
An Integrated Microcontroller-based
Tutoring System for Computer
Architecture Laboratory Course*

D. E. BOLANAKIS,1 E. GLAVAS,1 G. A. EVANGELAKIS2

1Department of Communications, Informatics and Management, Epirus Educational Institute of
Technology, Arta, 47100 GREECE. E-mail: dmpolanakis@teleinfom.teiep.gr and eglavas@teiep.gr
2Department of Physics, University of Ioannina, Ioannina, 45110 GREECE. E-mail: gevagel@cc.uoi.gr

This paper presents the framework of a microcontroller-based approach for a computer architec-
ture laboratory course intending to reinforce the educational level of non-electrical/electronic
students, placing the emphasis on hardware and software design issues for embedded computers.
The difficulties encountered in this approach are related to a) focusing students' attention on
efficient use of the laboratory's equipment instead of tutoring, a common risk in technological
courses, b) overcoming the comprehension barriers that are a consequence of the educational level
of the students. The former issue is addressed by the design of appropriate equipment for the
laboratory, the latter by a pedagogical strategy that is based on representational and interpreta-
tional picture examples. The proposed methodology proved to help in bridging the gap between the
design problem and the students' semi-formal design view, without missing the essential details of
the tutoring.

Keywords: computer architecture; microprogramming; microcontrollers; system design; illus-
trations.

INTRODUCTION

TEACHING MICROCONTROLLERS has been
for many years a necessity and a challenge. Besides
their broad usefulness, microcontrollers can also
serve as an effective method of initiation into a
microcomputer/microprogramming laboratory
course. Therefore, microcontrollers have been
installed in many microcomputer-based labora-
tories (MBLs), to provide an important tool in
the education of students in industrial electronics
[1] and instrumentation and measurement [2].
Accordingly, one might wonder whether a micro-
controller could be used in a computer architecture
laboratory course and with what benefits and
drawbacks. An anticipated answer is that since a
microcontroller constitutes a complete computer
system, it could be so used. Indeed, introducing a
complete computer system to a class, albeit on a
single chip of limited abilities, would keep students
focused on the basic components of a computer's
architecture, without confusing them with the
plethora of detail in complex computer systems.
In addition, firmware development for the micro-
computer would enrich their backgrounds with
hardware/software design issues for embedded
computer systems. Unfortunately, in a curriculum
that is mainly specialized in topics other than
electronic engineering, the selection of microcon-
trollers for laboratory training in computer archi-

tecture entails the risk of confusing students with
an onslaught of new information. To avoid this,
the present communication focuses on the percep-
tion difficulties of perhaps inadequate students
and proposes a training framework that can be
summarized as follows:

. low-level programming concepts;

. microcomputer architecture and microprogram-
ming;

. system design consideration for specific micro-
controller-based applications.

The two-hours per week laboratory course, takes
place in the second academic year of the syllabus,
at the Department of Communications, Infor-
matics and Management, Epirus Educational
Institute of Technology, Arta, Greece. Curriculum
content is focused mainly on informatics. At this
level of education, the students are already familiar
with digital design concepts, from the prerequisite
course in `digital electronics' and with high-level
programming languages. Under these conditions,
when teaching a microcontroller-based course,
there are two main issues:

a) the pedagogical strategy;
b) the selection of equipment.

Difficulties with the first topic are related to
firmware development using low-level program-
ming techniques as well as establishing a clear
link between the firmware and hardware. Problems
with the second topic are related to the risk,* Accepted 16 January 2007

785

Int. J. Engng Ed. Vol. 23, No. 4, pp. 785±798, 2007 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2007 TEMPUS Publications.

common in technological courses, of drawing
students' attention away from the goal of the
course, by focusing on too much technical detail.

The abundant literature sets out three different
approaches. The first one relies on education
through simulations [3±6]. The advantage of this
method is that it is low cost and can be easily
implemented in the laboratory. However, it suffers
from the limited ability of simulators to describe
technical problems and details that appear in
applications, e.g. the appearance of the bouncing
phenomenon with mechanical switches, or the
illumination modifications of a lamp dimmer
resulting from a pulse width modulation. Such
limitations prompted educators to develop custo-
mized simulators, mostly focusing on the simula-
tion of embedded/external peripherals [3, 4].

