Int. J. Engng Ed. Vol. 23, No. 3, pp. 499-507, 2007
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2007 TEMPUS Publications.

MOGRAPH: Mobile Graph Algorithms
Library for Engineering Students™

MUSTAFA MURAT INCEOGLU and BIROL CILOGLUGIL
Ege University, Department of Computer Education and Instruction Technology, Bornova 35100, Izmir,
Turkey. E-mail: mustafa.inceoglu@ieee.org, birol ciloglugil@ege.edu.tr

KORHAN KARABULUT

Yasar University, Department of Computer Engineering, Bornova 35100, Izmir, Turkey. E-mail:

korhan.karabulut@yasar.edu. tr

In this study, a mobile application called MOGRAPH, which has been developed for the teaching
graphs, is presented. By using MOGRAPH, students can draw and edit previously formed graphs,
apply Depth First Search (DFS), Breadth First Search (BFS), Dijkstra’s Shortest Path, Euler
PathlCircuit, Hamilton Pathl/Circuit and Graph Coloring algorithms on the undirected (weighted
or unweighted) graphs created by them and take a quiz to test their knowledge. Results show that
at least 79% of the students have liked the educational features of the MOGRAPH package and
have thought it would be beneficial for future use.

Keywords: mobile learning; graph algorithms; PDA

INTRODUCTION

WITH THE WIDESPREAD USAGE of mobile
devices, individuals become less dependent on time
and space for their activities. In the case of educa-
tion technologies, in class education has become
increasingly supported by distance education in
time. As the rapid development of information
and communication technologies continues, in
the near future, mobile integrated devices will
support education activities without dependence
on time and space. This kind of education activity
is called mobile learning (m-learning) [9].

M-learning is realized by mobile phones, hand-
held computers and other devices especially used
by the young [1]. In addition to this, in the
literature, m-learning techniques are used in differ-
ent branches of education. The m-learning study
using health students in England [2], a study of
English language education on Japan university
students [3], a project to train home economics
teachers in Finland [4] and an m-learning project
for environment education in South Korea [5] are
good examples. In most of these projects, short
message services (SMS), PDA devices and hand-
held computers are commonly used. As clearly
described [6], there is plenty good text-based
information on various topics for mobile devices.
Nevertheless, unfortunately, there is no good free
software present for natural sciences and mathe-
matics, except a few projects [7-8].

Graph theory is one of the main subjects in
discrete mathematics and is applicable for a wide

* Accepted 15 March 2007.

499

range of areas including computer science/engin-
eering, electrical engineering, chemistry, economics
and operations research. For instance, it is used to
determine whether a circuit can be implemented on
a planar circuit board, to find the best route for
connecting network cables in a building, to deter-
mine whether two computers are connected by a
communications link (using graph models of
computer networks), to solve many types of
problems like finding the shortest path between
two cities in a transportation network (e.g. for the
traveling salesmen problem).

Many operations can be applied to graphs such
as traversing a graph (to search for a particular
vertex), finding the shortest path between two
vertices of a graph and determining circuits and
paths on a graph. Each of these operations may be
carried out with the help of different algorithms.
For example, DFS (Depth-First Search) and BFS
(Breadth First Search) are two basic algorithms for
traversing graphs. They can be used to find the
shortest path from one particular node to another
and to calculate the spanning tree of a connected
graph. The Dijkstra algorithm is one of the most
efficient algorithms to find the length of the short-
est path between two vertices in a weighted graph.
Finding Euler or Hamilton paths/circuits in graphs
is another major subject of graph theory that is
used to solve problems like the K6nigsberg Bridge
Problem. Graph Coloring, which is related to the
coloring of vertices, edges and regions of graphs,
has a variety of applications to problems involving
scheduling of exams at a university, frequency
assignment of television channels, etc. Four-color
theorem is one of the basic approaches for graph

500 M. M. Inceoglu et al.

coloring, which states that the chromatic number
of a planar graph is not greater than four.

