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Students in a water resources engineering course consider the infiltration of water into soils, a topic
through which instructors can reinforce many fundamental engineering principles. In this paper,
undergraduates used two 80 minute classes to explore Green-Ampt infiltration through integration,
differentiation, Newton-Raphson numerical methods and Visual Basic programming. Students used
calculus software to check solved problems, programming software to modify and execute model
code, and spreadsheet software to examine model outputs. Outputs included tables and graphs
showing infiltration for a single precipitation event. Student assessment of the lesson is used to
complement measurement of curricula outcomes and satisfy the US Accreditation Board of
Engineering Technology criteria.
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INTRODUCTION

WATER INFILTRATION into the porous soil
matrix is a standard curriculum topic for under-
graduate and graduate water resources engineer-
ing, and is fundamental to site assessment design
and remediation research projects. In this paper,
State University of New York College of Environ-
mental Science and Forestry (SUNY ESF)
students enrolled in Engineering Hydrology and
Hydraulics (FEG 340) were exposed to the multi-
step Green-Ampt infiltration method, introduced
in their course text by Chin [1]. This lesson
involved two 80-minute class periods, and served
to prepare students in their design of an urban
stormwater bioretention device. Implementation
of the Green-Ampt method required utilization
of integration, differentiation, numerical methods,
and computer programming. Student assessment
of the lesson was collected, complemented College
reporting to the Accreditation Board of Engineer-
ing Technology (ABET) on achieving learning
outcomes, and has been used to improve the
pedagogical approach.

INFILTRATION THEORY

Engineering methods for modelling infiltration
are wide ranging, and students in FEG 340 were
exposed to empirically-based methods of the Curve

Number formula and the Horton exponential
decay equation, as well as to the physically-based
Green-Ampt equation [1]. The Green-Ampt
conceptual model for infiltration originates
nearly a century ago [2], and was since rigorously
derived by Phillip [3]. Many water resource engin-
eering textbooks mention the Green-Ampt infiltra-
tion formulations, but none of those reviewed by
the Author provide a complete sequence of deriva-
tion together with numerical and programming
methods for automated solution [1, 4-7]. This
paper intends to present this complete sequence.

The theory for Green-Ampt involves conceptua-
lization of a sharp wetting front dividing saturated
soil above from initial unsaturated conditions
below. Fundamental to Green-Ampt infiltration
theory is the condition that infiltration rate,
f (m s±1), proceeds at the rainfall rate, i, when the
surface is not ponded, and at the limiting potential
rate, fp, otherwise. This critical ponding condition
is determined by the time to ponding, tp, and is
expressed as:

f � i if t < tp

fp if t � tp

���� �1�

Ponding occurs when rainfall rate is greater than
hydraulic conductivity, K (m s±1), and rainfall
length and cumulative infiltration exceed available
moisture storage.

Of interest in this exercise is simulating infiltra-
tion under ponded conditions, where f � fp. To
begin, we accept the phenomena of water flux, q
(m s±1), through a soil matrix has physical equiva-* Accepted 17 December 2006
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lence to fp. As discovered by Henri Darcy in Dijon,
France, this water flux is proportional to the
change in hydraulic, or piezometric, head, h (m)
per distance, z (m), where K is the constant of
proportionality. Darcy's Law is given as:

q � ÿK � h1 ÿ h2

z1 ÿ z2
�2�

Darcy flux, q, is positive upwards, while infiltra-
tion flux, f, is positive downwards, and the two are
equated as fp � ÿq.

Piezometric head, h, in keeping with hydrostatic
definitions, is the sum of the pressure head, p (m),
and the elevation head, z (m), as shown in the
equation below.

h � p� z �3�
Substituting the condition fp � ÿq and equation
(3) into equation (2) gives the following.

fp � K � p1 � z1� � ÿ p2 � z2� �
z1 ÿ z2

�4�

When pressure head is atmospheric, it is set to 0,
greater than atmospheric is positive, and less than
atmospheric is negative Matric suction head, - 
(m). Setting the reference datum for this system,
from which to measure for variable z, is an
arbitrary decision, but in this example zero eleva-
tion is taken at the ground surface, where it is
negative elevation down through the profile.