The second approach focuses on design and
implementation of the units that constitute a
computer [7±9]. The advantage of this approach
is the experience students gain in digital design and
implementation, as well as obtaining a good
general knowledge of the computer's components.
Nevertheless, there is almost no programming with
this approach, resulting in the impression that
hardware and software development are two sep-
arate issues.

The last approach uses commercial or custom
training kits in which the students develop firm-
ware for the microcomputer. Many researchers are
convinced that use of simulations alone does not
provide sufficient illustration of actual applica-
tions [10], compared with real hardware which
gives students a sense of accomplishment and
they work harder [11]. However, there are some
drawbacks:

a) building up a customized microcomputer/cir-
cuit is a time-consuming procedure which
leaves no alternative but either to design and
implement the system at home [12] or to con-
duct the experiments over the internet [13];

b) adopting a commercial development kit which
requires the course to be adjusted to the fea-
tures of the kit, thus reducing its educational
efficiency. In addition, in most commercial
boards some wiring has also to be done
during the course, a time-consuming procedure
even for three-hour courses [14].

Educators who take on the teaching of microcon-
trollers to non-electrical/electronics engineers
choose one of the above approaches, and propose
methodologies to surmount the barriers of under-
standing. A remarkable effort that is in line with
the use of kits [15] consists in building the micro-
controller course around real-world applications.
This method meets ABET's [16] requirements, uses
the microcontroller as a design tool to solve a
problem, and to avoid students becoming
confused, abstains from architecture details and
low-level programming concepts. Although this
approach has been proved to be very motivational
for the students, it is not, however, suitable for a

computer architecture laboratory course. Details
of the microcontroller as well as assembly language
learning are essential to improve course education.
The consequential question is `how can someone
bridge the gap between the design problem and the
students' semi-formal design view, without missing
out essential details of the tutoring'?

A promising answer was revealed in Levin's
suggestions [17]. Perception difficulties have been
addressed with the use of representational and
interpretational pictures, which are proved to aid
understanding [18] and enhance learning [19].
Besides the pedagogical strategy, this effort has
the drawbacks of the selected approach and
requires a customized training kit with the follow-
ing specifications:

. explicit geometry for quick and easy use;

. minimum work on hardware implementation, so
the board can be ready for use during the
lessons;

. maximum number of practical examples, to
provide experience in microcontroller-based
applications;

. expandability.

Pedagogical strategy and the design of efficient
equipment are the basis of a computer architecture
course that is particularly relevant for students
who are not thoroughly immersed in a specific
area.

HARDWARE

Figure 1 is a schematic diagram of the educa-
tional learning board. The main component is
the 8-bit microcontroller unit (MCU)
MC68HC908GP32. The board is designed to
support voltage regulation and protection against
power inverses and short circuits. It also supports
in-circuit simulation/debugging and programming
of the microcontroller's flash memory through a
RS232 serial link (DB9-A). The configuration
mode is enabled through six slide switches (SW-
PTC0, SW-PTC1, SW-PTC3, SW-IRQ, SW-PTA0
and SW-PTA7). To avoid mistakes during config-
uration, the programming mode can be selected by
setting the switches in the same direction.

Peripherals attached to the educational board,
are the most popular devices commonly used in
microcontroller applications. A red and a green
colour light emitter diode (LED1 and LED2) are
connected to the microcontroller's lines PTD4 and
PTD5. The LEDs can also be forced by the timer
interface module (TIM), a shared function with the
simple I/O pins. Two pushbuttons (SW1 & SW2)
are connected to the PTC0 and PTC1 lines, while a
third pushbutton (SW3) is connected to the exter-
nal interrupt line (IRQ). Two seven segment
displays (TENS and UNITS) are forced by the
same I/O lines (PTB [6:0]) and are activated/
deactivated through PTD4 and PTD5 lines. A
16-key matrix-output keyboard (MATRIX) is

D. Bolanakis, E. Glavas and G. Evangelakis786

F
ig

.
1
.

