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Undergraduate fluid mechanics courses typically deal with the analytical or integral solutions for
the governing equations of motion. The shift to graduate fluid mechanics frequently corresponds to
the use of the differential equations of motion and their subsequent solution using computational
means. Often there is a disconnect in regards to the problems when moving to the higher level
courses. The goal of this paper is to provide a connecting thread between the two levels of learning.
This is accomplished by comparing one-dimensional (1-D) and two-dimensional (2-D) simulations
of the Plane Poiseuille, Plane Couette and Couette-Poiseuille problems against their analytical
solutions. For the incompressible Navier-Stokes equations relevant to these problems, the Semi-
Implicit Method for Pressure-Linked Equations (SIMPLE) is utilized as the numerical method.
The 1-D SIMPLE method helps to illustrate the 2-D solution algorithm and introduce the reader to
pressure correction methods. The end result of the paper is a linking of undergraduate and graduate
knowledge through the use of the SIMPLE method in increasing order of complexity.
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undergraduate; graduate; incompressible.

INTRODUCTION

UNDERGRADUATE FLUID MECHANICS
courses typically deal with the analytical or inte-
gral solutions for the governing equations of
motion. Using these methods helps illustrate to
the students the fundamentals of fluid mechanics
through problems that can be solved by hand. This
also allows for the use of tests to judge the
students' knowledge of the subject. The shift to
graduate-level computational fluid dynamics
(CFD) courses frequently corresponds to the use
of the differential equations of motion and their
subsequent solution using computational means.
Often there is a disconnect in regards to the
problems when moving to the higher level courses.
This can be exacerbated when the student moves
from one university to another as in the first
author's case. In addition, different teaching tech-
niques by instructors can add to the confusion as
the student does not have a common thread
between the two levels of learning. While not all
of these issues can be readily alleviated, this paper
poses a way to bridge some of the gap between
undergraduate and graduate fluid mechanics using
simple fundamental problems.

In undergraduate courses, students are first
introduced to the concept of internal fluid flow

(or pipe flow) through the Plane Poiseuille [1±6],
Plane Couette [7±13] and Couette-Poiseuille
problems. These problems have one-line analytical
answers that help explain to the student the
concepts of pressure differences, velocity profiles,
shear stresses and laminar flow. At first glance, the
use of advanced numerical techniques to solve
these problems appears to be an overkill. However,
these fundamental problems can provide a
common thread between the levels of learning
while providing nice and neat solutions to compare
and contrast. Verifying numerical methods against
known results is a useful way for increasing the
level of confidence of a correctly programmed
solution. This merging of analytical and numerical
problems is not a new concept with Chow's intro-
ductory book in CFD a prime example of this
technique [14]. This paper builds on that earlier
work by including the advanced concepts of pres-
sure-correction, staggered grids along with dimen-
sional reduction and source terms.

In this paper, the differential governing equa-
tions of mass and momentum (Navier-Stokes) are
first given in compressible two-dimensional (2-D)
format. They are then simplified via the incom-
pressible assumption for use with low velocity
flows (M < 0.3) and constant density fluids perti-
nent for the Plane Poiseuille, Plane Couette and
Couette-Poiseuille problems. They will then be
simplified into one-dimensional (1-D) format
including source terms to account for relevant* Accepted 14 April 2006.
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phenomena. Numerical methods are then illus-
trated for the 1-D equations as a precursor to a
full 2-D solver. Often the 1-D formulation of a
numerical method helps to explain the steps
needed for the 2-D equations; i.e. most two- and
three-dimensional solvers are based off a one-
dimensional numerical algorithm [15].

A simple ordinary differential equation solver is
first presented for a steady-state solution of the 1-D
method to give an introduction into the field of
Computational Fluid Dynamics. Then a commonly
used pressure correction method, Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE)
[16±20], is described to solve for the transient
version of the 1-D equations. This SIMPLE
method is then extended into the second-dimension
to provide a full 2-D solver of the incompressible
Navier-Stokes equations of mass and momentum.
After the description of the methods, simulation of
the Plane Poiseuille, Plane Couette and Couette-
Poiseuille problems are accomplished using the
pertinent 1-D and 2-D numerical algorithms and
compared against the analytical solutions. A sub-
sequent problem of Driven Cavity Flow is then
modeled as a sample of continuation of concepts
in fluid mechanics. In all cases, numerical models,
boundary conditions and assumptions are noted for
reproduction by the reader.

GOVERNING EQUATIONS

In this section, the two-dimensional (2-D)
governing equations of motion (Navier-Stokes)
for compressible flow are first simplified via the
incompressible assumption for use with low velo-
city flows (M < 0.3) and constant density fluids.
They are then simplified into one-dimensional
(1-D) format in order to increase their solution
speed and help explain numerical algorithms. Since
we will be solving the incompressible version of the
Navier-Stokes equations, we will not have to solve
the energy equation. This is because it can be
solved independently of the mass and momentum
equations through a decoupling of the differential
equations.

