
Low-cost Microcontroller-based Hardware
for Introducing Digital Filter
Fundamentals to Students*

DOGAN IBRAHIM
Department of Computer Engineering, Near East University, Nicosia, Cyprus
E-mail: dogan@neu.edu.tr

Digital filters are currently created using high-performance DSP chips. Although these chips have
many advantages in commercial and industrial applications, they usually oversimplify and hide
away the basic concepts for the realization of digital signal processing techniques. This paper
describes the design of a digital filter using a low-cost microcontroller as the processing element.
The main feature of the system is that it aims to teach students the basic hardware and software
implementation of digital filters. Both FIR and IIR type filters can easily be implemented with the
system; the developed platform will be used at the Near East University together with DSP chips to
teach the practical realization of digital filters to undergraduate students.

Keywords: Digital filter; FIR filter; IIR filter; DSP; microcontroller, MATLAB

INTRODUCTION

IN SIGNAL PROCESSING signals are often
encountered that contain unwanted information,
such as random noise or interference, or it may be
desired to extract a signal of interest from a
collection of a number of signals. Filters are used
in such applications to separate the desired signal
from the unwanted signals.

Filters can be analogue or digital. Analogue
filters [1] can be passive (e.g. resistor, capacitor,
inductor) or active (e.g. operational amplifiers and
passive components) and they use electronic
components to separate the desired frequency.
Analogue filter theory is well established and
there are many books and papers that cover the
design and implementation of such filters, but the
theory is beyond the scope of this paper.

Digital filters [2, 3, 4] use a digital processor to
implement an algorithm to perform numerical
calculations on sampled values of the signal. The
processor in a digital filter can be a general
purpose microprocessor, such as the Z80, 8086
series etc., or a microcontroller such as the PIC
series, 8051, 6805 etc., or a specialized Digital
Signal Processor (DSP) chip such as the TMS320
series or ADSP 210, or an Application Specific
Integrated Circuit (ASIC) incorporating a DSP
core processor such as the TEC320C52 or D950-
CORE.

Recently, digital filters have been implemented
using high-performance, expensive DSP chips [5].
These are optimized to process large amounts of
real-time data efficiently, making them ideal for

numerically intensive DSP applications, such as
FFTs, digital image processing, high-fidelity audio
processing and digital filters. There are dozens of
DSP chips on the market with complex architec-
tures, some capable of performing 16 bit fixed-
point arithmetic, such as the TMC320C54x,
DSP561xx or the ADSP-21xx series. Some chips,
such as the DSP563xx or the DSP5600x offer 24 bit
fixed-point arithmetic capability. Other more
complex chips operate with 32 bit floating-point
arithmetic such as the ADSP-210xx, DSP96002 or
the TMS320C4x. In fixed-point processors,
numbers are represented as integers or in fractional
format. Here, the designer has to convert the filter
coefficients into fractional numbers and take care
to scale the signals at various stages of the algo-
rithm to avoid any overflows in the calculations.
Most high-volume embedded applications where
low cost is a prime factor use fixed-point proces-
sors, although floating-point processors provide a
greater flexibility and ease of design. In addition,
with floating-point processors the system designer
has access to a wider dynamic range (the ratio
between the largest and the smallest number that
can be represented) and also greater precision. In
real applications, dynamic range is very important
as it translates into signal magnitudes that can be
processed while maintaining sufficient fidelity in
the signal. Some applications, such as commun-
ications, require moderate dynamic ranges, but
applications such as high-fidelity audio applica-
tions require higher dynamic ranges. Most applica-
tions that require high precision and very high
dynamic range and where the cost is of no concern
use floating-point processors.

Manufacturers of DSP chips usually offer
general purpose software and hardware DSP* Accepted 5 May 2007

1000

Int. J. Engng Ed. Vol. 23, No. 5, pp. 1000±1010, 2007 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2007 TEMPUS Publications.

development kits. Some kits are complete develop-
ment systems with a board having a DSP chip and
associated interface circuitry, a complete set of
software including a compiler and library files for
the development of algorithms, and simulators to
test the algorithm before it is downloaded to the
chip. Some researchers have extended the capabil-
ities of DSP kits by providing more input and
output ports. Alonso and Barreto [6] describe a
practical, economical and useful way of enhancing
the Texas Instruments TMS320C3x DSP learning
kit. All DSP vendors provide the basic assembly
language software and assembler tools to develop
the algorithm in assembly code. High-level
language compilers such as C and application
libraries are also offered for those who wish to
program using a high-level language. Such
programming has the advantages of considerably
reduced development and testing times.