S
ch

em
a
ti

c
d

ia
g
ra

m
o

f
th

e
ed

u
ca

ti
o

n
a
l

le
a
rn

in
g

b
o

a
rd

(E
L

B
)

An Integrated Microcontroller-based Tutoring System for Computer Architecture Laboratory Course 787

connected to the lines PTA [7:0]. An RS232 serial
link (DB9-B) is used with the serial communication
interface (SCI) subsystem on the microcontroller
(lines PTE0/TxD, PTE1/RxD). A liquid crystal
display (LCD DOT MATRIX) is connected to
the lines PD[3:0] for a 4-bit bus access, and is
controlled through the lines PTC2, PTC3 and
PTC4. Finally, a trimming potentiometer (POT-
ADCin) is connected though a jumper (JP1) to the
PTB7 line, as an input to the analogue-to-digital
(ADC) subsystem.

Figure 2 shows the development kit of the
educational learning board. Its dimensions are 16
cm � 19 cm. For low cost reasons, the board is
designed in a single layer. The silk screen on top of
the board has a detailed description of the materi-
als. Adjacent to the microcontroller are two sock-
ets (CON1, CON2) which are connected to the
microcontroller's pins. The names of these pins are
noted on the silk screen at the side of the connec-
tors. This facility, along with a small breadboard in
the upper left area of the kit, makes this expand-
able learning board useful for students whose
thesis requires them to design custom circuits.

PLANNING THE COURSE

The course outline (Table 1) is separated into
two basic sections. The first section (labs 1±4)

includes an introduction to the microcontroller's
fundamentals and to the mnemonic source code
development (structure of the central processor
unit, registers, memory organization, vectors,
clock cycles, assembler's syntax rules, directives,
etc), as well as a familiarization with the labor-
atory's software and the hardware equipment (the
simulator's user interface environment and the
educational learning board). The second section
(labs 5±13) is dedicated to practical examples,
where flowcharts are used as planning tools for
the code development, the assembly language
instructions are selected to accomplish the
program code and the program code is simulated
(and/or in-circuit simulated) and verified for the
microcontroller.

In the first part of the course, we use the
representational pictures approach, introduced by
J. R Levin in 1981. In the second part, there are
two critical points:

a) the occupation of students on hardware imple-
mentation is time-consuming and might distract
them from acquiring knowledge about the
architecture and handling of the computer
system;

b) it is not trivial to make a clear link between
firmware and hardware.

To overcome the former issue, an educational
learning board was designed, taking into account

Fig. 2. Photo of the educational learning board (ELB)

D. Bolanakis, E. Glavas and G. Evangelakis788

the needs of the course. The aim was to provide the
opportunity for practicing several microcontroller
applications, focusing on firmware development
and study of circuit behaviour under real condi-

tions. Taking into account the time constraints of
the course, the board was designed with no
requirements in hardware implementation. The
latter issue was addressed by the concept of inter-

Table 1. Course outline

An Integrated Microcontroller-based Tutoring System for Computer Architecture Laboratory Course 789

pretational pictures, as introduced by J. R. Levin.
The interconnection between firmware and hard-
ware depicted in parts-and-steps [20] picture exam-
ples, proved able to tackle comprehension
difficulties.

First part of the course: representational pictures
The representational example of Figure 3

describes three actions for:

a) loading executable code into the microcontrol-
ler's memory and initiation of execution;

b) stalling of the code execution;
c) establishing the interface between the micro-

controller and the outside world.

Action 1: initiate the code execution
Every program must be loaded into the compu-

ter's memory before execution can begin. In high-
level code development, this action is carried out
by the linker. The linker inserts the missing sets of
instructions into appropriate places to form a file,
and attaches a loader to the start of the executable
file. In low-level code development, the software
designer uses the appropriate assembler directives
to assign the executable file to the microcontrol-
ler's memory and attaches a loader to the program
counter (16-bit register that contains the address of
the next instruction to be fetched). Additionally,
the designer must be conscious of the memory
locations that are disposed for the executable
code assignment in the microcontroller unit. As
far as these actions are not a matter of high-level
code development, the students are confused with
their use in the assembly language code.

