects of design.

(3) During the last year of the specialization
studies (phase C) students develop a final
projectÐa software system typical of the
learned topicÐwhere they apply, in addition
to the design methods and implementation
tools that are suitable for an advanced topic,
the integrated knowledge that they have
acquired during their three years of study.

The projects are developed in the following
stages:

(1) choosing a problem;
(2) analyzing and planning;
(3) programming and testing.

In the end, the students have to submit a working
system and a written report that describes the
problem and documents the outcomes of each
stage of the development process; it must include
a documented code. The role of the teacher is to
guide and to control the students' progress in
various stages of developing the project, for
example:

(1) checking if the product addresses the initial
specification and requirements;

(2) checking if the student progresses according to
a planned time table;

(3) assessing the use of design methods, and
assessing the quality of the programming [20,
24, 25, 29].

In order to support project-based learning and the
instruction of CS/SE, didactic approaches and
appropriate learning materials were developed
[13, 21, 24, 27]. Workshops for in-service teachers
were conducted to discuss pedagogical aspects of
project-based learning, such as students' difficul-
ties, project development, and assessment issues
[26].

ASSESSMENT

The software engineering programme for high-
schools has been operating in Israel for the last two
decades. Figure 1 illustrates how the programme
has been disseminated in the last few years. Here

we will refer to the following aspects of the
programme's implementation:

(a) advantages and disadvantages of the pro-
gramme;

(b) its outcomes in terms of the students' acquired
knowledge.

The assessment of the students' knowledge has
been formally conducted by the Ministry of
Education in the form of matriculation exams. In
addition, there is also a large body of research that
has been conducted by education researchers
aimed at evaluating learning materials and their
influence on students' performance, as well as
inquiring about the students' conceptual know-
ledge [6, 8, 15, 16, 17, 18, 19, 20, 21, 24, 25, 27,
29].

Formal assessment of students' performance
According to instructions of the Ministry of

Education in Israel, the formal assessment of the
students' performance is based on a combination
of traditional (i.e. written exams) and alternative
evaluation (i.e. project assignments).

Students' achievements in written exams
Generally, the aim of the written matriculation

exams in computer science is to assess the students'
problem-solving performance. It includes two
types of open questions that require students to
provide solutions to given problems or to analyze
given solutions. Table 1 illustrates the students'
achievements in written matriculation exams in the
last three years (2003±2005) in the basic module
(fundamentals of computer science) and in the
advanced module (software design and theoretical
subject). The distribution of the grades for each
year is slightly skewed right with a slightly higher
average grade in the basic exam than in the corres-
ponding average grade in the advanced exam. The
findings indicate that the students acquired the
desired knowledge and performed satisfactorily in
the problem-solving assignments.

Software design and project development
According to the Ministry of Education in

Israel, students who participate in the programme
are required to develop individual projects in some
learning modules instead of a traditional matricu-
lation exam:

Table 1. Students' achievements in written matriculation exams in computer science

2003 2004 2005

Module Basic Advanced Basic Advanced Basic Advanced

No. of Students 12107 8418 11220 7297 10781 6679
Failed (Grade: 0±54) 15% 18% 11% 17% 9% 20%
High Achievers (Grade: 85±100) 40% 27% 52% 31% 55% 39%
Average 75 71 79 72 84 72
Median 80 74 85 76 93 89
STDV 20.1 19.1 19.1 19.4 20.3 23.2

A High-School Programme in Software Engineering 19

(a) a mini-project in which the student has to
utilize the specific knowledge acquired study-
ing the Second Paradigm/Applications module
of the computer science programme;

(b) a final comprehensive software project in the
learned specialized domain. External exami-
ners evaluate the projects using analytical
rubrics especially designed for each specialized
topic [5]. For example, the rubric for evaluat-
ing projects in the Web Services specialization
domain is as in the box following:

The study findings indicated that students are
highly motivated to do this kind of assignment
and usually prefer to develop projects rather than
to complete a written exam [20, 25].

The average grades of the mini-projects as well
as the final projects are usually very high compared
with the average grades of the written matricula-
tion exams. For example, in 2005 the average
grades were 94.8 for the mini-projects and 92.9
for the final projectsÐmuch higher than the cor-
responding average grades of the written exams
(basic modulesÐ84; advanced modulesÐ72). The
differences in the achievements in the traditional
exam vs. the projects are due to the different
characteristics of the traditional and the alterna-
tive evaluation:

(a) the projects are gradually developed in a non-
stressed environment (mostly at home) and
under the mentoring of the teachers;

(b) students who attend a traditional written exam

cannot consider dropping the course if they do
not pass the exam. In contrast, students who
fail, for any reason, to produce a final working
project may decide to drop the course and
therefore do not take the exam.