Nowadays, the application scope of graph
theory increases each day in branches of engineer-
ing, especially in computer, electrical and indus-
trial engineering. Graph theory is the
infrastructure for many academic studies and
courses. In the Ege University Computer Engin-
eering Department, a library called MOGRAPH
(abbreviation for MObile GRAPH) is developed
with the aims of: facilitating the students to better
understand the topic of graph theory in discrete
mathematics course and do more practice, helping
the students to test themselves and helping the
lecturers make short quizzes to test the students’
understanding. MOGRAPH is developed as an
application to run on both mobile devices and
desktop computers.

GENERAL INFORMATION ABOUT
MOGRAPH

MOGRAPH consists of three basic logical
components: an interactive graphical user interface
section to create, edit, save and load graphs, an
algorithm section to apply the algorithms
mentioned above onto the graphs and a quiz
section. These components are distributed into
menus, considering the general Microsoft
Windows menu structure and the main menus
are ‘File,” ‘Edit’, ‘Operations’ and ‘Help’.

Graph operations are applied by using ‘File’ and
‘Edit’ menus. ‘File’ menu contains ‘New’, ‘Open’,
‘Save’ and ‘Exit’ options. The ‘New’ option is used
to start drawing a new graph. However, if there is
already a graph in the working area, the user is
asked if he/she wants to save it. Previously saved
graphs can be loaded by selecting the ‘Open’
option of the ‘File’ menu. After creating a graph,
the user may save it onto the mobile device for
future use by clicking the ‘Save’ option. The ‘Exit’
option is used to quit from the MOGRAPH
application.

‘Add Vertex’, ‘Add Edge’, ‘Delete Vertex’,
‘Delete Edge’, ‘Rename Vertex’, ‘Assign/Update
Edge Weight’ and ‘Move Vertex’ are the available
options on the ‘Edit’ menu that are used to create
and edit graphs. Figure 1 shows an example graph.

After selecting the ‘Add Vertex’ option from the
‘Edit’ menu, the user can add a new vertex by
clicking (or tapping) where he/she wants to place it
on the screen of the mobile device. Vertices are
named automatically by using the English alpha-
bet. Vertices can be relocated by using the ‘Move
Vertex’ option. The user may tap on a vertex and
drag it to a new position. In order to add edges
between vertices, the user selects the ‘Add Edge’
option and clicks on the start and end vertices of
the new edge; to delete edges, the user selects
‘Delete Edge’ option and clicks on the edge he/
she wants to delete. ‘Delete Vertex’ option deletes
vertices one by one. When this option is selected,

the user is asked to click on a vertex. Then, the
selected vertex and all of the edges associated with
it are deleted. ‘Rename Vertex’ is used to rename
vertices created with automatic naming. The user
also can assign weights to edges of the graph and
update them by using the ‘Assign/Update Edge
Weight’ option to form a weighted graph.

The ‘Operations’ menu contains operations that
can be applied on graphs and a quiz option. The
‘Adjacency Matrix’ option can be used to display
the adjacency matrix of the current graph. The
‘Algorithms’ and ‘Quiz’ options are two of the
basic features of MOGRAPH explained below.

The second major component of the
MOGRAPH application is the ‘Algorithms’
section that can be accessed from the ‘Operations’
menu. The ‘Algorithms’ option contains six basic
algorithms that can be applied on the currently
displayed graph. These algorithms are ‘Depth First
Search (DFS)’, ‘Breadth First Search (BFS)’,
‘Dijkstra’s Shortest Path’, ‘Euler Path/Circuit’,
‘Hamilton Path/Circuit’ and ‘Graph Coloring.’
The operations of these algorithms can be
observed in a step-by-step manner.

DFS and BFS are two of the main graph
traversal algorithms. In these two algorithms, the
user is asked to select a starting vertex. Then, the
user can observe the traverse of the graph step by
step. In each step, the corresponding edge to the
next vertex is painted in a different color, which
indicates that it is being traversed. The order of
traverse is also printed at the bottom of the screen.
In Fig. 2, graph traversals using the DFS and BFS
algorithms are shown.

