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Traditionally, the goals of engineering laboratory instruction have been to introduce students to
various measurement devices along with associated methods of interpreting results in the context of
experimental uncertainties. There is usually an emphasis on the demonstration of fundamental
engineering principles in applications-oriented projects. Often, theoretical engineering models are
used to compare predicted outcomes with the experimental results in order to demonstrate the
appropriateness and/or limitations of the theoretical model. When making these comparisons, the
uncertainty associated with an experiment's measurements is usually included; however, there is
seldom consideration of the uncertainty associated with the theoretical model calculations. Students
in the Mechanical Engineering (ME) program at Mississippi State University (MSU) are
applying the concept of engineering model validation using uncertainty analysis. In this paper,
their experiences are used to illustrate how this approach has been implemented in the under-
graduate laboratory classes. The methodology is developed for model validation, and a case study
from our senior mechanical engineering laboratory is presented which illustrates how the
uncertainty of the model is combined with that from the experimental result to provide a
quantification of the model's validity.
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BACKGROUND

At MSU, this model validation approach was first
implemented in the ME undergraduate laboratory
program to provide a bridge between the theore-
tical aspects of the traditional engineering courses
and the demonstration of basic principles through
experimentation. An appreciation of the errors
inherent in experimental results is critical, and
uncertainty analysis concepts are integrated into
the curriculum in an effort to quantify the validity
of the test data. This process provides a logical
methodology to interpret test results through the
application of uncertainty analysis in the planning,
design, construction, debugging, execution, data
analysis, and reporting phases of experiments [1].
Accuracy of the experiments is investigated along
with the appropriateness of a theory or model and
its simplifying assumptions. This concept is an
extension of the verification and validation
research that is currently being done for CFD
and other computational design codes [2, 3]. The
approach is communicated at undergraduate level
through a three-laboratory sequence consisting of
Experimental Orientation (EO), Experimental
Techniques I (ET I), and Experimental Techniques
II (ET II).

In the undergraduate curriculum, EO gives the
students an introduction to the use of instrumenta-
tion for basic measurements, to the acquisition and
processing of the measurement data, and to the
concept of uncertainty associated with the instru-
mentation selection and the measurement process.
The second course in the sequence, ETI, concen-
trates on identification of the key parameters
needed to guide the design of experiments using
uncertainty analysis. These concepts merge into
ETII, which provides the opportunity for students
to combine knowledge gained in both EO and ETI,
and to compare theoretical predictions with the
measured outcome. The complete description of
these courses has been presented elsewhere [4].

For the undergraduate ETII class, students
select from a range of mechanical systems. Some
of the systems are based on potential classroom
demonstration units such as a pump test stand, a
tensile test machine, or a heat exchanger appara-
tus. The mechanical system can also be applied to
modeling the physics of games such as predicting
variability in the ultimate trajectory of softballs,
water rockets, or golf balls. Or the mechanical
systems can be chosen to augment ongoing
research projects to explore the application of
uncertainty analysis in the understanding of
experimental results and associated engineering
models.* Accepted 27 July 2006.
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In the next section, some experiences from the
ETII laboratory at MSU are summarized to show
the application of model validation using experi-
mental data. Following this section, the methodol-
ogy of model validation is given along with an
example.

EXPERIENCES

One ETII project considered the prediction and
measurement of the efficiency of a residential gas
furnace. The students developed an energy balance
model for the system that included the air tempera-
ture difference from the inlet to the exit, the air
flow rate, and the natural gas flow rate and heat
input. The air temperatures were measured with
thermocouples, the air flow was measured with a
volumetric flow meter, the gas flow rate was
measured with an orifice, and the gas heating
value was found from standard tabulated values.
The uncertainty of each of these inputs was used
with model expressions to find the uncertainty of
the model predictions.

The efficiency was measured directly with a flue
gas analysis device. Initial comparisons of the
measured and predicted efficiencies were not
good, but the uncertainty for the model was
high. The controlling variable for the model uncer-
tainty was the exit temperature. The students
modified the exit temperature measurement from
a single thermocouple to a thermocouple grid to
determine the average air exit temperature with
less uncertainty. This improvement gave good
comparisons of the predicted and measured effi-
ciencies considering the uncertainties of both.