Figure 3 a) and b) depict the assembly language
of a simple source code and its correspondence in
machine language assigned in the microcontroller's

flash memory. The memory locations in grey
contain the machine language instructions and
data, while the rest are unimplemented (signed as
0xXX). The brackets in the pictures define the
machine language instructions from the corres-
ponding original. The assembler's directives for
the source code are noted in grey type, while the
instructions are in black. It is quite clear that the
pseudo-instruction ORG $8000 is used to assign
the program code to the very beginning of the flash
memory, while the last three directives assign
values to the reset vector located at $FFFE and
$FFFF. At the same time, the meaning of the
pseudo-instruction term becomes clear, since the
directives, normally present in assembly code, are
now missing from the flash memory. During reset,
the program counter is loaded with the contents of
the reset vector. The incorrect assignment of the
reset vector in Figure 3 b) causes failure of the
execution of the first instruction of the code.

Action 2: stall the code execution
Unlike PCs, the microcomputer unit does not

automatically break the execution of the code after
the completion of a task. The designer should take
advantage of flow-control statements to perform
similar actions. Looking at the machine language
in the figure is more concrete for the students to
understand how to stall the sequential execution of
the code, by perpetually executing the uncondi-
tional JMP (JuMP) instruction. This sends the
code's execution to the program's memory loca-
tion, labelled LOOP.

Action 3: establish the interface between the
microcontroller and the outside world

Programming the microcontroller presupposes
knowledge of specific memory locations, i.e. I/O

Fig. 3. Representational pictures: mnemonic source code and machine language

D. Bolanakis, E. Glavas and G. Evangelakis790

registers, reset vectors, RAM, etc., particularly
missing in higher-level code development. The
devices used to receive data from the outside
world should be assigned as input devices, and
those used to send data to the outside world should
be assigned as output devices. The MOV instruc-
tions located at $8000 and $8003 initialize the
microcontroller's devices PORTB and PORTA as
input and output ports to the outside world. Then
the microcontroller executes the MOV instruction
located at $8006 to read the data input through the
memory location $0001 and to deliver the data
output to the outside world through the memory
location $0000. Similar actions in high-level
programming, like the example in Figure 4, are
not involved with memory location accesses in the
source code. The standard header file stdio.h,
which is included during the compilation, contains
the macros, structures, templates and other

programming elements of the functions scanf()
and printf() for accessing specific memory loca-
tions for data input from and output to the outside
world, through the corresponding keyboard and
screen device.

The representational example of Figure 5
describes how to use assembler directives to reserve
and assign bytes in the microcontroller's data and
program memory. The RMB pseudo-instruction is
used to reserve a 3-byte variable (VAR), located at
the very beginning of the data memory (according
to the ORG $0040 pseudo-instruction). The MOV
instruction located at $8000, assigns the second
byte ($0041) of the variable to the value of the
constant (labelled as CONST). The pseudo-
instruction FCB is used to assign the string
`HELLO' to the program memory locations
$8003-$8007.

The previous examples are depicted in a reduced
memory map scheme, as the extended memory
map provided by the manufacturer does not
provide an adequate picture for educational
purposes. The pictures contain only basic informa-
tion needed to explain low-level programming
issues and the memory's sectors in the microcon-
troller. At this point it is worth noting that, on first
attempts to build microcontroller-based tutoring
around the computer architecture course, the
lesson for the simulator's familiarization was
placed in the second two-hour laboratory period.
The students were asked to simulate simple assem-
bly language programs, like previous ones, to
realize concepts of low-level programming and to

Fig. 4. High-level programming example for data input/output
from/to the outside world

Fig. 5. Representational pictures: reserve/assign registers in data and program memory

An Integrated Microcontroller-based Tutoring System for Computer Architecture Laboratory Course 791

familiarize themselves with the simulation environ-
ment. The result was disappointing as the students
became confused by the influx of information
related both to low-level programming issues and
simulation techniques. Spending a two-hour lesson
(lab 2) on simple assembly language programs
through representational pictures examples can
be an efficient alternative in such situations. In
addition, students can verify assembly language

examples in the subsequent lesson (lab 3), where
new learning issues only relate to simulation tech-
niques.