From equation (4) we need to have values for
Zones 1 and 2, noted in the sub-scripts of the p and
z terms. Zone 1 is set at the ground interface, and
Zone 2 at the wetting front interface, where the
infiltration is changing initially unsaturated soil
into saturated soil (see Figure 1). Then, in Zone
1, the depth of ponded water, Lp, is substituted for
pressure head, and 0 is substituted for elevation. In
zone 2, at the wetting front, the Matric suction

length, ÿ wf , is substituted for pressure head, and
the wetting front depth, ÿLs, is substituted for
elevation. These substitutions are given below.

p1 � Lp �5�
z1 � 0 �6�
p2 � ÿ wf �7�
z2 � ÿLs �8�

Figure 1 defines these terms schematically. Placing
the defined terms of equations (5) to (8) into
equation (4) gives:

fp � K � Lp ÿ ÿ wf ÿ Ls

ÿ �
Ls

�9�

Typically, ponded depth is considered negligible
compared with the absolute values of Matric
suction and length of saturation (Lp << | wf +
Ls|) [4]. This presumption is used here to drop the
Lp term; otherwise the equation becomes cumber-
some for an undergraduate course demonstration.
Without the Lp term, equation (9) becomes:

fp � K �  wf � Ls

Ls

� �
�10�

Wetting front depth Ls is then substituted with
terms measurable in the field. It is set as equivalent
to the cumulative infiltration length, F (m), divided
by the change in soil moisture ��, given as:

Ls � F

��
�11�

Incorporating equation (11) into equation (10) and
multiplying by �� gives:

fp � K �  wf ��� F

F

� �
�12�

Fig. 1. Green-Ampt soil profile, with soil layers identified on the right-hand side, and soil moisture variables identified on the left-hand
side of the diagram. The middle diagram shows the wetting front.
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Equation (12) is further rearranged by setting
infiltration rate, fp, equal to the derivative of
cumulative infiltration, F, and factoring the quoti-
ent F to F equal to 1.

fp � dF

dt
� K �  wf ��

F
� 1

� �
�13�

It is important to recall, this equation holds for
conditions where ponded water is present, but its
length is significantly less than the wetting front and
suction lengths. The above derivation work was to
provide a conceptual background for solution and
simulation use of the Green-Ampt equation.

METHODS

In the classroom exercises, students are initially
exposed to the graphical theory of Green-Ampt
infiltration, with a discussion of Figure 1 and
review of equations (1) to (13). Subsequently, the
students are asked to perform four tasks that lead
toward concept simulation.

Task one for students is integration of equation
(13), between two time steps. Integrationof equation
(13) will solve for F, and is approached by collecting
like terms through cross-multiplication, giving:Z Ft

Ftÿ1

1
 wf ��

F
� 1

� � � dF �
Z t

tÿ1

K � dt �14�

Integration of the right-hand side (RHS) is likely
most familiar to students, where the anti-derivative
is needed. A test of proper integration is to take the
derivative of the result, and check that it gives you
what had been on the RHS of equation (14).Z t

tÿ1

K � dt � K � tÿ K � �tÿ 1� � K ��t �15�

Integration of the left-hand side (LHS) of equation
(14) may require students to revisit their calculus
manuals or reference handbooks for integration.
Calculus software programs, such as MathCAD1

with the symbolic evaluation, can also be used.
This software was used to check work in the
SUNY ESF FEG 340 course, and corroborate
the solution to the LHS of equation (14).Z Ft

Ftÿ1

1
 wf ��

F
� 1

� � � dF � Ft ÿ  wf �� � ln  wf ��� Ft

ÿ �� �
ÿ Ftÿ1 ÿ  wf �� � ln  wf ��� Ftÿ1

ÿ �� �
�16�

The RHS and LHS, given in equations (15) and
(16), can be combined to provide a solution for
cumulative infiltration at time, t:

Ft � wf �� � ln  wf ��� Ft

ÿ �
� Ftÿ1 ÿ  wf �� � ln  wf ��� Ftÿ1

ÿ �� K ��t

�17�

Equation (17) can be rearranged and simplified,
collecting like terms and reworking the subtraction
of natural logarithms to division of these terms,

Ft � Ftÿ1 �  wf �� � ln  wf ��� Ft

 wf ��� Ftÿ1

� �
� K ��t

�18�
After completion of task one the students should
reflect on their accomplishment, i.e. applying
calculus integration theory to solve part of an
engineering problem.

Task two for students is to identify a numerical
method to solve equation (18). Cumulative infil-
tration at time t, Ft, is on the LHS and is also
operated upon on the RHS of equation (18),
making it an implicit function. To solve for Ft on
the LHS, the equation requires the value of Ft on
the RHS. Additionally, the RHS needs a cumula-
tive infiltration value from the previous time step,
and other known terms, such as Matric suction
length and hydraulic conductivity. Rearranging
equation (18) into a root function is one method
to solve for cumulative infiltration. By subtracting
the LHS from the RHS, the equation will give a
value of zero when Ft has the proper value. This
arrangement can be written as a new operator on
Ft, given as function:

g�Ft� � Ft ÿ Ftÿ1 ÿ  wf �� � ln  wf ��� Ft

 wf ��� Ftÿ1

� �
ÿ K ��t �19�

Equation (19) should give a value of 0 when the
exact root for Ft has been found. Students are told
a numerical technique will help in finding this root.