The 2-D compressible Navier-Stokes mass and
momentum equations are:
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Quite often, the assumption of a Newtonian fluid
is made where the viscous stresses in the above
equations are related to the rates of strain as
follows:
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where � is the coefficient of viscosity or dynamic
viscosity and � is defined as the second coefficient
of viscosity. The combination of � and � in the
following form is known as the bulk viscosity, k:

k � �� 2
3� �5�

If the bulk viscosity is assumed negligible, via the
Stokes hypothesis, we get:
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3
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Simplifying the governing equations of compres-
sible flow for incompressibility �� �6 c� results in
the following equations:
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In order to get this form of the incompressible
momentum equations, the continuity Equation (7)
is substituted within the shear stress terms (4) when
converting.

For fast calculation of the 2-D incompressible
equations, frequently they are simplified to 1-D.
However, in order to capture the correct flow
phenomena, source terms need to be added to
these equations. The 1-D incompressible equations
for mass and momentum including these source
terms are:
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where Smass and Smom explain pertinent phenomena
in the compressible equations like source/sinks of
mass and friction [21, 22]. In order to get to this
formulation, the momentum equation does not
utilize the continuity Equation (10) in the shear
stress terms as before. Instead, the shear stress
terms remain as they are written in Equation (4).

As discussed in a previous paper [22], the
momentum source term for the 1-D compressible
equations accounting for friction (or no slip walls)
is equal to:

Smom � ÿ� fF u uj j
2

As

V
�12�

For laminar (Re < 2300), fully-developed pipe
flow, the Darcy friction factor [23] written with
Moody subscript [24] is equal to:

fM � 64

Re
�13�

where:

Re � �ud

�
�14�

However, the friction factor used in pipe flow
calculations for the momentum source term in
Equation (12) is the Fanning friction factor [25]:

fF � fM

4
�15�

Later, in the Examples section, this source term
will be adjusted to account for the fact that we will
not be modeling pipe flow. This is because we will
be assuming that the z-direction goes to infinity
based on the analytical problems reproduced.
Hence, there is no effect on the flow pattern
from the wall in this direction. In pipe flow, this
is not the case and the origin of the above
momentum source term takes this z-direction
into account through a derivation using cylindrical
polar coordinates [26].

Often, the time-scales of velocity are usually
small in comparison to the other flow phenomena.
As a result, the steady-state formulation of the 1-D
incompressible equations can be used:
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d2u
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(1-D incomp ss: x-mom) �17�
These equations also provide a simple way of
checking the steady-state solution of the transient
formulation in Equation (11). In addition, the
numerical method described in this paper is for
the steady-state solution through continual itera-
tion involving the time-derivative in the x-momen-
tum equation.

NUMERICAL SOLVERS

In the previous section, we simplified the
governing equations moving from the highest
level of description to the lowest; i.e. 2-D transient
to 1-D steady-state. The reason for doing so is to
help illustrate the evolution of these simpler
formulations. In this section, we document the
numerical solvers for incompressible versions of
the 1-D and 2-D mass and momentum equations
in the reverse order of description, that is, 1-D
steady-state to 2-D transient. This is because the
numerical algorithms involved often increase in
complexity as the level of the equations becomes
more complete. In addition, often the 1-D formu-
lation of the numerical method helps to explain the
steps needed for the 2-D equations, that is, most
two- and three-dimensional solvers are based off a
one-dimensional numerical algorithm [15].

One-dimensional steady-state solver
The 1-D steady-state solution of the incompres-

sible mass and momentum equations can be solved
in an Euler explicit [27, 28] manner for first-order
accuracy in space. Using this method and solving
for the velocity and pressure utilizing a backward
difference for the differential operators equals:

ui � uiÿ1 � Smassi

�
�x �18�

pi � piÿ1 � Sprsi
�x �19�

where:
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3
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�x2

� �
ÿ 2uiSmassi

� Smomi
�20�

utilizes a central-difference operator for the
viscous term as described in [29]. This numerical
method is acceptable only if the source terms do
not become too large and the algorithm becomes
unstable. (In order to determine this stability
criterion, a von Neumann analysis would need to
be completed involving the source terms.) The
boundary conditions for this solver are:

uji�1� uin and pji�1� pin �21�
As the reader can see, using the Euler explicit
method for this set of equations is quite simple
to understand and program into a computer. If
there are no source terms, the solution is trivial
with the velocity and pressure constant across the
numerical domain. This method can be used as an
introduction into the realm of computational fluid
dynamics and is relevant for both undergraduate
and graduate courses. It does not require advanced
algorithms or complicated grids to compute velo-
city and pressure profiles.

One-dimensional SIMPLE method
When we look to solve the transient momentum,
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Equation (11), we find that we need to incorporate
a more complex numerical algorithm. In this
paper, we use a pressure-correction technique
which utilizes estimates of pressure within the
momentum equation in order to solve for the
velocity profile [30]. In this method, only the
correct pressure distribution will allow the velocity
field to satisfy the continuity equation. A
commonly used pressure-correction method is the
Semi-Implicit Method for Pressure-Linked Equa-
tions (SIMPLE) algorithm which has been used
since the early 1970s for solution of the 2-D
incompressible equations with good accuracy
[16±20]. This method uses the time-dependent
momentum governing equations to solve for the
steady-state solution through continual iteration.
We first begin by illustrating this method for the 1-
D transient incompressible equations to help
describe the method and make it easier for the
student to understand.