Academic assessment of students' conceptual
knowledge

Qualitative research studies have been
conducted aimed at identifying students' difficul-
ties and assessing their CS conceptual knowledge.
Students' perceptions of basic computing concepts
(e.g. variables [19], and correctness [8]) as well as
advanced concepts were investigated (e.g. recur-
sion [18], abstraction [15, 21, 29], efficiency [16, 17]
and non-determinism [6]). The study findings
served as the basis for didactic recommendations
and curricular enhancements. For example,
Haberman and Scherz (2002) investigated
students' conception of abstract data types
(ADTs). The findings indicated that the students
demonstrated an integrative knowledge of ADT
boxes as programming tools, and employed unique
autonomous problem-solving strategies when
using ADTs in programming [21]. Ragonis,
Shapiro, Ben-Ari and Scherz (1998) evaluated
students' conceptual knowledge of expert systems
(one specialized topic of the SE programme).
Evaluation of the course showed that it was
successfully implemented and found suitable for
the intended student population. The students'
achievements were high, and the main concepts
were successfully acquired [27].

Qualitative research studies have also been
conducted aimed at (a) evaluating the software
designing skills developed by students, and (b)
identifying the students' project development stra-
tegies. For example, Gal-Ezer and Zeldes (2000)
found that high-school students who studied the
software design module exhibited difficulties in
designing general top-down solutions for a given
problem; instead, they preferred to deal with
specific examples. The students, however, were
able to reuse general structures to distinguish
complex tools from basic tools [15]. Scherz and
Haberman (2005) found that students who used
problem-solving organizing tools in developing
their projects were more likely to use abstract
data types that resulted in a structured and well-
organized development process [29]. Pollack and
Scherz (2003) investigated the influence of suppor-
tive learning materials on high-school students'
motivation, performance and final products
regarding the projects in computer science that
they developed. The study findings indicated that
students who tended to perceive projects as a
school activity were mainly motivated by outside
rewards such as the projects' external assessment.
Moreover, students who did not use supporting
materials for project-based learning tended to
modify the original problem according to their
ability to develop a proper project [24, 25].

Rubric for evaluating projects in the Web
Services specialization domain

. Project portfolio 30/100 points
* Readability of project files: 2 pt.
* Description of the system and its purposes:

8 pt.
* Description of database, modules, relations

and data flow: 8 pt.
* Site map and description: 6 pt.
* Users guide: 6 pt.

. Programming 55/100 points
* Readability of software: 3 pt.
* Modularity, classes and structure: 5 pt.
* SQL queries: 10 pt.
* Using ASP.NET: 10 pt.
* Using Web Services: 10 pt.
* Interfaces and their computability to

system demands: 9 pt.
* Visualization and human engineering: 5 pt.
* Originality, creativity, and special sophisti-

cation: 3 pt.
. Demonstration 15/100 points

* At examination time the project must
work, otherwise the student will FAIL

* The student must be familiar with every
aspect of the project.

B. Haberman and A. Cohen20

General evaluation of the programme
The Computing Curricula 2004 Overview

Report discusses the similarities and differences
of CS and SE academic curricula:

Both CS and SE curricula begin by requiring a
foundation in programming fundamentals basic CS
theory. They diverge in what they focus on beyond
those core elements. CS programmes tend to keep the
core small and then expect students to specialize
selectively in one or two of areas of CS concentration
(such as systems, networking, database, artificial
intelligence, theory, etc.). In contrast, SE programmes
generally provide less freedom of choice about
advanced computer science topics, and instead
expect students to focus on a range of topics that
are essential to the SE agenda (problem modelling and
analysis, software design, software verification and
validation, software quality, software process, soft-
ware management, and so on [2, p. 38].

According to this distinction, the programme
presented here has the characteristics of an
academic CS programme since it is composed of
a fundamental core and offers the students the
possibility of specializing in one specific advanced
CS topic. Moreover, the SE programme for high
school does not include formal topics that are
essential for the academic SE programmes (e.g.
software verification and validation, software
quality).

We believe that the programme manages to
expose high-school students to the field of comput-
ing and enables them to experience software design
and development processes. However, the settings
of the project development assignment have
several shortcomings:

. Usually the projects' performances provide evi-
dence of students' high programming skills and
their in-depth investment in developing the pro-
ject; however, the development processes do not
resemble actual research and development
industrial processes, and the products are
rarely applicable to real-world situations.