Second part of the course: interpretational pictures
Figure 6 describes the steps of a matrix

keyboard scanning procedure, until the switched
on keybutton `3' is pressed. Three points are
emphasized in the picture. The first one refers to

Fig. 6. Interpretational pictures: matrix keyboard scanning algorithm.

D. Bolanakis, E. Glavas and G. Evangelakis792

the table that carries the combinations of the
expected switched on keybuttons, marked as the
expected value (?=x).

The other two refer to the scanning algorithm,
showing the relationship between the expected and
true value on port A as well as the value of the
index register (X), pointing to the keybutton that is
scouted. Following the steps in the figure, the code
analysis becomes easy to follow:

. Step 1: line 1 replaces the contents of X (index
register low) with zeros. Line 2 assigns the
accumulator with the first element of the array
(0b01110111). Line 3 stores the contents of the
accumulator in PORTA. The less significant
lines of PORTA (PTA[3:0]) are assigned as
inputs, while the most significant lines are
assigned as outputs. The input lines in PORTA
are changed according to the keybutton that is
switched on. Since the keybutton `3' is switched
on, the first element of the array, representing
the expected value on PORTA when the key-

button `1' is switched on, does not match the
true value on PORTA. Line 4 confirms this
inequality (accumulator 6�porta.data) and the
microcontroller skips the execution of line 5.

. Step 2: the X register is incremented by one,
pointing to the second element of the array
(0b10110111). Lines 2±5 examine and confirm
the inequality between the expected value and
the true value on PORTA, when the keybutton
`2' is assumed and keybutton `3' is switched on.
Line 5 is skipped.

. Step 3: the X register is unary incremented,
pointing to the third element of the array
(0b11010111). Lines 2±5 examine and confirm
the quality between the expected value and the
true value on PORTA, when the keybutton `3' is
assumed and switched on. Line 5 is executed.

The above example is difficult to understand even
with use of a simulator. During the simulation,
students alternate the lines in PORTA between the
expected and the true value, actions that cause

Fig. 7. Interpretational pictures: LCD message printing and shifting

An Integrated Microcontroller-based Tutoring System for Computer Architecture Laboratory Course 793

confusion. In addition, pictures that present only
the interconnection between the microcontroller
and the matrix keyboard, are appropriate only
for students with an electrical/electronics bent. A
parts-and-steps example makes a clearer link
between the firmware and the hardware and
surmounts the barriers of understanding.

A similar example in Figure 7 depicts the
procedure for printing the message `HELLO' on
a liquid crystal display (LCD). In this example, the
message is purposely printed out of the LCD's
range, to highlight the relationship between LCD
matrices and DDRAM locations. The latest step of
the procedure indicates the way of revealing the
whole message on the display by the execution of
the appropriate command that shifts DDRAM
one position to the left. In addition, the values of
the address counter (AC) pointing to the next
memory location, appear on every single step of
the procedure.

Figure 8 presents a parts-and-steps example of
the bouncing effect of mechanical switches in the
code execution. The schematic a) presents the
expected reaction of a pushbutton when the
button is switched on (time t1) and switched off
(time t2), while the schematic b) presents the actual

result of the switch. The schematic c) presents the
bouncing effect in the `Example 1' assembly code
when the button is switched on. The schematics d)
and f) present the debouncing procedure accom-
plished with a 50 msec delay, in the `Example 2'
assembly code.