In the 1-D SIMPLE method, the actual pressure
and velocity are replaced with estimated and
correction values:

p � p� � p0 and u � u� � u 0 �22�
where p� and u� are the estimated variables while p0
and u 0 are the correction variables. As a result, the
governing equations can be rewritten using these
estimated and correction variables:
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It is important to note that the source terms also
need to be converted into estimated and correction
values because we will solve the estimated and
correction equations separately.

The first step in the SIMPLE method is to
assume a pressure profile p�within the computa-
tional grid. The second step is to split the momen-
tum equation into two separate equations
(estimated and correction):
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(momentum) �26�
and then solve the (momentum*) equation for u�
over the entire domain with the source term a
function of u� and p�.

The third step in the method is to calculate the

velocity and pressure correction variables by
combining the (momentum0) and mass equations
into a Poisson equation for pressure. Often in the
literature, we find that the velocity correction
equation derived from (momentum0) equation
(26) drops the flux and viscous terms for simplicity:

�
@u 0

@t
� ÿ @p0

@x
� S 0mom �27�

Since the SIMPLE method uses iterative conver-
gence, neglecting these terms will have no bearing
on the final result. It just may take the method
somewhat longer to converge because the correc-
tion values are not strictly conservative with
respect to the governing equations.

Taking a first-order time-derivative of this equa-
tion and making the assumption that the velocity
correction at the previous time-step is equal to zero
because the solution has converged, we get:

u 0 � �t

�
S 0mom ÿ

@p0

@x

� �
�28�

Now, taking the derivative of this equation with
respect to x we recover:
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Substituting the mass conservation equation (23)
for the @u 0=@x term in the above equation results
in the following Poisson equation for the pressure
correction:
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We now solve for the velocity and pressure correc-
tion variables in an iterative manner because the
source terms could be a function of u 0 and p0. If
there are no source terms, the pressure correction
equation can be solved first and then used within
Equation (28) to determine the velocity correction.
The final step involves updating the variables
through equation (22) and iterating until a desired
convergence criterion is met.

One-dimensional SIMPLE collocated grid
Ideally, when writing the discretized solution of

the SIMPLE algorithm, central difference methods
for the flux (convective) terms would be preferred
because of their second-order spatial accuracy.
However, researchers have found two issues
when formulating the method in this manner
[29]. The first problem is because of an odd-even
decoupling of the equations in which the physical
solution is superimposed by oscillatory spurious
solutions. This can be solved by adding higher-
order artificial dissipation terms to damp the high-
frequency errors (see [31]). The second problem is
from the elimination of the time derivative of
density which causes an additional uncoupling in
the centrally discretized equations when applied to
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finite volume (difference) meshes. This can result
in mass conservation errors and oscillations in the
solution. In order to circumvent these issues, this
paper describes two solution algorithms for the 1-
D case in preparation for the 2-D solution. The
first method uses an upwind algorithm on a
collocated grid originally determined by Bernard
and Thompson [32] whereas the second method
uses the more traditional staggered grid method
first proposed by Harlow and Welch [33] and often
used for the 2-D SIMPLE method. Since the idea
of the staggered grid may be new to the reader, the
collocated grid method is described first to help
with the solution procedure.

Using the collocated grid illustrated in Fig. 1,
the second step of the SIMPLE method involves
solving for the velocity component u� after gues-
sing the pressure (p�) at each grid point:

u�i � ui ��t
4�

3

ui�1 ÿ 2ui � uiÿ1� �
�x2

� S�momi

�
ÿ

�
u2

i�1 ÿ u2
i

ÿ �
�x

ÿ p�i ÿ p�iÿ1

ÿ �
��x

� �31�

In this case, the velocity at the previous time-step is
equal to the previous guess and the source term is
computed implicitly for stability. In the Bernard
and Thompson paper, the flux term is not included
because they did not include source terms; hence,
the velocity is constant in the domain and this term
disappears. In this paper, the solution algorithm is
written in a general manner to account for any
manner of source term and velocity does not need
to be constant.

Because of the numerical method, the boundary
conditions of this equation involve specifying the
exit velocity and not the inlet velocity from the
upwind differenced flux term. This is because the
flux term is the important finite-difference that
propagates the flow whereas the viscous term
involves only a secondary damping effect. In
addition, since the viscous term is central-differ-
enced, we will need to include a boundary condi-
tion for the inlet, that is, the solution of this
equation is over the domain i � 2 to Nx ÿ 1. As
a result, the boundary conditions for this equation
equal:

du�

dx

����
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� S�mass

��
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and u�Nx
� uoutlet �32�

In this case, we utilize a steady-state equation for
the boundary conditions in order to eliminate the
need for a time-dependent algorithm. It is impor-
tant to mention that the boundary conditions for
the estimated pressure follow in a similar manner
to the estimated velocity but the inlet pressure can
be specified because of the difference direction:

p�1 � pinlet and
dp�

dx
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� S�prs

���
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Continuing the finite difference in the above
manner, we find that the Poisson equation for
the pressure correction is equal to:

p0i �
p0i�1 � p0iÿ1
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Since a central difference is utilized for the pressure
correction, boundary conditions have to be deter-
mined for i � 1 and Nx. These are similar to the
boundary conditions for the estimated pressure,
Equation (33), but specification of the inlet pres-
sure at this boundary requires the pressure correc-
tion to be equal to zero:

p01 � 0 and
dp0

dx

����
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� S 0prs

���
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After calculating the pressure correction over the
entire domain, the velocity correction can be
computed as:

u 0i �
�t

�
S 0momi

ÿ p0i ÿ p0iÿ1

ÿ �
�x

� �
�36�

with the boundary conditions computed similarly
to the estimated velocity and the pressure correc-
tion:

du 0

dx

����
i�1

� S 0mass
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i�1

and u 0Nx
� 0 �37�

New values for the pressure and velocity are then
computed from the estimated and correction
values with an under-relaxation constant included
in the pressure solution:

p � p� � �p0 and u � u� � u 0 �38�
This under-relaxation constant (0 < � � 1) is
needed because it has been found that the pressure
correction equation tends to overestimate its value
whereas the velocity correction values are reason-
able [29]. To complete the solution procedure, p
and u are set equal to p� and u� and iteration is
repeated until convergence is found at each time-
step.

One-dimensional SIMPLE staggered grid
Since the flux term in the estimated velocity

equation for the collocated grid method does not
take into account the entrance velocity from the
upwind differencing, this numerical discretization
is not the preferred solution procedure. Instead,
researchers tend to use a staggered grid, illustrated
in Fig. 2, where the velocity is defined on the �
grid (empty circles) and p is defined on the i grid
(filled circles). Staggered grids allow for a better
coupling of the variables and also improve the
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stability of the system of equations. In addition,
they permit the programmer use of central differ-
ence schemes in order to increase accuracy to
second-order and, in our case, specification of an
inlet velocity.

For the 1-D staggered grid example that follows,
we discretize the equations with the pressure on the
grid and the velocity on the � grid. Therefore, in
order to compute the value for the velocity on the
pressure grid, an average quantity is used:

ui � 1

2
u

iÿ1
2

� u
i�1

2

� �
�39�

The staggered grid is utilized when solving for the
estimated velocity because the � grid values of
velocity must be taken into account:

u�
i�1

2

� u
i�1

2

��t

"
4�

3

u
i�3

2

ÿ 2u
i�1

2

� u
iÿ1

2

� �
�x2

�
S�mom

i�1
2

�
ÿ

u2

i�3
2

ÿ u2

iÿ1
2

� �
2�x

ÿ p�i�1 ÿ p�i
ÿ �

��x

#
�40�

In this case, a second-order central derivative is
used for the flux term in comparison to the first-
order upwind derivative in Equation (31). Since
the grid is defined for pressure, ghost cells for
velocity are needed in order to complete the
solution domain. The inlet velocity is defined as
the entrance ghost cell, whereas the steady-state
equation for the velocity is utilized at the exit.
Because the exit ghost cell occurs after the compu-
tational domain, the source term is no longer valid
there and is therefore calculated at the last point in
the domain:

u�1
2

� uinlet and
du�

dx

����
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2

� S�mass
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The boundary conditions for the pressure are
computed as before in Equation (33) because of
the pressure grid. The finite difference format of
the Poisson equation for the pressure correction
now includes the � grid velocity and source term
variables due to the staggered mesh.
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with the boundary conditions the same as Equa-
tion (35). The velocity correction also reflects the
staggered grid:
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with the following ghost cells computed similar to
the estimated velocity ghost cells:

u 01
2

� 0 and
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dx
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2
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��
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�44�

Fig. 2. SIMPLE 1-D staggered grid illustrating the variable solution paths taken for (a) velocity and (b) pressure.

Fig. 1. SIMPLE 1-D collocated grid illustrating the variable
solution paths taken.
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Equation (38) completes the solution algorithm
and an iterative procedure can be used until
convergence of the pressure and velocity domain.

When calculating the time-step to use within the
algorithm, the Courant and diffusive stability
conditions are combined:

�t � min
�x

umaxj j ;
�x2

4�

� �
�45�

This value is just a guideline as the source term can
affect the stability of the system. Reduction in the
time-step and/or under-relaxation constant can be
done if the solution is unable to converge.

The uses of source terms within the 1-D
SIMPLE solvers are needed to account for
phenomena such as wall friction. These compo-
nents can add to the confusion of the numerical

method and may be omitted when first discussing
pressure-correction techniques in a classroom
setting. They can be included after the initial
discussion of the method to illustrate to the
students why source terms are important and
how they can be incorporated within the solver.
The use of estimated and correction values of the
source terms is also important when the situation
arises where they are needed in the two-dimen-
sional method presented in the next section. The 1-
D methods presented can then be referenced to
illustrate how they can be incorporated correctly
within this pressure-correction technique.