Figure 2 shows the self-correcting, iterative
procedure to find Ft given a previous estimate,
Fest. At point a the initial F guess generates a value
of the g(F) function on the y-axis. The tangent at
the g(F) value redirects the second F guess toward
the location of the root, where the function g(F)
intersects the x-axis at zero, at point d. The
procedure works equally well for negative valued
functions. Students should be asked how to obtain
the tangent of a function, and guided toward the
use of derivatives.

The Newton-Raphson equation represents this
graphical approach by using the root function and
its derivative, g0�Fest�, and is given as:

Ft � Fest ÿ g�Fest�
g0�Fest� �20�

This numerical approach is an iterative-based
method for finding roots of an equation, based
on an initial estimate or previously computed
value, Fest. Students should recognize that equa-
tion (20) will be used more than once, similar to the
iteration in Figure 2. When Fest approaches the
root value, the numerator in equation 20 goes
toward zero. As this happens, the adjustment to
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Fest becomes incrementally smaller, and the differ-
ence between two consecutive estimates
approaches zero.

Programs that use the Newton-Raphson proce-
dure rarely require an exact root, and instead each
solution estimate in the iteration sequence is
compared to the prior sequence to determine if
the net improvement approaches a threshold near
zero. This threshold is typically set by the program
modeller or user, and represents the needed level of
precision. At the close of this task, students should
reflect on their exposure to a numerical method for
implementing a graphical exercise and solving an
estimation problem. The students should also be
challenged to provide algebraic values for equation
(20).

Task three for students is to take the derivative
of equation (19) with respect to Ft, such that they
can later implement the numerical method repre-
sented by equation (20). While equation (19) looks
complex, the differentiation of terms that do not
operate on Ft or contain Ft go to zero, and the
remaining terms are readily addressed by standard
calculus references.

Students should recall the integration of an
inverse fraction in equation (16) led to the natural
logarithm, and the Fundamental Theorem of
Calculus requires that the differentiation of a
natural logarithm will lead to an inverse fraction.

Again, at SUNY ESF we used MathCAD to check
our work. Differentiation of g(F) is given as:

dg

dFt
� d

dFt

 
Ft ÿ Ftÿ1 ÿ  wf �� � ln

"
 wf ��� Ft

 wf ��� Ftÿ1

#

ÿK ��t

!
� 1ÿ  wf ��

� wf ��� Ft� �21�

Before proceeding to task 4, students should again
reflect on how their knowledge of differentiation in
calculus was used to establish an engineering
equation and provide input for a useful numerical
method.

Task four for students is to review the above
accomplishments, conceptualize how they fit
together to estimate infiltration, and construct a
programming plan for the simulation of infiltra-
tion. This is a good place to break for the first
class, and allow students homework time to
prepare for the second class.

Students in the SUNY ESF curriculum have
taken an introduction to programming before
this class, yet are reminded that pseudocode
precedes the actual computer program. Pseudo-
code is not compilable or executable, but instead
organizes the simulation logic and algorithms in a
written outline format that can be readily

Fig. 2. Graphical illustration of the Newton Raphson technique on the root function as it moves from an initial estimate for cumulative
infiltration at Fest-a through iteration toward a final acceptable estimate at Fest-d.
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converted to programming statements. Further,
students should be directed to avoid `goto' type
control structures, simplifying programs to no
more than the sequence structure, the selection
structure and the repetition structure.

Students should be told the following to guide
their work. Pseudocode for simulation of infiltra-

tion begins by understanding that outputs include
infiltration rate and cumulative infiltration, and
inputs will include rainfall rate and soil physical
properties. They must provide unit dimensions for
program inputs, outputs and variables, gather all
needed parameter initial values (e.g. K, wf, ), and
set the number of time steps for the routine.

Fig. 3. Pseudocode for infiltration using the Green-Ampt model.
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Students should be told their program will pass
through time, and for each time step get precipita-
tion data, compute infiltration and put infiltration
results into storage. In the precipitation routine,
rainfall rate will be read and converted to a length
based on the time step. In the infiltration routine, it
is important to determine if ponding has occurred,
as queried in equation (1), such that the appro-
priate infiltration rate is selected.