Another ETII experiment involved the use of an
alternating fatigue device to determine the fatigue
life of Aluminum 6061 T-6 for various stress levels.
The engineering model used was the standard
stress versus number of cycles to failure fatigue
chart for this material. The initial comparison of
the test and model results for this experiment was
poor. The estimated values of stress were based on
the displacement of the specimen and on the
specimen's dimensions. This approach led to
reasonably large uncertainty values for the stress.
Also, the number of cycles to failure was deter-
mined with a mechanical counter, which had an
uncertainty of 5 percent. An improvement to the
test was made by gluing a strain gage to the
specimen and by using a computer data acquisition
system to monitor the strain (stress) and to meas-
ure the number of cycles to failure. This improved
test procedure yielded results with less uncertainty
that agreed well with the published data.

METHODOLOGY

Some of the previous work related to the appli-
cation of uncertainty analysis in undergraduate
engineering laboratory courses is documented in

References 1 and 4±9. These efforts have been
directed primarily toward quantifying the uncer-
tainty of the experimental results. The methodol-
ogy for applying uncertainty analysis to
experimental results is summarized below, where
the nomenclature has been updated to the latest
accepted version.

In nearly all experiments, the measured values of
different variables are combined using a data
reduction equation (DRE) to achieve some desired
result. A general representation of a data reduction
equation is:

r � r X1;X2; :::;XJ� � �1�
where r is the experimental result determined from
J measured variables Xi. Each of the measured
variables contains systematic (fixed) and random
(varying) errors. Errors in the measured values
then propagate through the DRE, thereby gener-
ating systematic and random errors in the experi-
mental result, r. Uncertainty analysis is used to
estimate the random and systematic standard
uncertainties of the result, sr and br, respectively,
and the corresponding expanded uncertainty of the
result, Ur.

If it is assumed that the degrees of freedom for
the result are large (>10), which is very appropriate
for most engineering applications, then the ``large
sample assumption'' [6] applies and the 95 percent
confidence expression for Ur is
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The systematic standard uncertainty estimate for
each Xi variable is the root-sum-square combina-
tion of its elemental systematic standard uncertain-
ties
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where M is the number of elemental systematic
standard uncertainties for Xi and where each bij is
the standard deviation level estimate of the
systematic uncertainty in variable Xi resulting
from error source j. The standard deviation level
systematic uncertainty estimate for an error source
is usually achieved by making a 95 percent confi-
dence estimate of the limits of the error for that
source and dividing that estimate by 2 [6]. The
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second term in Equation (3) accounts for systema-
tic errors that have the same source and are
correlated. The factor bik is the covariance term
appropriate for the systematic errors that are
common between variables Xi and Xk and is
determined from [10] as

bik �
XL

��1

bi�bk� �6�

where variables Xi and Xk share L identical
systematic error sources. The random standard
uncertainty of the result is defined as

s2
r �

XJ

i�1

�2
i s2

i �7�

where si is the sample standard deviation for
variable Xi (sample standard deviation of the
mean if Xi is a mean value or sample standard
deviation if Xi is a single reading).

This same basic methodology can be applied to
the engineering model for estimating the uncer-
tainty associated with the calculated result from
the model. The engineering model has input values
that have uncertainties. These uncertainties cause
an uncertainty in the calculated result. The model
may also have an uncertainty based on how well it
matches the physics of the experiment. This addi-
tional uncertainty cannot be estimated before the
validation process and is therefore the primary
reason for doing a validation study on the engin-
eering model.

Considering the model result, m, to be a function
of K input values, Yi, as indicated by Equation (8)

m � f �Y1;Y2; . . . ;YK� �8�
the uncertainty of the model result would then be
determined from the uncertainty propagation
equation [6] as
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where �k is the derivative of the model with respect
to each input quantity Yi and the sk and bk factors
are the random and systematic standard uncertain-
ties for the model input variables. Note that
property values and empirical coefficients will
have uncertainties as well as the input variables.