DSP chips are well suited to commercial and
industrial high-speed signal processing applica-
tions as they remove the need to construct compli-
cated, expensive and specialized hardware. A DSP
development kit usually contains all the required
hardware for the implementation of a signal
processing application, additionally provides
development software that makes the design and
testing a relatively simple task. Although students
can use DSP development kits to implement and
test various signal processing algorithms, this does
have some disadvantages at the introductory learn-
ing stage, namely:

. DSP kits are usually expensive.

. DSP kits hide the basic structure and parts of a
signal processing hardware from the students.
Students using such development kits are not
usually aware that a digital signal processor can
be designed from first principles using an A/D
converter, a general purpose processor and a D/
A converter.

. DSP kits have complex structures and it may
take a considerable amount of time to learn their
architectures.

. Using a DSP development kit students learn
how to handle the products of a particular
manufacturer only. Different manufacturers
offer different and usually incompatible kits
which add to the existing learning curve.

The hardware developed at the Near East Univer-
sity using the basic electronic building blocks is
used to teach the design and implementation of
digital filters to third year undergraduate students
studying at the Department of Computer Engin-
eering. The idea behind this research work was to
develop a signal processing hardware from first
principles that will teach students the inside of
signal processing hardware and software. They
calculate filter coefficients using a MATLAB
program, then use these coefficients to realize a
practical digital filter using an A/D converter, a
low-cost microcontroller and a D/A converter. It
should be realized that this approach is not for

practical application, but rather to teach a deeper
insight into the process of digital filtering. After
learning the basic theory and practical realization
of digital filters students move on to experiment
with complex DSP development kits. The theory of
digital filters is well established and there are
numerous articles and books on this topic. Gan
and Kuo [7] propose a two-level approach for
teaching digital signal processing where
MATLAB and Simulink [8, 9] are used to make
the transition from theory to application. They
propose that a two-stage approach eases the learn-
ing of theory and also makes the learning process
more enjoyable.

Undergraduate engineering courses in all univer-
sities teach the basic theory and applications of
various microcontrollers and the C language. The
hardware and software approach provided in this
design is an extension of what most students
already know, i.e. it combines the real-time imple-
mentation of a microcontroller- based digital filter
and the familiar C language.

REQUIREMENTS

Near East University was established in 1988 in
Cyprus, and currently has over 13,000 students
from all over the world, studying in various
departments in 14 faculties. The Department of
Computer Engineering offers full-time undergrad-
uate and postgraduate courses in the faculty of
engineering. Students on the undergraduate course
learn all aspects of computer hardware and soft-
ware, including basic electronics, logic design, the
theory and applications of microprocessors and
microcontrollers and various programming
languages and applications. Students in the final
year are offered various options, signal processing
being one of them. In the past, students were
taught MATLAB programming; then they were
asked to use a PC to calculate digital filter para-
meters and simulate them in the MATLAB en-
vironment. Although simulation can be an
invaluable tool in engineering teaching, it cannot
replace the experiments carried out in a real
laboratory environment. This was the main
requirement for developing the hardware.

DIGITAL FILTER HARDWARE

We have used a low-cost PIC microcontroller
[10] as the processing element. The PIC family is
currently very popular in industry and in educa-
tion and many students are familiar with the
architecture and programming of these chips.
PIC microcontrollers are manufactured by Micro-
chip Inc. There are over a hundred in the family;
most of them are compatible with each other; some
advanced members include on-chip functions such
as A/D converters, USART, I2C bus interface, SPI
bus interface, USB interface and so on. The micro-

Low-cost Microcontroller-based Hardware for Introducing Digital Filters 1001

controller we used was the PIC16F877, a 40-pin
processor with following specifications. Other
lower specification members of the PIC family
such as the PIC16F870 could also have been used:

. 8192 byte program memory;

. 368 byte RAM memory;

. 256 byte EEPROM memory;

. 33 parallel I/O ports;

. 14 interrupt sources;

. 8-channel multiplexed 10-bit A/D converters;

. USART;

. I2C and SPI bus compatible interface.