Infiltration simulation starts by checking if
water is ponded on the surface, and if not, whether
rainfall rate is greater than hydraulic conductivity
and soil storage, St, is exceeded. In either case, the
program should implement equation (20), using
equations (19) and (21) to fill in the RHS, to solve
for cumulative infiltration; otherwise the precipita-
tion length should be infiltrated.

Soil water storage for the current time step is
assessed using knowledge of cumulative infiltra-
tion from the previous simulation time step, along
with current rainfall rate and soil physical para-
meters defined earlier. It is computed as:

St � K �  wf ��
ÿ �

it ÿ K� � ÿ Ftÿ1 �22�

Output first generates cumulative infiltration and
ponded depth, and infiltration rate is computed as
the incremental increase in cumulative infiltration
per time step, given as:

f � Ft ÿ Ftÿ1

�t
�23�

The entire pseudocode structure is presented in
Figure 3.

Actual implementation of the simulation is
completed by the class using a mostly prepared
Excel sheet, saved to the course website. The extent

of algorithm preparation is based on class time and
student experience with programming. Students
could be given a working model, or be asked to
insert or complete a few lines of code. Precipitation
data for each time step, and an embedded chart
that plots instantaneous and cumulative infiltra-
tion, are provided in the Excel sheet.

In the class exercise, a seven-year recurrence
interval storm delivers 5.4 cm of precipitation in
three hours to a sandy loam soil. Two simulations
are run, first with 20 mm of antecedent ponded
depth and second with 0 mm of antecedent ponded
depth.

The students are instructed or reminded how to
open the Visual Basic1 (VB) Editor in Microsoft
Excel1 and view the VB for Applications code.
The full code is attached in the Appendix, and the
Excel program is available from the author. Once
the program has been run, the students explore
both tabular and graphical simulation output to
better appreciate what they are predicting. Table 1
reports the input and output for the simulations
with and without ponding, and Figure 4 illustrates
the time series evolution of infiltration under both
simulation scenarios.

For the first simulation the table reports how
infiltration rate steadily decreases from its maxi-
mum, and cumulative infiltration increases to a
depth greater than the 54 cm of rainfall. These
trends are clear from the associated Figure 4a. For
the second simulation, however, Figure 4b
provides a wonderful insight to the oscillation of
the infiltration rate, where it actually increases at
first, and then is later controlled by unsteady
rainfall rates. At the close of these simulation
exercises, students should reflect on how their
calculus exercises and pseudocode development
enabled completion of a working infiltration

Table 1. Infiltration model output from a simulation with 20 mm of initially ponded water, and a simulation with 0 mm of initially
ponded water, showing precipitation rate, P (mm/hr), time (hr), instantaneous infiltration, f (mm/hr), cumulative infiltration, F

(mm) and ponded depth (mm).

Data Input Initially Ponded at 20 mm Initially Ponded at 0 mm

P (mm/hr) Time (hr) f (mm/hr) F (mm) Pond (mm) f (mm/hr) F (mm) Pond (mm)

7 0.17 72.88 12.39 8.80 7.00 1.19 0.00
21 0.34 34.75 18.30 6.46 21.00 4.76 0.00
34 0.51 28.55 23.15 7.39 34.00 10.54 0.00
26 0.68 25.36 27.46 7.50 26.00 14.96 0.00
23 0.85 23.34 31.43 7.44 23.00 18.87 0.00
28 1.02 21.91 35.15 8.48 13.93 21.24 0.00
20 1.19 20.83 38.70 8.33 20.00 24.64 0.00
18 1.36 19.99 42.09 8.00 18.00 27.70 0.00
14 1.53 19.30 45.37 7.10 14.00 30.08 0.00
22 1.70 18.73 48.56 7.65 5.00 30.93 0.00
25 1.87 18.25 51.66 8.80 22.07 34.68 0.50
13 2.04 17.83 54.69 7.98 20.96 38.24 0.00
11 2.21 17.46 57.66 6.88 11.00 40.11 0.00
6 2.38 17.14 60.57 4.99 6.00 41.13 0.00

18 2.55 16.85 63.44 5.18 18.00 44.19 0.00
23 2.72 16.60 66.26 6.27 18.93 47.41 0.69
4 2.89 16.37 69.04 4.17 18.41 50.54 0.00
5 3.06 16.16 71.79 2.27 5.00 51.39 0.00
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model, and how this model can provide predictions
for engineering questions.

DISCUSSION

Green-Ampt infiltration parameters, such as
K,  wf, and �, are available for different soil
types based on work by Rawls et al.,[8], and
cited in the Chin [1] textbook used in this course.
Table 2 presents parameters for a subset of
common soil types. In the attached code, sandy
loam parameter values have been entered.