Two-dimensional SIMPLE solver
As mentioned in the Introduction, we often find

that 2-D numerical methods are formulated the
same as their 1-D counterparts. In the following

Fig. 3. Staggered grid schematic for 2-D flow.
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paragraphs, the 2-D SIMPLE method is shown to
follow the exact same algorithm as the 1-D
SIMPLE method. In the 2-D case, the pressure
and x-velocity terms are again split according to
Equation (22) with the y-velocity split similarly:

v � v� � v0 �46�
The governing equations reflect this incorporation
as illustrated here by the mass equation (now
ignoring source terms):

@u�

@x
� @u 0

@x
� @v�

@y
� @v0

@y
� 0 �47�

We now have two x-momentum and y-momentum
equations each, divided into estimated and correc-
tion variables. The correction variable formulation
of the momentum equations is used to calculate the
u and v velocity correction equations like the 1-D
method; see equation (27):

�
@u 0

@t
� ÿ @p0

@x
and �

@v0

@t
� ÿ @p0

@y
�48�

Again, the flux terms are omitted in order to
simplify the method. Now, taking a first-order
time derivative and making a similar assumption
to the 1-D case with respect to the previous time-
step, we get the equations for the velocity correc-
tions; see equation (28):

u 0 � ÿ�t

�

@p0

@x
and v0 � ÿ�t

�

@p0

@y
�49�

Similar to the 1-D method, taking derivatives of
the above equations with respect to x and y,
adding the results and substituting the equation
for mass (47), we recover the Poisson equation for
pressure correction:

@2p0

@x2
� @

2p0

@y2
� �

�t

@u�

@x
� @v�

@y

� �
�50�

The 2-D solution procedure follows the 1-D case
by first assuming a pressure profile, p�, across
the numerical domain. In the second step, the x-
and y-momentum* equations are solved for u� and
v�:

@u�

@t
� @ u�� �2

@x
� 1

�

@p�

@x
� @ u�v�� �

@y
� � @2u�

@x2
� @

2u�

@y2

� �
�x-momentum�� �51�

@v�

@t
� @ u�v�� �

@x
� @ v�� �2

@y
� 1

�

@p�

@y
� � @2v�

@x2
� @

2v�

@y2

� �
�y-momentum�� �52�

In the staggered grid arrangement, the time-deri-

vatives in the above equations are written in a first-
order manner:

@u

@t
�

u�
i�1

2
; j
ÿ u

i�1
2
; j

�t
and

@v

@t
�

v�
i; j�1

2

ÿ v
i; j�1

2

�t
�53�

whereas, the flux terms are written as second-order
central difference operators:

@ u�� �2
@x

�
u2

i�3
2
; j
ÿ u2

iÿ1
2
; j

2�x
and

@ u�v�� �
@y

�
uv� �

i�1
2
; j�1
ÿ uv� �

i�1
2
; jÿ1

2�y
�54�

@ v�� �2
@y

�
v2

i; j�3
2

ÿ v2

i; jÿ1
2

2�y

and

@ u�v�� �
@x

�
uv� �

i�1; j�1
2

ÿ uv� �
iÿ1; j�1

2

2�x
�55�

The viscous derivatives are also written using a
second-order central difference methodology:

@2u�

@x2
�

u
i�3

2
; j
ÿ 2u

i�1
2
; j
� u

iÿ1
2
; j

�x2

and

@2u�

@y2
�

u
i�1

2
; j�1
ÿ 2u

i�1
2
; j
� u

i�1
2
; jÿ1

�y2
�56�

@2v�

@x2
�

v
i�1; j�1

2

ÿ 2v
i; j�1

2

� v
iÿ1; j�1

2

�x2

and

@2v�

@y2
�

v
i; j�3

2

ÿ 2v
i; j�1

2

� v
i; jÿ1

2

�y2
�57�

The pressure derivatives are written in a first-order
difference manner as traditionally found in the
literature (a second-order central difference formu-
lation will also work):

@p�

@x
� p�i�1; j ÿ p�i; j

�x
and

@p�

@y
� p�i; j�1 ÿ p�i; j

�y
�58�

In the third step, the Poisson equation for pressure
(50) is solved for the correction pressure according
to the following pressure and velocity derivatives:

@2p0

@x2
� p0i�1; j ÿ 2p0i; j � p0iÿ1; j

�x2
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and

@2p0

@y2
� p0i; j�1 ÿ 2p0i; j � p0i; jÿ1

�y2
�59�

@u�

@x
�

u�
i�1

2
; j
ÿ u�

iÿ1
2
; j

�x
and

@v�

@y
�

v�
i; j�1

2

ÿ v�
i; jÿ1

2

�y
�60�

The velocity correction variables, u 0 and v0, are
then solved according to Equation (49) with the
following first-order derivatives:

@p0

@x
� p0i�1; j ÿ p0i; j

�x
and

@p0

@y
� p0i; j�1 ÿ p0i; j

�y
�61�

Finally, the variables are updated according to
Equation (38) and a similar expression for the y-
velocity:

v � v� � v0 �62�
and the iterative procedure is repeated until a
desired convergence is met. The time-step criterion
now includes the second dimension:

�t � min
�x

umaxj j ;
�y

vmaxj j ;
�x2

4�
;
�y2

4�

� �
�63�

In the 2-D case, the staggered grid can be inter-
preted in a number of ways according to what
variables the user wishes to define at the bound-
aries. In Fig. 3, a staggered grid is illustrated for a
problem of flow between two parallel plates; the
crosses in the figure show a collocated grid config-
uration. In this figure, the x-velocity grid points
are set at the inflow and outflow boundaries and
the y-velocity grid points are set at the upper and
lower plates. In the following sections, the bound-
ary conditions are illustrated in the figures of the
different problems to document what was used by
the authors.