The device can operate with a clock rate up to
20MHz; a 20MHz crystal was used as the clock
source. At this rate the basic instruction execution
cycle is 0.2ms.

Figure 1 below depicts a block diagram of the
designed digital filter hardware. It is important to
realize that although the microcontroller used has
built-in A/D converter ports these were not used,
but an external A/D converter chip was incorpo-
rated into the design. The reasons were first, a bi-
polar converter was required in the design and the
on-chip converter supported unipolar voltages
only. Second, because it aimed to teach the basic
signal processing hardware building blocks. The A/
D converter receives the analogue signal to be
filtered and converts this into digital form. The
A/D converter operates under control of the
microcontroller. The converted digital signal
consists of a sequence of numbers which are fed
to the microcontroller for processing. The micro-

controller implements the digital filter algorithm
and sends the filtered digital signal to the D/A
converter. The D/A converter produces the
required filtered analogue output. It was necessary
to use a bipolar D/A converter in this project since
signals are normally bipolar.

The circuit diagram of the digital filter is shown
in Figure 2.

The A/D Converter
In this project an 8-bit A/D converter was used

for simplicity. The input analogue signal voltage
range was �5V and the converter provided a
quantized digital signal with 256 steps. The conver-
ter used was the AD673, manufactured by Analog
Devices Inc [11]. This converter has a 20ms conver-
sion time, accepts both unipolar and bipolar input
signals and operates with two power supplies, �5V
and ÿ12V. Basically the device includes:

. An analogue input pin;

. 8 digital output pins;

. A CONVERT input pin;

. A DATA READY output pin.

Conversion starts by applying the analogue signal

Fig. 1. Block diagram of the digital filter hardware

Fig. 2. Circuit diagram of the digital filter

D. Ibrahim1002

to the input pin and then pulsing the CONVERT
pin. The high-to-low transition of the CONVERT
pulse starts the conversion and the DATA
READY pin goes to logic high. After about 20ms
the conversion is complete and data are available
at the digital outputs. The A/D converter comple-
tion is signalled by the DATA READY pin going
low. This output is used to inform the microcon-
troller that the conversion is complete and the
converted data are available at its output pins.

AD673 A/D converter provides offset binary
signals at its outputs. Offset binary is similar to 2's
complement notation but the MSB bit is inverted.
Some 8-bit offset binary numbers and their 2's
complement equivalents are given in Table 1.

2's complement is the commonly used number-
ing system in signal processing applications.
Numbers represented in 2's complement notation
can easily be added, subtracted, multiplied or
divided. A given offset binary number can easily
be converted to 2's complement form by simply
inverting the MSB bit.

The D/A converter
In this project an AD7302 type D/A converter

was used. This device is a dual channel D/A
converter, manufactured by Analog Devices Inc.
Digital data are sent to the converter and, under
the control of the microcontroller, the converter
produces analogue voltage at its output. Basically
the device includes:

. 8 digital inputs;

. Analogue output (two channels);

. WR write input;

. Channel select input;

. Reference input.

Conversion starts by sending digital data to the
converter and pulsing the WR input. After about
2ms the conversion is complete and the analogue
data are available at the output of the converter.
As in the A/D converter, the D/A converter oper-
ates with offset binary and the input signal to the
converter must be in this format. Thus, it is
necessary to complement the MSB bit of the data
before sending it to the D/A converter. Normally,
the output of the AD7302 is unipolar and an
operational amplifier was used to produce bipolar
signals in the range �5V. The operational amplifier
used in the project was the OP295 which is a quad
operational amplifier package manufactured by
Analog Devices Inc. One of the reasons for choos-
ing this operational amplifier was because it
provides a rail-to-rail output voltage, and also it
has a high output drive capability.

As shown in Figure 2 above, PORT B of the
microcontroller was connected to the output of
the A/D converter, and PORT D drives the D/A
converter. Port pin RC0 and RC1 are connected
to DATA READY and CONVERT inputs of the
A/D converter respectively. Port pin RC2 of the
microcontroller controls the WR input of the D/A
converter. Figure 3 below shows the I/O port
mapping of the microcontroller. Power is
provided to the circuit using a pair of LM7805
and LM7905 voltage regulator chips for the -5V
and +5V rails respectively, and a LM7912 chip for
the +12V rail.