Students might be informed that additional
steps are available to relate infiltration to changes
in soil moisture. This step is important for simulat-

ing the trends recorded by soil moisture probes,
and in simulation of observed phenomenon. Volu-
metric soil moisture for the time step, �i (m3 m±3),
is the fraction of water in the porous matrix, and
when multiplied by the depth of soil, Ls (m), per
unit area, A (m2), gives the length of water in that
soil profile. From this relation, infiltrated lengths
can be converted to changes in volumetric soil
moisture.

�t � �tÿ1 ��F

Ls
� A �24�

with the conditions if �t exceeds �sat, the remainder
goes to surface runoff or remains ponded.

�t�sat; �t � �sat �25�

(a)

(b)

Fig. 4. (a) Figure of infiltration rate (mm hr±1) as a time series, showing the steady decrease, and cumulative infiltration (mm), showing
steady increase, for a ponded scenario. (b) Figure of unsteady infiltration rate and cumulative infiltration with the same rainfall input,

but without ponding.
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Student feedback on the exercise was collected at
the end of the class.

ASSESSMENT

Assessment and feedback are critical for efficient
and directed adjustment of teaching, and such
assessment can assist in evaluating undergraduate
curricula outcomes. For example, in the US,
ABET accreditation will review how measurement
of student performance in specific exercises
supports conclusions about the success of the
undergraduate programme and curricula. While
the above work is presented as two class lessons,
the assessment of these exercises for specific
performance criteria will help to satisfy the
ABET reporting requirements of the entire under-
graduate programme.

At the close of the above lesson, students were
asked to provide feedback on instructor created
forms posted to the Student Assessment of Learn-

ing Gains (SALG) website [9]. SALG kept student
response anonymous, and summary reports from
the 25 students providing feedback is reported
below. Earlier in the semester, students had been
invited to participate in an online Index of Learn-
ing Styles (ILS) assessment [10]; through this
exercise it was confirmed that many students
desire visual, active and real-world-based learning.
The above lesson attempted to address that learn-
ing style, yet retained text-based, reflective and
theoretical elements to expand student comfort
with non-preferred learning styles.

Responses on the SALG included a 5-point
ranking, where 5 is `very much help', 3 is `moderate
help', and 1 is `no help'; an area for open
comments was also available. Open comments
included mostly praise for the exercise, while
ranking data placed the exercise just above moder-
ately helpful. Results are shown for the 2005
academic year. Figure 5 reports ranking mean
and standard deviation for the master question,
`How did each of the following aspects/activities of

Table 2. Green-Ampt hydraulic conductivity, wetting front suction, and volumetric soil moisture parameter values for common soil
texture types (Chin, 2000). The change in volumetric soil moisture, ��, is computed by taking the difference between �sat and �init,

which is typically at wilting point or higher.

Soil Texture Class
Hydraulic Conductivity

Ksat (m h±1)
Wetting Front Suction

Head  wf (m)

Volumetric Soil
Moisture at Saturation

�sat (m3 m±3)

Volumetric Soil
Moisture at Wilting
Point �wp (m3 m±3)

Sandy Loam 0.011 0.110 0.453 0.085
Silt Loam 0.007 0.170 0.501 0.135
Loam 0.003 0.089 0.463 0.116
Clay Loam 0.001 0.210 0.464 0.187
Sandy Clay 0.001 0.240 0.479 0.251

Fig. 5. Mean and standard deviation of student response (5 is very much help, 4 is much help, 3 is moderate help, 2 is a little help, 1 is
no help) to the question, How did each of the following aspects/activities of the class help your learning?
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the class help your learning?' where the x-axis has
sub-categories. One item of interest in this figure is
the greater deviation in the lower ranked elements
of constructing pseudo code and programming
visual basic. Next year I will explore the cause of
a lower ranking in these activities, but suspect it
may be due to: the relative higher comfort of
calculus topics, the relative short duration of earl-
ier programming classes or the fact that the activ-
ities were at the end of class when students were
tired and possibly feeling rushed. In keeping with
ILS expectations, students on average found their
learning was assisted more by analysis of the figure
than the table.

Figure 6 reports responses to the master ques-
tion, `To what extent did you make gains in any of
the following as a result of the class activity?' with

sub-categories on the x-axis. One trend of interest
in this figure is the perceived low relevance of the
infiltration activity to the real world as compared
with the relatively high ranking for the activity
instilling an appreciation and enthusiasm for the
field of engineering hydrology. Ironically, the
students were asked to undertake this infiltration
exercise because it is more representative of real
world processes than most other simulation tools.
In planning for the next year, I hope to again
imbue in the students a positive outlook toward
the topic matter, and will work to augment their
real and perceived gains in engineering skills.
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