. Usually, the specifications of the product are not
provided by a real external client.

. The teachers are not members of the SE com-
munity of practice, and they usually lack prac-
tical industrial experience.

. The school labs are far too inadequate to pro-
vide the infrastructures characteristic of high-
tech industry.

. The students develop individual projects (team-
projects are not approved for formal external
evaluation by the Ministry of Education). How-
ever, as long as this policy continues, teachers
may apply alternative solutions to initiate
group-work. For example, they may encourage
students to perform peer-assessment of their
intermediate products and the development of
the final projects. Moreover, the teachers may
incorporate project-based classes into their
teaching [12, 13].

CONCLUDING REMARKS

In this paper we presented a three-year software
engineering programme for high-school students.
The main goal of the programme is to open a
window of opportunity for young students in
computing, and to motivate them to continue
their academic studies in this discipline.

The study findings indicated that the
programme succeeds in exposing the students to
a fundamental scientific domain whose principles
are characteristic of algorithmic thinking as well as
system-level perception. Moreover, the final
project assignment, which is part of the presented
programme, enables high-school students to
experience software design and the processes of
development, as well as to acquire a system-based
perception of software engineering.

However, although the programme was not
designed to train students to become software
professionals, it is recommended that the students
be exposed, as part of their studies, to `real-world'
research and industrial development processes that
are related to the software engineering projects of
the high-tech industries. This can be partially
achieved, for example, by informal enrichment
meetings in which CS/SE scientists and practi-
tioners will give appropriate lectures to the
students [30]. In addition, `visiting the industry'
tours should be encouraged.

Moreover, we believe that it is most important
that the high-tech industry will take an active part
in educating potential newcomers, and will contri-
bute to making the software engineering profes-
sional domain more attractive, especially in view of
the last high-tech crises.

REFERENCES

1. ACM/IEEE Joint Task Force on Computing Curricula, Final Report, December, 2001.
2. ACM/IEEE Joint Task Force on Computing Curricula, Overview Report, June, 2004.
3. ACM/IEEE Joint Task Force on Computing Curricula, Software Engineering 2004 Curriculum

Guidelines for Undergraduate Degree Programmes in Software Engineering, A Volume of the
Computing Curricula Series, August, 2004.

4. The Ministry of Education, Israel, A high-school Information Technology programme, (1997). (in
Hebrew)

5. The Ministry of Education, Israel, A high-school Software Engineering programme, (2004).
Available: http://csit.org.il (in Hebrew)

A High-School Programme in Software Engineering 21

6. M. Armoni and J. Gal-Ezer, Non-determinism in CS high school curricula. Proceedings of the FIE
2003 Conference, Boulder, CO, F2C±18ÐF2C±23 (2003).

7. L. Adams, A. Goold, K. Lynch, M. Daniels, O. Hazzan and I. Newman, Challenges in teaching
capstone courses. Proceedings of ITiCSE'03, Thessaloniki, Greece, 219±220, (2003).

8. Y. Ben-David Kolikant, Students' alternative standards for correctness. Proceedings of the First
International Computing Education Research Workshop, University of Washington, Seattle, WA,
37±43 (2005).

9. B. Bracken, Progressing from student to professional: the importance and challenges of teaching
software engineering. JCSC, 19(2), 2003, pp. 358±368.

10. A. T. Chamillard and K. A. Braun, The software engineering capstone: structure and tradeoffs.
Proceedings of SIGCSE'02, Covington, Kentucky, USA, 227±231, (2003).

11. S. Fincher, M. Petre and M.Clark, (Eds.), Computer Science Project Work Principles and
Pragmatics, Springer-Verlag, London, (2001).

12. A. E. Fluery, Students' beliefs about Pascal programming. Journal of Educational Computing
Research, 9(3), 1993, pp. 355±371.

13. J. Gal-Ezer, C. Beeri, D. Harel and A. Yehudai, A high-school programme in computer science.
Computer, 28(10), 1995, pp. 73±80.

14. J. Gal-Ezer, and D. Harel, Curriculum and course syllabi for high school CS programme.
Computer Science Education, 9(2), 1999, pp. 114±147.

15. J. Gal-Ezer and A. Zeldes, Teaching software designing skills. Computer Science Education, 10(1),
2000, pp. 25±38.

16. J. Gal-Ezer and E. Zur, The concept of `algorithm efficiency' in the high school CS curriculum.
Proceedings of the 32nd ASEE/IEEE Frontiers in Education Conference, Boston, MA, T2C1±T2C6
(2002).