DIGITAL FILTER ALGORITHMS

A digital filter, in its most general form, takes in
an input sequence of numbers x[n], performs
computations on these numbers and outputs
result as another sequence of numbers y[n]. The
relationship between the input and output is given
by:

y�nT� �
XM
k�0

akx�nT ÿ kT� ÿ
XN

k�1

bky�nT ÿ kT�

�1�

Table 1. Some offset binary numbers and their 2's
complement equivalents

Scale Offset Binary 2's Complement

+ Full scale 11111111 01111111
�0.75 Full scale 11100000 01100000
�0.50 Full scale 11000000 01000000
�0.25 Full scale 10100000 00100000
0 10000000 00000000
ÿ0.25 Full scale 01100000 11100000
ÿ0.50 Full scale 01000000 11000000
ÿ0.75 Full scale 00100000 10100000
ÿ Full scale 00000000 10000000

Fig. 3. I/O port mapping of the microcontroller

Low-cost Microcontroller-based Hardware for Introducing Digital Filters 1003

the above equation has the z-transform

H�z� � y�z�
x�z� �

PM
k�0

akzÿk

1� PN
k�1

bkzÿk

�2�

There are two types of digital filters: infinite
impulse response (or IIR) filters and finite impulse
response (or FIR) filters [12±15]. Equation (1) is
the transfer function of an IIR type filter where the
output samples depend on the present input and
past output samples. In this equation, if the output
samples depend only on the past input samples, i.e.
bk � 0 for k � 1; 2:::::::M then the realized filter is
known a FIR filter and its transfer function
reduces to:

H�z� � y�z�
x�z� �

XM
k�0

akzÿk �3�

Design of a FIR digital filter requires calculation
of the coefficients ak. Similarly, design of an IIR
filter requires the calculation of coefficients ak and
bk. There are many references, text-books, compu-
ter programs and online active internet tools for
the calculation of filter coefficients for a required
filter specification.

A MATLAB-based program has been devel-
oped [16, 17] at the Near East University [18] to
calculate the filter coefficients and then plot the
theoretical response of the resulting filter. The

program can be used to design both IIR and FIR
type filters. For the FIR filters, the cut-off
frequency, filter length and the windowing tech-
nique to be used are specified. The program
calculates and displays the filter coefficients. Addi-
tionally, the frequency and responses of the filter
are plotted. For the IIR filters the program can be
used to design Butterworth, Chebyshev and Ellip-
tic type filters. The cut-off frequency, filter order
and required pass-band ripple are entered; the
program calculates and displays the numerator
and denominator coefficients and also plots the
frequency and the phase responses of the filter.

Figure 4 shows the output produced when a
second order low-pass Butterworth IIR filter with
a cut-off frequency of 100 Hz and a sampling
frequency of 1 kHz is designed using the program.
Note that the filter coefficients are displayed in two
list-boxes on the right-hand side of the display.

IMPLEMENTATION OF A LOW-PASS
IIR FILTER

This section shows how an IIR filter can be
designed and implemented using the hardware
developed. A second-order Butterworth IIR type
low-pass digital filter was designed to test the hard-
ware. The filter had the following specification:

. 2nd-order Butterworth low-pass IIR filter;

. Sampling frequency = 1 kHz;

. Cut-off frequency = 100 Hz.

Fig. 4. Designing a 2nd-order IIR Butterworth low-pass filter

D. Ibrahim1004

The filter coefficients were obtained running the
MATLAB program discussed earlier. These coeffi-
cients were:

b0 � 0.06745 b1 � 0.13491 b2 � 0.06745
a0 � 1 a1 � ÿ1.14298 a2 � 0.412801

Based on these coefficients, the transfer function of
the required filter is:

H�z� � b0 � b1zÿ1 � b2zÿ2

1ÿ a1zÿ1 � a2zÿ2
�4�

or,

H�z� � 0:06745� 0:13491zÿ1 � 0:06745zÿ2

1ÿ 1:14298zÿ1 � 0:412801zÿ2
�5�

which can be written as

H�z� � 0:06745�1� 2zÿ1 � zÿ2�
1ÿ 1:14298zÿ1 � 0:412801zÿ2

�6�

writing the above transfer function as

H�z� � y�z�
u�z� �

K�1� 2zÿ1 � zÿ2�
1� Bzÿ2 � Czÿ2

�7�

where

K � 0:06745 B � ÿ1:14298 C � 0:412801

Let,

y�z�
u�z� �

y�z�
q�z�

q�z�
u�z� �8�

where,

q�z�
u�z� �

K

1� Bzÿ1 � Czÿ2
�9�

and

y�z�
q�z� � 1� 2zÿ1 � zÿ2 �10�

from (9),

q�z� � Ku�z� ÿ Bq�z�zÿ1 ÿ Cq�z�zÿ2 �11�
and from (10),

y�z� � q�z� � 2q�z�zÿ2 � q�z�zÿ2 �12�
Let x1 and x2 be two state variables, where
x1 � q�z�zÿ1and x2 � q�z�zÿ2 � x1zÿ1

Then we can write,

q�z� � Ku��z� ÿ Bx1 ÿ Cx2 �13�
y�z� � q�z� � 2x1 � x2 �14�

Thus, the following operations will be required to
implement the second-order filter section:

Kuÿ Bx1 ÿ Cx2 ! q

q� 2x1 � x2 ! y

x1 ! x2

q! x1

The block diagram of the second-order filter
implementation is shown in Figure 5. This imple-
mentation is also known as the direct-form of
realization, or the bi-quad section.

The steps required for the implementation of a
second-order filter are summarized below:

. Enable timer interrupt;

. Input u from A/D converter;

. Calculate Kuÿ Bx1 ÿ Cx2;

. Store result in q;

Fig. 5. 2nd-order IIR filter implementation

Low-cost Microcontroller-based Hardware for Introducing Digital Filters 1005

Fig. 6. Program listing of the digital filter

2nd-order Butterworth Low-Pass IIR Digital Filter
====================================

This is the program for a 2nd-order Butterworth IIR digital filter. The filter is implemented on a PIC16F877
microcontroller, operating At 20MHz clock. The basic instruction cycle time is 0.2 microsecond.
The filter parameters are as follows:
� Sampling frequency = 1kHz;
� Cut-off frequency = 100 Hz.

The filter is implemented in a timer interrupt routine (ISR). The ISR is called every 1000 microsecond (1kHz)
and the filter algorithm is implemented. The steps at every 1000 microseconds are basically:
� Read analogue input;
� Process data;
� Send out analogue output.

File:FILTER.C
Date: February 2006
***/

#include <pic.h>
#include <delay.c>
// Declare variables
float x1,x2,q,fu,temp,K,B,C;
signed char u,y,j;
// Declare symbols
#define DATA_READY RC0
#define CONVERT RC1
#define WR RC2

/******************* INTERRUPT SERVICE ROUTINE ********************
This routine is called at every 1000 microseconds. Inside the routine the analog data is received from the A/D
converter, the digital filter algorithm is implemented and the data is sent to the D/A converter */

void interrupt filter(void)
{

TMR0 = 100; // Re-load TMR0
// Start A/D conversion
CONVERT = 1;
DelayUs(2);
CONVERT = 0;
while(DATA_READY); // Wait until DATA_READY= 0
// Read converted analogue data
u = PORTB; // Get converted data
u = u ^ 0x80; // Convert to 2s complement
fu = (float)u; // A/D data in floating point, fu
// Implement the filter algorithm
q= K*fu-B*x1-C*x2;
temp = q+x1+x1+x2;
// Get output sample
y = (signed char)temp;
// Convert to offset binary
y = y ^ 0x80;
// Send to D/A converter
PORTD = y;
WR = 0;
WR = 1; // Activaet D/A converter

x2=x1; // Exchange filter states
x1=q;

// Re-enable TMR0 interrupts
T0IF = 0;

}

/* ÐÐÐÐÐÐ- Start of MAIN program ÐÐÐÐÐÐÐ- */
main()
{

// Initialize states and filter parameters
x1 = 0.0; x2 = 0.0;
K = 0.06745; B = -1.14298; C = 0.412801;