To determine the validation of the model with
respect to the result of the experiment, r, a compar-
ison error, E, is defined as

E � rÿm �10�
The uncertainty associated with this comparison
error is

U2
E � U2

r �U2
m �11�

The basic concept in the validation process is a
comparison of E and UE. If jEj is less than UE,
then the comparison is within the noise level of the
uncertainty, and the level of validation of the
model is UE. If jEj is much larger than UE, then
there is probably justification for improving either
the selection of the governing equations for the
model or the initial simplifying assumptions [3]. In
this case, the sign E gives some indication of the
correction needed to the model.

Another benefit of the validation process is the
determination of how each of the sources of
uncertainty affects the uncertainty of the compar-
ison error. The uncertainty percentage contribu-
tion, UPC, for each error source is determined as

�2
i b2

i � 100
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2�i�kbik � 100
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i s2
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where the sum of all of the UPC's is 100 percent.
The factors in Equation (12) come from Equations
(3), (7), (9), and (11). These parameters show the
percentage contribution that each error source
makes on the square of the total uncertainty of
the comparison error. A review of the UPCs will
identify which uncertainties are controlling the
total uncertainty and which are having a negligible
effect. This information can be used to identify
where improvements need to be made in the
uncertainties of the experimental variables or in
the model input variables to reduce the magnitude
of the uncertainty of the comparison error.

In the next section, the validation process is
illustrated with an example experiment from the
ME laboratory course at MSU.

Example
One assignment for an ETII team was to determine
experimentally and theoretically the head loss, h, for
a straight section of a plastic pipe. The flow appa-
ratus is shown in Fig. 1. Pressure differentials across
both the orifice plate flow meter and the straight
pipe section were measured using a manometer and
a differential pressure transducer.

For the experiment, the result was the measured
head loss in the pipe, �hpr, over a range of flow
rates. For the engineering model, the following
expression was used to predict the pipe head loss,
�hpm,

�hpm � f
8L C �ho� �0:5
h i2

g�2d5
�13�

where L is the length of the pipe, C is the orifice
flow coefficient, �ho is the orifice head loss, g is
the acceleration of gravity, d is the pipe diameter,
and f is the friction factor. The Haaland relation-
ship [11] was used for the friction factor

f � 0:3086

log 6:9
Red

� �
� "

3:7d

ÿ �1:11
h in o2

�14�
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where � is the roughness of the pipe and Red is the
Reynolds number based on the pipe diameter

Red � 4�C �ho� �0:5
�d�

�15�

with � the water density and � the water viscosity.
The values of all the experiment's and the en-

gineering model's variables are given in Table 1.
Also in the table are the uncertainty estimates for
each variable in terms of millimeters of water.

The systematic standard uncertainty for the pipe
head loss came from the combination [using Equa-
tion (5)] of the elemental systematic standard
uncertainties for the pressure transducer of 2.5
mm for zero shift and 2.5 mm for the calibration
curve fit. The random standard uncertainty for the
pipe head loss was based on the standard deviation
of the mean for the 36 readings made with the
pressure transducer on each run. This value was
nominally constant for each run, so the same value
was used for all runs.

The orifice head loss systematic standard uncer-
tainty was based on the accuracy of the manometer
used for these measurements. The random stand-
ard uncertainty was estimated from the variation

of the water column during readings. The typical
variation was about �4 mm yielding an estimate of
the standard deviation of �2 mm.

The systematic standard uncertainty estimates
for the length and diameter were based on the
devices used to make the measurements, a scale
and a micrometer. The orifice was calibrated
before running the experiment using a catch
basin of known volume. The systematic standard
uncertainty for the flow coefficient is the standard
deviation of the mean for the calibration process.

The pipe wall was relatively smooth; however,
considering the variation in relative roughness esti-
mates near the smooth wall limit, this value could be
uncertain by as much as 50 percent with 95 percent
confidence. The water density and viscosity were
based on tabulated values at a water temperature of
about 291 K, but possible variation in the water
temperature of �2.8 K led to uncertainty estimates
of 7 percent for the water viscosity and 0.3 percent
for the density, both at 95 percent confidence. The
systematic standard uncertainty estimates for these
three variables were taken as one-half of the 95
percent confidence estimates.