In this section, we documented the numerical
algorithms that are used within this paper. The
goal was to illustrate how the complexity of the
methods multiplies as the level of description
increases. In the following sections, simple
problems of fluid flow are solved according to
the computational methods described. These solu-
tions are compared to the analytical solutions
found in undergraduate fluid dynamics textbooks.
The idea is to demonstrate to the reader how the
level of information in undergraduate and gradu-
ate courses can be merged to continue the advance-

ment of the student while remaining consistent
with their previous experience. In addition, these
historical problems provide a good methodology
for proving that the numerical methods have been
programmed correctly.

PLANE POISEUILLE FLOW

In fluid dynamics courses, it is common to
discuss problems involving fluid flow within
pipes as illustrated in Fig. 4. In these examples,
concepts such as laminar and turbulent flow can be
discussed along with other phenomena such as
shear stress, head loss and velocity profiles. One
of the first examples given to undergraduate
students when trying to explain internal flow is
fully-developed laminar flow between infinite
parallel plates often referred to as the Plane
Poiseuille or Hagen-Poiseuille problem.

The origination of this problem stems from Dr.
Jean Leonard Marie Poiseuille's contribution to
laminar flow phenomena in 1846 [6] with prelimin-
ary reports found earlier in the literature [2-5]. In a
translated version of the work [34], the editor
mentions that this paper was the first important
contribution in the field in regards to the know-
ledge of viscous flow and the data captured from
the setup in Fig. 5 is among the best available for
determining the viscosity of water. Dr. Poiseuille
was primarily concerned about studying the flow
of blood within the arteries, veins and capillaries
for medical reasons. His work ended up becoming
one of the pioneering efforts in the area of hydrau-
lic flow. It was later suggested by Wolfgang
Ostwald [35, 36] that this problem should be
renamed the Hagen-Poiseuille problem because
earlier in 1839 Gotthilf Hagen had come to the
same conclusions as Poiseuille using the setup in
Fig. 6 [1]. However, it was mentioned by the editor
of [34] that his conclusions were less convincing
than what Poiseuille found.

In the Poiseuille and Hagen setups, pressure
directs the flow through a small gap which can
then be modeled as flow between infinite plates as
illustrated in Fig. 7. The plates are considered
infinite in the z-direction with no variation of
any fluid property in this direction. The flow is
assumed to be steady and incompressible and
according to the problem description, the pressure
gradient in the x-direction must be finite to balance
the shear forces. However, both walls will affect
the y-direction gradient to the same degree, so
dp=dy can be considered to be zero. The velocity
distribution in the liquid between the plates is
parabolic at infinite time and found analytically
to be equal to [26]:

u � d2

2�

@p

@x

� �
y

d

� �2ÿ y

d

� �� �
�64�

At the point of maximum velocity, the x-velocity
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derivative in the y-direction is equal to zero
du=dy� � and the above relationship becomes:

umax � ÿ 1

8�

@p

@x

� �
d2 � 3

2
uin �65�

Utilizing these two equations, the normalized
velocity profile is written as:

u

umax
� ÿ4

y

d

� �2

ÿ y

d

� �� �
�66�

The distance downstream from the entrance where
the flow can be considered to be fully-developed is
referred to as the entrance length and is approxi-
mately equal to:

Lent

d
� 0:06

�uind

�
�67�

The analytical solutions of the problem illustrate
that there is a pressure profile in the x-direction
and a velocity profile in the y-direction. In a 1-D
simulation, the velocity profile cannot be deter-
mined because we assume that the cross-sectional
velocity is constant. However, source terms can be
used to calculate the pressure drop as a function of
distance. In accordance with our earlier descrip-
tion of the frictional source term in the momentum
equation, see Equation (12), we were able to
determine a source term from the analytical analy-
sis that is relevant for fully-developed laminar flow
between parallel plates:

Smom � ÿ12�
uj j
d2

�68�

It is important to note that in many simulations,
the pressure drop is the more important character-
istic to determine because of energy constraints;
i.e. backpressures in the exhaust of internal
combustion engine.

In the 2-D case, the velocity and pressure
profiles can be computed and compared directly
with the analytical solutions. The boundary condi-
tions for the flow profile illustrated in Fig. 7 are
straightforward with regards to the inlet and
plates. In specific, we are assuming that the inlet

Fig. 5. Reproduced diagram of Poiseuille's experimental setup
[34].

Fig. 6. Reproduced diagram of Hagen's experimental setup [1].

Fig. 4. Developing flow in a pipe.