17. D. Ginat, Efficiency of algorithms for programmeming beginners. Proceedings of SIGCSE'96.
Philadelphia, PA, 256±260 (1996).

18. B. Haberman and H. Averbuch, The case of base cases: Why are they so difficult to recognize?
Student difficulties with recursion. Proceedings of ITiCSE'02, Aarhus, Denmark, 84±88 (2002).

19. B. Haberman and Y. Ben-David Kolikant, Activating `black boxes' instead of opening `zippers'Ð
A method of teaching novices basic CS concepts. Proceedings of ITiCSE'01, Dublin, Ireland, 41±44
(2001).

20. B. Haberman and Z. Scherz, Abstract data types as tools for project development- High school
students' views. Journal of Computer Science Education online, January 2003. Available: http://
iste.org/sigcs/community/jcseonline/

21. B. Haberman and Z. Scherz, Evolving boxes as flexible tools for teaching high-school students
declarative and procedural aspects of logic programming. In Mittermeir, R. (ed.), From Computer
Literacy to Informatics Fundamentals, International Conference on Informatics in Secondary
Schools-Evolution and Perspectives. Lecture Notes in Computer Science, 3422, 156±165 (2005).

22. M. Holcombe, A. Stratton, S. Fincher and G. Griffiths, (Eds.), Projects in the computing
curriculum. Proceedings of the Project 98 Workshop, Springer-Verlag, London, (1998).

23. D. N. Perkins, Smart schools-from training memories to training minds, New York: The Free
Press, (2000).

24. S. Pollack and Z. Scherz, Organization of learning by computer science projects. Proceedings of
The 10th PEG conference, Tampere, Finland, 143±148, (2001).

25. S. Pollack and Z. Scherz, Supporting project development in CSÐthe effect on intrinsic and
extrinsic motivation. Journal of Computer Assisted Learning, special issue: Present into future: ICT
for learning and teaching in the 21st century (accepted for publication).

26. N. Ragonis and B. Haberman, A multi-level distance learning-based course for high school
computer science leading-teacher. Proceedings of ITiCSE'03, Thessaloniki, Greece, 224 (2003).

27. N. Ragonis, E. Shapiro, M. Ben-Ari, and Z. Scherz, Development, implementation and evaluation
of a course in expert systems for high-school students. Proceedings of ITiCSE'98, Dublin, Ireland,
300 (1998).

28. J. E. Sims-Knight and R. L. Upchurch, Teaching software design: a new approach to high school
computer science. Annual Meeting of the American Education Research Association, Atlanta, GA.,
(1993).

29. Z. Scherz and B. Haberman, Mini-projects development in computer science- Students' use of
organization tools. Informatics in Education, 4, 2005, pp. 307±319.

30. C. Yehezkel and B. Haberman, `Computer science, academia, and industry' educational project.
Proceedings of ITiCSE'05, Monte de Caparica, Portugal, 364 (2005).

Bruria Haberman received her Ph.D. degree in Science Teaching from the Weizmann
Institute of Science in 1999. Presently, she is an instructor in the Department of Computer
Science at Holon Institute of Technology. She is also a member of the computer science
team in the Department of Science Teaching in the Weizmann Institute of Science, and a
leading member of MachshavaÐthe Israeli National Centre for high school computer
science teachers. She has developed learning materials for high school level in the areas of
logic programming, artificial intelligence and algorithmic patterns. She has developed
academic programmes for undergraduate level in computer science. Her primary research
interests are computer science educational researchÐ student conceptualization of com-
puter science, as well as in-service teacher education and distance learning.

B. Haberman and A. Cohen22

Avi Cohen has a Ph.D. from Anglia Polytechnic University at the Ultarlab UK. Since 2001
he has specialized in instructional technology and Internet studies. Currently, he is the
director and superintendent-in-chief of Computer Science and Information Technology at
the Ministry of Education in Israel. In this capacity he is responsible for Computer Science
studies, curriculum, matriculation exams and authorization of CS teachers. For the last 23
years he has been a high-school teacher in Computer Science and Electronics Engineering.
He wrote three textbooks for high-school students (programmingÐCS0, 1, 2). Recently he
has been teaching in the Department of Information Science at Bar-Ilan University. His
primary research interests are XML Web Services and Web development, as well as Internet
stateless programming.

A High-School Programme in Software Engineering 23