The results for each run of the experiment and
the engineering model are given in Table 2. The

Fig. 1. Fluid friction apparatus

Table 1. Variable values and uncertainty estimates

Variable Value Systematic Standard
Uncertainty

Random Standard
Uncertainty

pipe head loss (�hpr) Variable 3.5 mm 1.0 mm
orifice head loss (�ho) Variable 1.3 mm 2.0 mm
pipe length (L) 0.99 m 0.8 mm Ð
pipe diameter (d) 0.0177 m 0.006 mm Ð
flow coefficient (C) 1.18 � 10±3 m 2.5/sec 9.2 � 10-6 m 2.5/sec Ð
roughness (�) 9.1 � 10±8 m 25% Ð
water density (�) 999 kg/m3 0.15% Ð
water viscosity (�) 1.056 � 10±3 N sec/m2 3.5% Ð
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Reynolds number range for this test was 22,000 to
48,000, and the pipe head loss varied from 0.14 to
0.51 meters of water over this range. The compar-
ison of the measured and predicted pipe head loss
values is given in Fig. 2. The comparison looks
very good, but uncertainties should be taken into
account in order to validate the model. This
validation comparison is shown in Fig. 3, where
the comparison error, E, from Equation (10) is
plotted along with the uncertainty in the error, UE,
from Equation (11). For this test, jEj was less than
UE for all runs; therefore, the model is validated at
the level of UE for this pipe diameter and smooth-
ness over this range of Reynolds numbers. The
validation uncertainty varies from 11 mm of water
at the low Reynolds number end to 19 mm of
water at the upper end.

This level of validation is based on the uncer-
tainties of the experiment result and the model

input variables. An investigation of the UPC's for
each of the error sources will show which uncer-
tainties are dominating the determination of the
error uncertainty. Table 3 gives UPCs for the two
limits of the test's Reynolds number range. At the
lower Reynolds number, the systematic standard
uncertainty of the pipe head loss measurement
dominates UE. To reduce this uncertainty, a
better transducer with less zero shift and a more
linear calibration curve would be needed. The
random standard uncertainty of the orifice head
loss measurement also is significant at the low
Reynolds number limit. At the higher Reynolds
number, the orifice flow coefficient uncertainty
dominates UE. To reduce this value, the orifice
would need to be better calibrated. If these three
uncertainties were reduced, then there would be
less uncertainty in both the experiment and the
model, and the uncertainty in the error would

Table 2. Test results

Run

Orifice
Head

Loss (m) Red

Pipe Head
Loss

Measured
�hpr (m)

Data
Uncertainty

Ur (mm)

Pipe Head
Loss from

Model, � hpm

(m)

Model
Uncertainty

Um (mm)
Comparison

Error E (mm)

Comparison
Error

Uncertainty
UE (mm)

1 0.08 22,623 0.14 7.4 0.13 8.1 6.1 11
2 0.10 25,946 0.16 7.4 0.17 8.6 -1.5 11
3 0.15 31,116 0.24 7.4 0.23 10 8.1 12
4 0.15 31,325 0.23 7.4 0.23 10 1.5 12
5 0.19 34,730 0.29 7.4 0.28 11 8.1 13
6 0.22 37,484 0.32 7.4 0.32 12 3.3 14
7 0.22 37,830 0.33 7.4 0.32 12 7.4 14
8 0.25 40,373 0.37 7.4 0.36 13 11 15
9 0.26 40,974 0.37 7.4 0.37 14 1.5 15

10 0.29 43,106 0.42 7.4 0.41 15 8.4 16
11 0.32 45,498 0.45 7.4 0.45 16 6.6 17
12 0.33 46,032 0.47 7.4 0.46 16 9.9 17
13 0.36 48,279 0.51 7.4 0.50 18 8.9 19

Fig. 2. Results for pipe head loss experiment and model
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be less. Then the comparison range for E would be
smaller, but it is very likely that improved pressure
transducers and better orifice calibration would
reduce the comparison error.