. Example 1: in Figure 8 c), the button is switched
on at time t1 and the PTC0 signal goes low. The
microcontroller executes the BRSET instruction
in line 1 (first pulse of the clock), which finds the
case false. After five clock cycles, the microcon-
troller fetches the subsequent NOP instruction
in line 2, which is executed in one clock cycle. On
the seventh pulse of the clock, the microcontrol-
ler executes the BRCLR instruction in line 3 and
finds the case true. While the user still holds the
button switched on, the mechanical switch
bounces on time t2, causing the microcontroller
to mistakenly scout the button switched off
(12th pulse of the clock). As a result, the micro-
controller finds the case in line 3 (BRCLR) false
and executes the subsequent NOP instruction in
line 4. Normally this program should execute
line 2 of the code when the button switches on,
and line 4 when the button switches off.

Fig. 8. Interpretational pictures: bouncing effect on the execution of the assembly code

D. Bolanakis, E. Glavas and G. Evangelakis794

. Example 2: in Figure 8 d) the button is switched
on at time t1 and the signal on the PTC0 signal
goes low. The microcontroller executes the
BRSET instruction in line 1, which finds the
case false. After five clock cycles, the microcon-
troller delays 50 msec (line 2) until the bouncing
phenomenon is extinguished. Then the micro-
controller executes the NOP instruction in line 3
(nth pulse of the clock), and after that fetches the
instruction BRCLR on the clock pulse n+1. The
same procedure is described in Figure 8 f), when
the button is released. Due to the delay of 50
msec, the bouncing phenomenon does not affect
the flow of the execution of the code.

Figure 9 depicts an example of a multiplexing
technique used to manage two seven-segment
displays through a single output port (PORTB).
The displays' common cathodes are activated/
deactivated through the lines PTD4 and PTD5.
In the first step, PORTB is cleared and PTD4
activates the first display (lines 1, 2 in the assembly
code). In the second step the number `1' appears on
the first display and the code delays (lines 3, 4). In
the third step, PORTB is cleared once more, and
the second display is activated through the PTD5
signal (lines 5, 6). In the fourth step, the number `5'
appears on the second display and the code delays
(lines 7, 8). Line 9 repeats the code execution for
ever. Selecting an appropriate delay in the assem-

bly code causes a non-discernible alternation of the
displays, and the user sees the number `15' on the
displays.

ASSESSMENT

Forty-seven students expressed an opinion of
the computer architecture laboratory course.
Table 2 summarizes the results of an 11-question
assessment survey. The questionnaire was given to
each student at the latest laboratory course, one
week before the exam period.

The first four questions were selected to inquire
into the students' attitude towards involvement in
the topics of the course, i.e. knowledge of the
embedded computer system architecture and
operation (Question 1), the low-level programming
concepts of microcomputer technology (Question
2), the overview of areas that microcomputers/
microcontrollers are dealing with (Question 3),
and the digital design aspects of implementation
of a microcontroller's hardware (Question 4).
Question 5 inquired whether involvement in
embedded computers provided students with the
opportunity to integrate topics that were covered
in previously taken courses. Questions 6 and 7
explored the challenges implicit in the present
approach, when the students are dealing with real

Fig. 9. Interpretational pictures: driving two 7-segment displays from the same output device using multiplexing techniques

An Integrated Microcontroller-based Tutoring System for Computer Architecture Laboratory Course 795

hardware. Questions 8 and 9 explored student
motivation and ability, particularly in regard to
future involvement with embedded computer
systems technology. Finally, Questions 10 and 11
examined whether students believed that the
course had positive results on their education and
interest in technological courses.

The average score on the first three questions
appear in ascending order, which was expected
given the educational approach. The students
worked more on creating assembly language code
for a microcontroller. In this case, the training
benefit is dedicated more to microprogramming
and microcomputers. The lack of hardware imple-
mentation during the lessons is reflected by the low
score in Question 4. However, it was a conscious
decision to leave hardware implementation out of
lessons, as it would negatively affect students'
progress on issues summarized in the first three
questions. The slight difference in average score on
Questions 1±3, indicates that the time-distribution
on various topics of the course was properly
defined, leaving no critical aspects out of the
question. The average score on these questions
might not be impressive, but it is promising given
the students' academic backgrounds. It is worth
remembering at this point that the students' back-
ground on related topics was rather limited, since
the only prerequisite was that they should have
previously attended the two-hour weekly theory
and laboratory practice in digital design.