For ‘Dijkstra’s Shortest Path’ algorithm, the
user is asked to select the start and the end vertices
to calculate the shortest path in between. Then the
shortest path information and the distance value
are shown on the screen. In addition, the shortest
path is displayed in a step-by-step manner, like the
first two algorithms. Figure 3 shows a shortest
path example.

‘Euler Path/Circuit’ and Hamilton Circuit/Path’
algorithms are used to detect whether the current
graph contains Euler and Hamilton Paths/Circuits
respectively. If Euler and Hamilton Circuit/Path
algorithms cannot detect such a circuit/path, an
appropriate message is displayed to the user.
Otherwise, the route to be followed by the
circuit/path detected is printed and it is also
displayed step by step. Figure 4 shows a Hamilton
Circuit example.

‘Graph Coloring’ is implemented by using the
four-color theorem in MOGRAPH. If a graph is
suitable to be displayed according to four-color
theorem, its vertices are displayed with the fewest
possible number of colors (the chromatic number
of the graph). If the graph cannot be colored using
the four-color theorem, a message regarding to the
four-color theorem limitation is displayed. Figure
5 shows a graph with vertices colored by the four-
color theorem.

The ‘Quiz’ option of the ‘Operations’ menu is

MOGRAPH: Mobile Graph Algorithms Library 501

Edge's been added betwesn B and E

*=OGRAFH

File Edit Dperations Help |«

Fig. 1. A graph with six vertices and nine edges.

237 €3 £ moGRARH

CFS - A-B B-CCEEDOF

BFS : a8 AC BDEBEDF

File Edit Operations Help =~

Fig. 2. DFS and BFS examples.

the third basic component of the MOGRAPH
application. Each quiz session contains three
consequent questions. When ‘Quiz’ option is
selected, the application connects to the server
and the user is asked the first question immediately
when the server connection is established. When
the user wants to quit the quiz session, he/she may
click the OK button at the top left of the screen.
The user is supposed to answer the questions
within the given time. If the time runs out, the
application automatically takes the content of the
answer area as the user’s answer. The user may

click the OK button if he/she answers the question
before the time runs out. After the first question,
the second question is retrieved from the server
and displayed on the client’s screen. The same
procedure is followed for the third question.
When the user answers all the questions, the
result of the quiz is displayed to the user with
his/her answers and the correct answers. Figure 6
shows an example quiz screen.

The ‘Help’ menu contains the help documenta-
tion for algorithms and usage of the MOGRAPH
application.

502 M. M. Inceoglu et al.

57 mocrarH

Dihstra Wl : AW2 ! F

Fibe Edit Operations Melp ﬂ-

Fig. 3. Shortest path example.

METHODOLOGY OF THE DEVELOPMENT
PROCESS OF MOGRAPH

In this section, the infrastructure of
MOGRAPH is explained in detail with the use of
MOGRAPH in the Discrete Mathematics course.

MOGRAPH is an open source mobile applica-
tion implemented in Microsoft Visual Studio.NET
environment with C# language.

Different data structures, such as two-dimen-
sional matrices and linked lists, can be used to
represent graphs [10-13]. For MOGRAPH, since
the user will be able to add, delete or edit vertices

£F mocrarh

' :"h"-._F
.'m ."-'
5., ¥ ¢

| HC © &-C C-E E-F F-D B B-A
File Edit Dperations Help !|-

Fig. 4. Hamilton circuit example.

and edges dynamically at run time, using a prede-
fined number of vertices will not be feasible. There-
fore, a dynamic data structure is needed. In C#,
using array lists is the most efficient solution
available. Thus, in MOGRAPH, vertex and edge
classes are defined with the graph class containing
two array lists to store vertex and edge objects.

Vertex objects contain a unique ID assigned to
each vertex, a vertex name and a point object to
store the coordinates of the vertex on the drawing
area of the device screen. Edge objects contain two
vertex IDs associated with the start and end
vertices of the edge and the distance value between
the vertices. This is also the weight value of the
edge. Vertex and edge class definitions are given in
Fig. 7.