CONCLUSION

Understanding the limitations of physical models
is key to the successful practice of engineering. In

the ETII laboratory in ME at MSU, the students
are given an opportunity to investigate the valid-
ity of models by comparing the predictions with
experimental results. The uncertainties in both the
model and experimental results are used (1) to
assess the model validity, (2) to identify ranges
where different or improved models are needed,
or (3) to show that improved variable uncertain-
ties are needed to reduce the validation uncer-
tainty.

REFERENCES

1. W. G. Steele, and H. W. Coleman, Integrating Uncertainty Analysis Concepts into Undergraduate
Laboratory Courses, International Journal of Engineering Education, 8, 1992, pp. 147±153.

2. H. W. Coleman, and F. Stern , Uncertainties in CFD Code Validation, ASME Journal of Fluids
Engineering, 119, 1997, pp. 795±803.

3. H. W. Coleman, Some Observations on Uncertainties and the Verification and Validation of
Simulations, ASME Journal of Fluids Engineering, 125, 2003, pp. 733±735.

Fig. 3. Validation of pipe head loss model

Table 3. Uncertainty Percentage Contributions

Variable Reynolds Number

22,623 48,279

Systematic
Standard

Uncertainty

Random
Standard

Uncertainty

Systematic
Standard

Uncertainty

Random
Standard

Uncertainty

pipe head loss (�hpr) 42.6 3.4 15.1 1.2
orifice head loss (�ho) 11.0 28.1 2.8 7.1
pipe length (L) 0.0 - 0.2 Ð
pipe diameter (d) 0.2 - 0.8 Ð
flow coefficient (C) 10.5 - 54.9 Ð
roughness (�) 0.0 - 0.0 Ð
water density (�) 0.0 - 0.0 Ð
water viscosity (�) 4.2 - 17.9 Ð

Sum = 100.0 Sum = 100.0

W. G. Steele and J. A. Schneider392



4. S. T. Hudson, J. A. Schneider, and W. G. Steele, Uncertainty Analysis for Undergraduate and
Graduate Mississippi State University Mechanical Engineering Students, AIAA Paper 2003±0797,
41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV (2003).

5. M. Fernandez Chimeno, M. A. Garcia Gonzalez, and J. Ramos Castro, Teaching Measurement
Uncertainty to Undergraduate Electronic Instrumentation Students, International Journal of
Engineering Education, 21, 2005, pp. 525±533.

6. H. W. Coleman, and W. G. Steele, Experimentation and Uncertainty Analysis for Engineers, Second
Edition, New York, NY, John Wiley & Sons, Inc., (1999).

7. H. W. Coleman, and W. G. Steele, Engineering Application of Experimental Uncertainty Analysis,
AIAA Journal, 33, 1995, pp. 1888±1896.

8. W. G. Steele, R. A. Ferguson, R. P. Taylor, and H. W. Coleman, Computer-Assisted Uncertainty
Analysis, Computer Applications in Engineering Education, 5, 1997, pp. 169±179.

9. M. H. Hosni, H. W.Coleman, and W. G. Steele, Application of MathCAD Software in Performing
Uncertainty Analysis Calculations to Facilitate Laboratory Instruction, Computers in Education
Journal, 7, 1997 pp. 1±9.

10. K. K. Brown, H. W. Coleman, W. G. Steele, and R. P.Taylor, Evaluation of Correlated Bias
Approximations in Experimental Uncertainty Analysis, AIAA Journal, 34, 1996, pp. 1013±1018.

11. B. K. Hodge and R. P. Taylor, Analysis and Design of Energy Systems, Third Edition, Prentice
Hall, Upper Saddle River, NJ (1999).

W. G. Steele is William L. Giles Distinguished Professor and Head of Mechanical
Engineering at Mississippi State University. His principal area of research is the use of
uncertainty analysis in experimentation and design, and he has authored a textbook on the
subject (Reference 6). Dr Steele has served on national and international committees
concerned with uncertainty analysis standards.

J. A. Schneider is an Associate Professor in the Mechanical Engineering Department at
Mississippi State University. Her primary area of research is the engineering of the
microstructure by control of the processing parameters to obtain the desired mechanical
performance of structural materials. Much of her research centers on characterization of
the microstructual evolution during either the processing or service life of the material.

Undergraduate Laboratory Experiences Using Uncertainty Analysis 393