On Question 11, the students found the labora-
tory course inspiring, but with Question 8 they do
not appear sufficiently motivated to want to
become involved with microcontrollers, micropro-
cessors, embedded systems, etc, in the future.

However, this is a reasonable decision, given that
most of the students would probably like to see
themselves as software engineers. In Question 10,
the students found the laboratory education level
satisfying, although they don't believe that they
acquired the ability to use the microcontroller in
future applications (Question 9). This opinion too
is fair enough, since this laboratory provides only
an introduction to microcontrollers, so the course
could not cover in-depth issues involved with real
applications. Question 9 would probably earn
more points in a subsequent senior level tutoring,
where the students could work on real projects.

Positive results emerged from Questions 6 and 7,
in which students emphasize that working with
hardware increased their interest in the course
and gave them a real sense of accomplishment.
What is even more promising is the positive result
in Question 5, where the students recognize that
the course helped them to understand topics they
had been taught previously. Indeed, introducing
the hardware part of microcomputer and micro-
programming issues, makes it easier to appreciate
in depth the details of higher-level code develop-
ment for a computer, and in some cases even arrive
at a new personalized coding style.

CONCLUSIONS

This paper has presented a computer architec-
ture laboratory course based on microcontroller
tutoring that is addressed to students who have not
specialized in electronic engineering. The selected
approach was based on the design of appropriate
educational equipment and an educational method

Table 2. Assessment survey

D. Bolanakis, E. Glavas and G. Evangelakis796

that used representational and interpretational
pictures. It emerged that representational and
interpretational picture approaches are effective
in surmounting several difficulties in student
comprehension. Moreover, the students did not

encounter serious difficulties in using the educa-
tional equipment, which also increased their inter-
est in the course.

Acknowledgement ÐThis work was partially supported by the
research committee of Epirus Institute of Technology.

REFERENCES

1. B. Murovec and S. Kocijancic, A USB-based data acquisition system designed for educational
purposes, Int. J. Eng. Ed. 20, 2004, pp. 24±30.

2. F. J. F. MartõÂn, J. C. C. RodrõÂguez, J. C. AÂ . AntoÂn, J. C. V. PeÂrez, et al., An electronic
instrumentation design project for computer engineering students, IEEE Trans. Educ. 48, 2005.
pp. 472±481.

3. A. del RõÂo, J. J. RodrõÂguez-Andina, and A. A. Nogueiras-MeleÂndez, Learning microcontrollers
with a CAI-oriented multi-micro simulation environment, IEEE Trans. Educ. 44, 2001, pp. 197±
211.

4. A. del RõÂo and J. J. RodrõÂguez±Andina, UV151: a simulation tool for the teaching/learning the
8051 microcontroller, in Proc. Frontiers in Education Conf., Kansas City, MO, pp. F4E/11-F4E/16.
(2000).

5. H. B. Diab and I. Demashkieh, A computer-aided teaching package for microprocessor systems
education, IEEE Trans. Educ. 34, 1991, pp. 179±183.

6. H. Grunbacher, Teaching computer architecture/organization using simulators, in Proc. Frontiers
in Education Conf., Tempe, AZ, pp. 1107±1112. (1998).

7. N. L. V. Calazans and F. G. Moraes, Integrating the teaching of computer organization and
architecture with digital hardware design early in undergraduate courses, IEEE Trans. Educ. 44,
2001, pp. 109±119.

8. D. C. Hyde, Teaching design in a computer architecture course, IEEE Micro 20, 2000, pp. 23±28.
9. G. M. Brown and N. Vrana, A computer architecture laboratory course using programmable logic,

IEEE Trans. Educ. 38, 1995, pp. 118±125.
10. Wahyudi, M. J. E. Salami and A. Albagul, Development of a microcontroller-based control system

with a hardware-in-the-loop (HIL) method for control education using matlab/simulink/xPC
target, Int. J. Eng. Ed. 21, 2005, pp. 846±854.