// Initialize registers
TRISB = 0xFF; // PORT B is all input
TRISC = 1; // RC0 is input
TRISD = 0; // PORT D is all output
CONVERT = 0; // A/D in idle mode
WR = 1; // D/A in idle mode
T0CS = 0; PSA = 0; // Select TMR0
PS0 = 0; PS1 = 0; PS2 = 1; // Set timer pre-scaler to 32
TMR0 = 100; // Set for 1000 us interrupt
T0IE = 1; // Enable TMR0 interrupts
T0IF =0; // Enable TMR0 interrupt flag
ei(); // Enable global interrupts

WAIT: goto WAIT; // Wait for timer TMR0 interrupt
}

D. Ibrahim1006

. Calculate q� 2x1 � x2;

. Output result to D/A converter;

. Perform x1 ! x2;

. Perform q! x1;

. Wait for timer interrupt;

. Repeat.

Higher-order filters can easily be implemented by
cascading the basic second-order blocks.

The software
The PIC microcontroller was programmed using

the C language. The compiler used was the PICC
Lite, manufactured by Hi-Tech [19] and distribu-
ted free as a limited functionality compiler. Using a
high-level language such as C has the advantage
that algorithms can be developed and tested
quickly and easily by students. In fact, students
should be able to develop and implement the
complete filter algorithm in a three-hour labora-
tory session. Another advantage of using a high-
level language is that the program code can be

transferred to other microcontrollers with usually
minor or no modifications.

Filter coefficients and filter states are declared as
floating-point variables, which makes the program-
ming easier and also gives a greater dynamic range
to the filter. The program is interrupt driven where
timer interrupts establish the sampling time of the
filter accurately. The timer TMR0 of the
PIC18F877 microcontroller was programmed to
generate an interrupt at every sampling time, i.e.
at every 1000ms (sampling frequency = 1 kHz). The
actual filter algorithm is then implemented inside
the interrupt service routine. The program normally
waits for a timer interrupt to occur; inside the
interrupt service routine the A/D sample is read,
the filter algorithm is implemented and the output
signal is loaded to the D/A converter to produce
analogue output from the filter. The operation of
the software is described below:

. Initialize the program;

. Perform digital filtering continuously.

The initialization consists of:

. Initialize program variables and load filter co-
efficients;

. Initialize filter states to zero;

. Initialize port directions;

. Load TMR0 timer register for 1000ms inter-
rupts;

. Enable timer interrupt;

. Wait for timer interrupts.

Fig. 7. Experimental setup

Fig. 8. Filter hardware

Low-cost Microcontroller-based Hardware for Introducing Digital Filters 1007

The digital filtering section of the program is
entirely implemented in an interrupt service
routine (ISR) so that the required sampling
frequency is obtained accurately. The ISR consists
of the following simple operations:

. Reload TMR0 timer register;

. Read a sample from A/D converter;

. Perform filtering algorithm;

. Send output to D/A converter;

. Return from interrupt.

On return from the ISR routine, the program goes
back to the main program and waits for the next
interrupt to occur. This way, the filtering algo-
rithm is guaranteed to occur at every sampling
interval. i.e. at every 1000ms.

The program listing of the filtering algorithm is
given in Figure 6.

Experimental setup
Figure 7 shows a block diagram of the experi-

mental setup. During the experiment, a PC-based
two-channel oscilloscope, Cleverscope [20], is used
by students to observe the input and output wave-
forms of the filter. The Cleverscope has a built-in
audio frequency generator with an automatic
sweep action and this is connected to the input of

the filter. The filter was built on a breadboard and
is depicted in Figure 8.

Figure 9 shows the typical input and output
signal waveforms obtained from the filter and
captured on the oscilloscope. The frequency
response of the filter can be plotted using the
built-in frequency spectrum analyser and the
frequency sweep generator functions of the Cleve-
rscope and this is depicted in Figure 10.

Students are asked to calculate the parameters
of digital filters with given cut-off frequencies, then
they implement these filters using the hardware
proposed. Student success is then assessed by
asking them to prepare a laboratory report
giving the theory they have learned, also screen
shots of the frequency response and filter input-
output waveforms.