Since there is no built-in method supported by
C# to detect whether a clicked point on the
screen is on a vertex, on an edge or neither,
two methods are added to the graph class.
These methods are ‘IsClickedOnVertex’ and
‘IsClickedOnEdge’.

To detect vertex areas, Equation (1) of analytic
geometry, which calculates the distance between
two points is used by the ‘IsClickedOnVertex’
method. This formula is applied to all vertices on
the graph. If the calculated distance is less than or
equal to five pixels for a vertex, then that vertex is
determined as the clicked vertex.

Distance = \/(XVertex -)(ClickedPoim)2 + (YVertex - YClickepoint)2
(1)

To detect whether a clicked point is on an edge,
‘IsClickedOnEdge’ method examines each edge
one by one with the clicked point data. This
process contains two steps. At the first step,

MOGRAPH: Mobile Graph Algorithms Library

503

S MoGRAPH

File Edit Operations Help

-

Fig. 5. Graph coloring example.

Equation (2), which calculates the distance of a
point to a line is used. Thus, it calculates the
distance of the clicked point to the line that
represents the currently examined edge. In Equa-
tion (2), StartVertex and EndVertex represent the
two vertices of the current edge. If the calculated
distance is less then a predefined value (two pixels),
the second step is applied. In the second step, the
current edge’s start and end vertices’ points are
checked with the clicked point coordinates to see if

g
e v BY

ot |

Traverse this graph with OFS dgorithm,
A formnat Uy "

Arswer |

the clicked point is on the line segment restricted
with the start and end vertices of the edge.

|a * Xciickeapoint + b * Y Clickedpoint + €|

Va2 + b

Distance =

a = YsariVertex — YEndVertex
b= XEndVertex - X StartVertex
c= (X StartVertex * YEndVertex) - (YStartVertex * XEndVertex)

FMOGRAPH - Quiz Syster ¢

|| DK J4:50

Fig. 6. A quiz screen.

504 M. M. Inceoglu et al.

puab lic clege VepbEey

privare int verrexID: The unigue ITI

privace Scring vertesNamss: The nams of
privace Poimt wercexPoint: he po=iti

public claEs Edgs

s lvarte it atarctVercexIh, sndVercesID:
private int discamie)

Fig. 7. Vertex and edge class definitions.

where a, b and ¢ are calculated from:

X-X StartVertex Y - YStarr Vertex

X, StartVertex — X EndVertex YStart Vertex — Y EndVertex

(2)

When the user adds a new vertex or edge, a new
vertex or edge object is created and added to the
vertices or edges array list respectively. When the
user decides to delete an edge, the clicked point is
examined by the ‘IsClickedOnEdge’ method
explained above and if an edge is clicked over,
the detected edge is removed from the edges array
list. The deletion of vertices is implemented in a
similar way. ‘IsClickedOnVertex’ method is used
and if a vertex is detected on the clicked area, all of
the edges associated with the vertex are removed
from edges array list first and then the vertex itself
is removed from vertices array list. For renaming a
vertex, the selected vertex is determined in the
same way as in the delete vertex operation. After
that, the name field of the selected vertex is
updated on the vertices array list. ‘Assign/update
edge weight’ operation first detects the clicked edge
and assigns/updates the weight value of the
detected edge. ‘Move Vertex’ option updates the
coordinates of the selected vertex on the vertices
array list after detecting it.

The ‘Open’ and ‘Save’ options of the ‘File’ menu
are used to load and save graphs in two formats;
binary and XML. Binary files occupy less storage
space than XML files, however, this is not a crucial
advantage because the output graph file sizes are
not large enough to be of consideration. Conver-
sely, XML file format has the advantage of being a
commonly used standard that creates application-
independent documents and data. Users may also
create new XML files or edit previously created
XML files as an alternative way of graph creating.
Thus, both of this file formats are supported by
MOGRAPH to let the user select the appropriate
one for himself/herself.