11. J. O. Hamblen, A. Parker and G. A. Rohling, An instructional laboratory to support micro-
programming, IEEE Trans. Educ. 33, 1990, pp. 333±336.

12. J. W. Jeon, A microprocessor course: designing and implementing personal microcomputers, IEEE
Trans. Educ. 43, 2000, pp. 426±433.

13. A. Kutlu, Microlab: a web-based multi-user remote microcontroller laboratory for engineering
education, Int. J. Eng. Ed. 20, 2004, pp. 879±885.

14. D. F. Hanson, A microprocessor laboratory for electrical engineering seniors, IEEE Trans. Educ.
E-24, 1981, pp. 8±14.

15. T. K. Hamrita and R. W. McClendon, A new approach for teaching microcontrollers courses, Int.
J. Eng. Ed. 13, 1997, pp. 269±274.

16. (ABET) Accreditation Board of Engineering and Technology. Online. Available: http://www.
abet.org/

17. J. R. Levin, On functions of pictures in prose, in F. J. Pirozzolo & M. C. Wittrock (eds.),
Neuropsychological and Cognitive Processes in Reading, pp. 203±228 Academic Press, New York
(1981).

18. D. Kirsh, Why illustrations aid understanding, in Proc Int. Workshop on Dynamic Visualizations
and Learning, Tubingen, Germany, (2002).

19. R. N. Carney and J. R. Levin, Pictorial illustrations still improve students' learning from text,
Educ. Phychol. Review 14, pp. 5±26 (Mar. 2002).

20. R. E. Mayer and J. K. Gallini, When is an illustration worth ten thousand words?, J. Educ.
Psychol. 82, 1990, pp. 715±726.

Dimosthenis E. Bolanakis was born in Crete, Greece, in November 1978. He received a B.Sc.
degree in electronic engineering from the Department of Electronics, Thessalonikis
Educational Institute of Technology (TEI), Thessaloniki, Greece, in 2001 and his M.Sc.
degree in modern electronic technologies from the Department of Physics, University of
Ioannina (UoI), Ioannina, Greece in 2004. He is currently pursuing a Ph.D. degree in
Physics Department, UoI, Ioannina, Greece. During his M.Sc. education, he participated
as a teaching assistant in the elective graduate course MicrocontrollersÐMicroprocessors
at the Physics Department, UoI, for the academic years 2003±2004. From 2003 till today,
he has taught Computer Architecture lab training at the Department of Communications,
Informatics and Management, Epirus Educational Institute of Technology (TEI.), Arta,
Greece. At present his main interest is data acquisition systems.

An Integrated Microcontroller-based Tutoring System for Computer Architecture Laboratory Course 797

Euripidis Glavas received a B.Sc. degree in the Physics Department of the University of
Ioannina, Ioannina, Greece, in 1983, and the Ph.D. degree from Sussex University, UK, in
1989. He has worked as a Research Associate at the University of Sussex, the University of
Liverpool and the Democritus University of Thrace. In 2001, he joined the Department
of Communications, Informatics and Management of the Epirus Educational Institute of
Technology (TEI.), Arta, Greece, where he is an associate professor. Currently, he is
teaching an undergraduate course in Computer Architecture at the Department of
Communications, Informatics and Management as well as a postgraduate course in
microprocessors architecture and assembly language at the Physics Department, University
of Ioannina, Ioannina, Greece. His primary research interests include Computer Archi-
tecture, Computers in Education, Microprocessors and Microcomputers.

Giorgios A. Evangelakis received his B.Sc. degree in the Physics Department, Aristotelian
University of Thessaloniki, Thessaloniki, Greece in 1980 and his Ph.D. degree from the
University of Nancy I, Nancy, France in 1989. He is an associate professor at the Physics
department, University of Ioannina, Ioannina, Greece, and currently teaches the elective
graduate course MicrocontrollersÐMicroprocessors. His primary research interests are
computer simulation techniques and applications.

D. Bolanakis, E. Glavas and G. Evangelakis798