Merging Undergraduate and Graduate Fluid Mechanics 825



velocity and pressure are known and the velocity is
normal to the inlet face. The no slip velocity
condition is employed at the upper and lower
plates with both velocity values equal to zero.
The pressure condition at the plates is found by
analyzing the y-momentum Equation (9) and
utilizing the no slip condition; i.e. all terms drop
out except for the pressure derivative and the
viscous component in the y-direction. This is
because du=dx � 0 from the no slip condition

and dv=dy � 0 from the mass equation. However,
@2v
�
@y2 does not necessarily have to be equal to

zero.
For the outflow conditions, we assume that

du=dx is equal to zero which then requires dv=dy
being equal to zero from the continuity equation.
For the pressure, we assume that dp=dx is equal to
zero [37] but this is not completely correct. Accord-
ing to Harlow and Welch [33], the pressure bound-
ary condition at the free surface should be derived

Fig. 8. Analytical, 1-D and 2-D solutions of the Plane Poiseuille velocity and pressure profiles.

Fig. 7. Schematic of flow and pertinent boundary conditions for Plane Poiseuille or Hagen-Poiseuille flow.
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from the requirement of vanishing normal stress
component. They mention that there are two
reasons why this condition is difficult to apply
accurately. For the first reason, the normal stress
components can be calculated only if surface
orientation is known which may be hard to do
using a finite difference representation. This is not
the case for our grid as we have a simple rectan-
gular grid where the outlet orientation is well
defined. The second reason has to do with our
assumptions for velocity that hold consistent to the
equation of mass. They state these velocity deriva-
tives give fairly accurate results, however they do
not necessarily give the proper viscous stress at the
exit.

In Fig. 8, the analytical, 1-D collocated and
staggered and 2-D results are given for an example
calculation with a Reynolds number equal to 2000.
For the 1-D solution, both collocated and stag-
gered grids give the same pressure drop as the
analytical solution. In the 2-D solution, the simu-
lation predicts the same velocity profile as the
analytical case with increasing accuracy based on
larger grid sizes. The pressure drop in the 2-D case
deviates slightly as the contour plot of the 80 � 32

grid illustrates that there is a slight oscillation at
the exit. This has to do with our assumptions for
the boundary conditions at the exit as explained in
the previous paragraph. The contour plot also
illustrates that the predicted entrance length of
the simulation is close to what is estimated analy-
tically. This is shown by the velocity holding
constant after about 2.5 m until the exit boundary
conditions affect the flow. Overall, 1-D and 2-D
simulations can model this simple flow pattern
based on the level of description that is needed.

PLANE COUETTE FLOW

In this section, another commonly used problem
in undergraduate fluid mechanics courses is solved
using the 2-D SIMPLE method. In this problem,
fully-developed laminar flow is encountered when
a liquid is sheared between two coaxial cylinders.
This was originally found by Maurice Marie
Alfred Couette [38] using the setup of Fig. 9 and
explained in a number of papers [7±9, 12, 13] and a
condensed version [10] of his doctoral thesis [11].
Because the clearance gap is small and symmetric,

Fig. 9. Reproduced diagram of Couette viscometer [10].

Fig. 10. Schematic of flow and pertinent boundary conditions for the Plane Couette problem.
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this problem can be converted into one involving
flow between infinite parallel plates where the
upper plate is moving with constant speed [26].

In the previous example, the flow of the fluid in
the pipe caused a velocity and pressure profile to
be evident. However, in this case the fluid motion
is caused by the movement of the upper plate as
illustrated in Fig. 10. Because of this, there is not
any externally imposed pressure gradient
dp=dx � 0� � and we do not need to worry about

solving for the pressure. A simple analytical analy-
sis can again be used to calculate a velocity
distribution of the following linear profile [26]:

u � uplate

d
y �69�

In many ways the solution of this problem is
trivial, as shown in Fig. 11, and using a 2-D
algorithm to reproduce it could be considered
overkill. However, if the reader is having issues
programming the staggered grid and/or the solu-
tions do not appear to be correct, they can use this
problem to eliminate the pressure dependence
from the algorithm (no need to solve the Poisson
equation) and make sure that the velocity equa-
tions are programmed correctly. In addition, it
also helps reinforce previous lessons learned in

undergraduate education with a graduate level
analysis. Note that the 1-D governing equations
can only be used to simulate the pressure gradient,
so this problem cannot be simulated using 1-D
numerical algorithms.

COUETTE-POISEUILLE FLOW

Often the lessons in undergraduate courses
continue through a combination of the Plane
Couette and Plane Poiseuille problems. In this
case, the upper plate is moving with flow occur-
ring between the plates as illustrated in Fig. 12.
The analytical velocity distribution for this
Couette-Poiseuille problem ends up being a
summary of the previous results of Equations
(64) and (69) [26]:

u � d2

2�

@p

@x

� �
y

d

� �2

ÿ y

d

� �� �
� uplate

y

d

� �
�70�

Again, the solution is trivial as seen in Fig. 13, and
the need to simulate it using a complicated 2-D
numerical method may be unnecessary. However,
because this problem incorporates a pressure
profile which can be specified by the user (in our

Fig. 11. Analytical and 2-D SIMPLE solutions of the Plane Couette flow problem.