General infrastructure of the implementation of
the first five algorithms (DFS, BFS, Dijsktra,

Euler & Hamilton Path/Circuit) is the same.
Since Graph Coloring’s concept is different from
these five algorithms, it is implemented with other
data structures as explained below.

As the vertices and edges are stored in array lists,
when any of the first five algorithms is to be
applied, the adjacency matrix of the current
graph is created with the data in array lists. The
adjacency matrix is created before applying the
algorithms, because all five algorithms use the
adjacency matrix as an input to operate on. Since
the adjacency matrix of the graph is created from
the vertices array list, the order of the adjacency
matrix is the addition order of the vertices to the
array list. Thus, in MOGRAPH, these five algo-
rithms are applied according to the addition order
of the vertices on the graph. During the execution
of these algorithms, the results are stored in a
newly created array list called ‘algorithmResult’
that stores the path data. When the execution of an
algorithm finishes, a timer for displaying the
results of the algorithm step by step is enabled.
This timer ticks with 1000-millisecond intervals
and takes an edge of the path data stored in
‘algorithmResult’ at each tick and calls the paint
method of the form to display the path (algorithm
result) in a step-by-step manner.

DFS and BFS algorithms use the basic algo-
rithm structure of [12], where a stack and a queue
are used to traverse the graph respectively. These
algorithms are extended in MOGRAPH to store
the results on the ‘algorithmResult’ array list
explained above. During the execution of the
whole graph, ‘algorithmResult’” array list is filled
with the information about the route to be
followed. Then, in the paint method of the form,
the route is displayed with the help of the timer.

Dijkstra’s shortest path algorithm is implemen-
ted by using the algorithm in [10-12]. The algo-
rithm is extended to store the shortest path values
to each vertex on an array and the shortest path
information to each vertex on an array list with the
vertices of the shortest path. Thus, this algorithm
also calculates the shortest path from the starting
vertex to all of the other vertices. After calculation,

MOGRAPH: Mobile Graph Algorithms Library 505

this algorithm also puts the shortest path informa-
tion on the ‘algorithmResult’ array list.

The Euler Path/Circuit algorithm aims to
traverse the graph by visiting each edge only
once. Euler Path/Circuit algorithm first checks if
the graph meets the Euler Path/Circuit conditions
described in [10]. According to these conditions, an
Euler Circuit exists only if all vertices have an even
number of adjacent vertices and an Euler Path
exists only if, at most two vertices have an odd
number of adjacent vertices with the rest of the
vertices having even number of adjacent vertices. If
the graph meets one of these conditions, a modi-
fied BFS algorithm is applied to determine the
traverse order of the path/circuit detected. The
Hamilton Path/Circuit algorithm aims to traverse
the graph by visiting each vertex only once. The
implementation infrastructure of this algorithm is
the same as that of the Euler algorithm, but the
checked conditions and the modified BFS algo-
rithm are special to Hamilton.

Graph Coloring is a very detailed and active
working area of the graph theory, which includes
subjects like vertex coloring, edge coloring, four-
color theorem and many more [14]. Since the scope
of MOGRAPH is to offer an introduction to
Graph Coloring, the four-color theorem is selected
for implementation. If a graph is planar, then it
can be colored using the four-color theorem. The
implemented Graph Coloring algorithm takes the
first vertex of the vertices array list and starts the
coloring process from that vertex. Then its adja-
cent vertices are taken into account in sequence.
This process continues until all vertices are
colored. During the color determination process,
each vertex is colored with an appropriate color by
checking its adjacent vertices’ colors.

The quiz section of MOGRAPH is implemented
using a web service. When the user starts a quiz,
MOGRAPH connects to the server machine using
the ‘MographSS’ web service running on it. The
quiz data are stored on an SQL Server database at
the same server machine. Graphs are stored as
adjacency matrices in the database. ‘MographSS’
web service has five web methods: TakeQuiz,
Vertices, Edges, Question and Answers that
connect to the database through stored procedures,
get/set appropriate data and serve the data to
MOGRAPH clients. These web methods send
data to MOGRAPH clients in XML format.
When the first server connection to the web service
gets the first question, web methods are called in
the following order: TakeQuiz, Vertices, Edges and
Question. TakeQuiz web method selects three
random questions from the SQL Server database.
A unique ID is also assigned to each user in
TakeQuiz. Then, the Vertices, Edges and Question
web methods are executed in order to send the
vertices, edges and question data respectively to the
user. For the second and third questions, Vertices,
Edges and Questions web methods are invoked
again with the same order. At the end of the third
question, Answers web method is called. This web

method stores the user’s results on the database for
future use and sends the answers to the user.