CONCLUSION

A microcontroller-based low-cost digital filter
hardware platform has been described. The system
consists of an A/D converter, a PIC microcontrol-
ler and a D/A converter. The filter algorithm has
been implemented in C language using floating-
point arithmetic which has simplified the program-

Fig. 9. Input and output waveforms of the digital filter

D. Ibrahim1008

ming. Although the actual instruction timing of
floating-point operations has not been given by the
developers of the C compiler, it is estimated that
operation at up to about 10 kHz should be possible
with a PIC microcontroller having a 20MHz clock.
The cost of the developed hardware was not more
than $50 (approx. £25). It was possible to lower the
cost even further by using the built-in A/D conver-
ter of the microcontroller. It was, however, aimed
to keep the basic DSP building blocks as distinct
and separate as possible, so an external A/D chip
was used instead. Another reason for using an
external A/D converter was the need for bi-polar
voltage levels.

Digital processing is traditionally implemented
in industrial and commercial applications using
DSP chips. Although this is useful, it can hide
many of the basic concepts of signal processing
from the students. The system designed and
explained in this paper enables students to develop

various signal processing algorithms and to imple-
ment and test them on the actual hardware. The
hardware is low-cost, easy to learn, easy to
construct and has the benefit that it teaches the
principles of signal processing using the basic
building blocks. It is intended to use the developed
hardware initially, and then introduce the commer-
cially available DSP kits for more complex signal
processing experiments.

The filter coefficients were obtained by develop-
ing a MATLAB-based program where the user
enters the filter specifications and the program
displays the required filter coefficients, and also
plots the theoretical frequency response of the
filter so that students can compare the theory
with practical results.

Although only the design of IIR type filters were
considered in this paper, the same hardware can
easily be used for the implementation of both FIR
and IIR type filters.

REFERENCES

1. S. S. Soliman and M.D. Srinath, Continuous and discrete signals and systems, 2nd Ed., Prentice-
Hall, Englewood Cliffs, (1998).

2. A.V. Oppenheim and R.W. Schafer, Discrete-time signal processing, Prentice-Hall, Englewood
Cliffs, (1989).

3. S. J. Orfanidis, Introduction to signal processing, Prentice-Hall, Englewood Cliffs, (1996).
4. A. Bateman and W. Yates, Digital signal processing design, Computer science press, (1989).
5. P. Lapsley, J. Bier, A. Shoham and E.A. Lee, DSP processor fundamentals, IEEE press, (1997).
6. M. Alonso and A. Barreto, An Affordable Platform for Learning Real-Time Adaptive Signal

Processing, Int. J. Eng. Educ. 20(1) 2004, pp. 39±45.

Fig. 10. Filter frequency response

Low-cost Microcontroller-based Hardware for Introducing Digital Filters 1009

7. S. M. Kuo and W. S. Gan, Transition from Simulink to MATLAB in Real-Time Digital Signal
Processing Education, Int. J. Eng. Educ. 21(4) 2005, pp. 587±595.

8. MATLAB User's Guide, Math Works, (2006).
9. MATLAB Reference Guide, Math Works, (2006).

10. Microchip web site: www.microchip.com
11. Analog Devices Inc. web site: www.analog.com
12. C. Marndven and G. Ewers, A simple approach to digital signal processing, Wiley, (1996).
13. N. Ahmed and T. Natarajan, Discrete-time signals and systems, Prentice-Hall, Englewood Cliffs,

(1983).
14. L. B. Jackson, Digital filters and signal processing, Kluwer Academic publishers, (1989).
15. S. K. Mitra, Digital signal processing: a computer-based approach, McGraw-Hill, (1998).
16. A. E. Sarsour, Microcontroller based digital filter development, MSc Thesis Near East University,

Dept. Computer Eng., (2006).
17. V. K. Ingle and J.G. Proakis, Digital signal processing using MATLAB, Boston PWS publishing,

(1997).
18. Near East University web site: www.neu.edu.tr
19. Hi-Tech web site: www.htsoft.com
20.Cleverscope User Guide, www.cleverscope.com

Dogan Ibrahim, a Professor of Computer Engineering at the Near East University in
Cyprus, has been actively involved in microprocessor and microcontroller based systems for
the last 17 years. His research interests include the design of microcontroller based
automation systems, digital signal processing, and distant engineering teaching. He teaches
courses in digital logic, microcontroller systems, and automatic control theory.

D. Ibrahim1010