Fig. 12. Schematic of flow and pertinent boundary conditions for the Couette-Poiseuille problem.
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case �24.5 Pa), it allows for the programmer to
determine whether or not the pressure terms in the
momentum equations have been incorporated
correctly. Utilizing this problem along with the
Plane Couette problem allows for complete verifi-
cation of the velocity fields without having to
incorporate the Poisson equation for pressure.
This also has the benefit of increasing the run
time of the simulation and decreasing the complex-
ity of the solver.

DRIVEN CAVITY FLOW

At this point, if the reader is able to reproduce
all of the previous example problems they should
be confident that they have programmed the
numerical codes correctly. They can then move
onto other problems of fluid mechanics to help
illustrate other pertinent fluid fundamentals. In
this section, the primitive variable formulation of
the 2-D governing equations is compared to the
streamfunction-vorticity formulation. The stream-

function ( ) and vorticity (!) version of the
incompressible Navier-Stokes equations has the
main benefit of reducing the number of governing
equations by one. In addition, the basic numerical
algorithm is easier to understand and the solution
results better illustrate flow phenomena like the
streamlines across an airplane wing. The main
problem with this method is the incorporation of
the boundary conditions which can be confusing.
However, comparing and contrasting the primitive
formulation with the  ÿ ! equations can help
enlighten the student as how to comprehend
these boundary conditions.

One problem that is often reproduced using the
 ÿ ! formulation is the driven cavity flow prob-
lem illustrated in Fig. 14. This is possibly the
simplest example that can be reproduced because
it does not contain inflow or outflow sections. In
this problem, flow inside the box is driven by a
plate moving at a constant velocity. The boundary
conditions are easy to understand with all velo-
cities equal to zero at the boundaries except for the
u velocity of the moving plate. In an educational

Fig. 13. Analytical and 2-D SIMPLE solutions of the combined Couette-Poiseuille problem for (a) dp/dx = ±24.5 Pa and (b) dp/dx =
24.5 Pa.
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setting, utilizing this problem helps the student
learn about changing the system of variables and
different solution techniques. It builds on the
previously utilized knowledge in this paper without
confronting the student with a blank slate.

The vorticity and streamfunction variables are
defined as:

! � @v

@x
ÿ @u

@y
�71�

u � @ 
@y

and v � ÿ @ 
@x

�72�

Using these definitions can simplify the incompres-
sible mass and momentum equations of motion to
be equal to:

@2 

@x2
� @

2 

@y2
� ÿ! �73�

@!

@t
� u

@!

@x
� v

@!

@y
� � @2!

@x2
� @

2!

@y2

� �
�74�

The solution of these equations was previously
published in a paper illustrating the use of Graphi-
cal User Interfaces (GUIs) in an educational
setting [39]. In Fig. 15, the streamfunction solu-

Fig. 14. Driven cavity flow problem illustrating boundary conditions for primitive and streamfunction-vorticity variables.

Fig. 15. Comparison of streamfunction plots for the streamfunction-vorticity and SIMPLE solvers.
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tions are given for both the  -! and primitive
version of the equations. For the primitive version,
the streamfunction was computed using equation
(72) in an upwind manner to compare directly with
the  -! solution. The results show a good agree-
ment between the two methods with some slight
differences because of the variables involved. It is
often useful for the instructor to demonstrate a
couple different ways of solving the same equa-
tions because certain problems may benefit by
using another technique.

CONCLUSIONS

The difference between undergraduate and grad-
uate fluid mechanics often comes from the shift
from analytical to computational solutions. In
order to help ease this transition, this paper illus-
trates a methodology for building on the funda-
mentals of undergraduate education in a graduate
setting. In specific, the elementary problems of
Plane Poiseuille, Plane Couette and Couette-
Poiseuille flow were solved using both analytical
and computational methods. The numerical
methods utilized began with 1-D ordinary differ-
ential equations and moved in increasing complex-
ity until the solution of 2-D partial differential
equations. Finally, the problem of driven cavity
flow was solved to illustrate a way to build on the
knowledge presented to further a student's educa-
tion of computational methods.

Utilizing the numerical methods presented in
this paper, instructors will be able to demonstrate
the following concepts to students:

. grid independence and numerical convergence;

. pressure-correction techniques and the effect of
their corresponding parameters (�);

. 1-D and 2-D numerical methods and their prob-
lem relevance;

. boundary conditions, ghost cells and their effect
on the solution;

. ordinary and partial differential equations;

. primitive variable and streamfunction-vorticity
Navier-Stokes incompressible equations.

One main benefit of this paper is the use of the 1-D
equations of motion to demonstrate how to solve a
pressure-correction algorithm. In specific, the use
of a reduced degree of freedom method helps to
deconstruct the basic steps needed for multi-
dimensional flow. This can be used to help the
student better understand the method without
unnecessarily confusing the situation.

It can be said that the problems modeled in this
paper are trivial in nature and advanced numerical
techniques are not needed for their solution. While
this may be so, these simple problems help bridge
the gap between undergraduate and graduate
education. They provide one-line solutions to
prove the correct implementation of the numerical
methods. They also inform the student of the
history of hydraulics and where the early advances
were made.
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