The Discrete Mathematics course in the Ege
University Computer Engineering Department
lasts 14 weeks and is taught for 3 hours per
week. Course contents are: propositions (1 week),
sets and set theory (1 week), functions (1 week),
matrices (1 week), algorithms for sets, functions
and matrices (2 weeks), mathematical reasoning (2
weeks), counting techniques (1 week), relations (1
week), graph theory, applications and algorithms
(3 weeks) and trees (1 week). Boolean Algebra and
Modeling Computation subjects present in the
textbook [10] are not included in this course, but
they are studied in more detail in Logic Design and
Automata Theory courses.

A group of 40 student volunteers were selected
from 154 students who had taken the Discrete
Structures course in order to test the developed
application. These students were given an hour of
education on the usage of MOGRAPH using a
computer, PDA and a projector. Then, with the
aid of an instructor, the students have downloaded
and executed the application on the PDA devices
given to them, they have used and tested several
features of MOGRAPH and they had answered
the quiz questions.

The MOGRAPH application was downloaded to
a PDA only once and only during the quiz section,
The PDA connected to the server and stayed online
using WLAN or GPRS. For the quiz section, PDAs
connect to the server using WLAN in the campus
and by using GPRS from outside of the university.
In the study made with the students, ASUS
MYPAL (for WLAN support) and I-mate (for
GPRS support) brand of PDA devices are used.

The quiz study is realized to test the performance
of the application when a group of students are
connected to the server simultaneously. In the quiz
study, all students were asked to use the quiz section
at the same time. Each student had been checked to
see if they were online. In the observation, all
students except three, whose devices had problem:s,
could connect to the server for the quiz section.

After the 1 hour laboratory study, the students
were asked to answer a questionnaire composed of
seven questions with Likert type answers and two
open-ended questions to evaluate the advantages
and disadvantages of MOGRAPH. A total of 37
out of 40 questionnaire forms were returned, so
that the participation ratio was calculated as
92.5%. Answers to the questionnaire are summar-
ized in Table 1 (five totally agree, four partially
agree, three neither agree nor disagree, two
partially disagree, one totally disagree).

Results derived from the questionnaire are:
students were satisfied with the graph theory
education at the class; they had understood the
topics taught about graphs and the examples
given, they had agreed that the MOGRAPH
application could be easily used as an education
tool and they had recommended the use of
MOGRAPH in the teaching of graph theory.

506 M. M. Inceoglu et al.

Table 1. Questionnaire results for 37 students

Satisfaction
Question Mean per cent Standard
number Question (A) A5 (%) deviation
1 Are you satisfied with the teaching about graphs? 4.054 81 0.468
2 Did you understand what is taught about graphs? 4.405 88 0.551
3 Could you easily install the MOGRAPH application? 4.297 86 0.878
4 Is it easy to use to the MOGRAPH application? 3.865 77 0.855
5 Did you find the MOGRAPH application useful? 3.930 79 0.759
6 Can you say that MOGRAPH application is helpful in learning the topics about 4.189 84 0.739
graphs?
7 Do you recommend using MOGRAPH application in the next years? 4.325 87 0.747

Seven students had problems in the download and
installation of the MOGRAPH package and stated
these in the questionnaire. Some positive
comments stated in the open-ended questions are:
‘Move vertex feature is very good’, ‘A fun applica-
tion’, ‘This application should include all other
topics in the course’, ‘These kinds of experiments
that we have participated in, encourages us’,
‘Visual simulations of the algorithms were nice’,
‘Visual usage of the application increases my
interest and will to learn’; while the negative
comments are: ‘There has to be shortcuts for the
menus’, ‘It should show graphs like hypercube and
complete graph automatically’, ‘A little bit slow to
load’, ‘It takes some time to download and install
the application’. All positive and negative
comments were evaluated and work on
MOGRAPH was continued to make it more
efficient. Recent additions, new features, user
documentation and the latest version of the

MOGRAPH package can be found at the follow-
ing URL: http://efe.ege.edu.tr/~birol/mograph.

CONCLUSION

MOGRAPH is an open source, improvable
package developed to support the teaching of
graph theory topics in discrete mathematics
courses with practices and quizzes, in order to
help the students study on their own and to help
the lecturers test the students’ levels of under-
standing.

The first version of MOGRAPH package was
tested by a group of selected students, as there were
only a limited number of devices, and a question-
naire was applied to test the benefits. Results show
that at least 79% of students liked the educational
features of the MOGRAPH package and thought
it would be beneficial in the future.

10.

12.

13.

14.

REFERENCES

. M. J. Wang, R. M. Shen, R. Tong, F. Yang and P. Han, Mobile learning with cell phones and
pocket PCs. Lecture Notes in Computer Science 3583, 2005, pp. 332-339.

. G. Walton, S. Childs and E. Blenkinsopp, Using mobile technologies to give health students access
to learning resources in the UK community setting. Health Information and Libraries Journal 22,
2005, pp. 51-65.

. P. Thornton and C. Houser, Using mobile phones in English education in Japan. Journal of
Computer Assisted Learning 21, 2005, pp. 217-228.

. P. Seppala and H. Alamaki, Mobile learning in teacher training. Journal of Computer Assisted
Learning 19, 2005, pp. 330-335.

. K. W. Leeand J. H. Lee, Design and implementation of mobile-learning system for environment
education. Lecture Notes in Computer Science 3480, 2005, pp. 856-862.

. B. P. Heath, R. L. Herman, G. G. Lugo, J. H. Reeves, R. J. Vetter and C. R. Ward, Project
Numina: Enhancing student learning with handheld computers. Computer 38, 2005, pp. 46-53.

. M. M. Inceoglu, A discrete mathematics package for computer science and engineering students.
Lecture Notes in Computer Science 3482, 2005, pp. 538-546.

. L. Bitincka and G. E. Antoniou, PDA-based Boolean function simplification: a useful educational
tool. Informatica 15(3), 2004, pp. 329-336.

. G. Vavoula and C. Karagiannidis, Designing mobile learning experiences. Lecture Notes in

Computer Science 3746, 2005, pp. 534-544.

K. H. Rosen, Discrete Mathematics and Its Applications. McGraw-Hill Inc., New York, (1995).

. R. Johnsonbaugh, Discrete Mathematics, Prentice-Hall, 4th edn, New York, (1997).

M. Waite and R. Lafore, Data Structures and Algorithms in Java, Waite Group Press, Corte

Madera (1998).

R. Kruse, C. L. Tondo and B. Leung, Data Structures and Program Design in C, Prentice Hall

International Editions, New Jersey, (1997).

Graph Coloring Algorithm, Available at: http://en.wikipedia.org/wiki/Graph_coloring, accessed:

16th Jan. 2006.

MOGRAPH: Mobile Graph Algorithms Library

M. M. Inceoglu is an associate professor at the Ege University Computer Education and
Instructional Technology Department. He received his Ph.D. degree from Ege University in
1998. His research interests include computer science education, educational technology
and distance learning. He is a member of the IEEE.

B. Ciloglugil is a research assistant at the Ege University Computer Engineering Depart-
ment. He received his M.Sc. degree from Ege University in 2006. His research interests
include computer science education, educational technology and distance learning.

K. Karabulut is an assistant professor at the Yasar University Computer Engineering
Department. He received his Ph.D. degree from Ege University in 2004. His research
interests include computer science education, genetic algorithms and artificial intelligence.

507

