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Biomedical signal processing and analysis is a field of great importance in current medical practice.
MATLAB is the most commonly used software tool for biomedical signal processing, visualization,
editing, etc. This paper presents an initiative to teach Doppler ultrasound blood flow signal analysis
to biomedical engineering students. The approach was based on illustrative applications that
highlight the performance characteristics of the signal processing methods (classical, model-based,
eigenvector and time-frequency methods). Following a brief description of the signal processing
methods, applications of the methods to the Doppler signals obtained from the internal carotid
artery and ophthalmic artery were done by means of a series of MATLAB functions. The functions
involved in signal processing and wavelet toolboxes of MATLAB can be used to analyse the signal
under study. The author suggests that the use of MATLAB exercises will assist students in gaining
a better understanding of the various signal processing methods in blood flow investigations.
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INTRODUCTION

BIOMEDICAL ENGINEERS, in recent years,
have developed many algorithms and processing
techniques in order to help doctors in the examina-
tion of many different biosignals, to find new
information embedded in them and not easily
observable in the raw data [1]. In this respect,
Doppler ultrasound blood flow signal analysis
could be introduced both in the graduate and under-
graduate biomedical engineering programmes.
Most engineering students are introduced to
MATLAB and the various toolboxes at an early
stage of their careers in the general areas of simula-
tion, controls and dynamic system analysis.
MATLAB is the basic `engine' with add-on compo-
nents called toolboxes. MATLAB and its toolboxes
allow students to investigate the characteristics of
the algorithm and easily design their own algorithm
with its vast assortment of graphical, signal process-
ing and simulation functions. The data or signals
generated by any component of the system (soft-
ware or hardware) can be displayed and/or saved for
subsequent use, such as system identification or
offline signal analysing.

Doppler ultrasound is a noninvasive technique
which is widely used in medicine for the assessment
of blood flow in vessels. The technique has
improved much since Satomura first demonstrated
the application of the Doppler effect to the

measurement of blood velocity in 1959 [2±5].
Doppler ultrasonography works by emitting a
focused ultrasound beam with a base frequency
into the body via a piezoelectric transducer and
detecting the change in frequency that occurs after
the beam is reflected or scattered by moving
targets. This Doppler shift frequency is propor-
tional to the speed of the moving targets:

fD � 2vf cos �

c
�1�

where v is the magnitude of the velocity of target,
fD is the Doppler shift frequency, f is the frequency
of transmitted ultrasound, c is the magnitude of
the velocity of ultrasound in blood and � is the
angle between ultrasonic beam and direction of
motion.

Doppler ultrasound has proved to be a valuable
technique for investigation of arterial diseases. The
results of the studies in the literature have shown
that Doppler ultrasound evaluation can give reli-
able information on both systolic and diastolic
blood velocities of arteries and have supported
Doppler ultrasound as a useful tool in screening
certain haemodynamic alterations in arteries [2±5].

The Doppler power spectrum has a shape similar
to the histogram of the blood velocities within the
sample volume and thus spectral analysis of the
Doppler signal produces information concerning
the velocity distribution in the artery. The estima-
tion of the power spectral density (PSD) of the
Doppler signal is performed by applying spectral* Accepted 6 April 2007.
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analysis methods. By using spectral analysis
methods, variations in the shape of the Doppler
power spectra as a function of time are presented in
the form of sonograms. In a sonogram, the hori-
zontal axis represents time, the vertical axis
frequency and the grey level intensity denotes
signal power at frequency and time instant. The
darker the grey level, the higher the power of the
frequency component measured at time instant. By
monitoring the sonogram, variation of the spectral
properties of the Doppler signal and a number of
extents related to the blood flow can easily be
tracked [2±5].

A number of spectral estimation methods have
recently been developed and compared to the
more standard fast Fourier transform (FFT)±
based methods for Doppler ultrasonic signal
processing. FFT-based methods are known as
classical (nonparametric) methods and have been
widely studied in the literature [4, 6±8]. Autore-
gressive (AR), moving average (MA), autoregres-
sive moving average (ARMA) methods are model-
based (parametric) methods with spectra that can
be computed via different algorithms. Eigenvector
methods are used for estimating frequencies and
powers of signals from noise-corrupted measure-
ments. Pisarenko, multiple signal classification
(MUSIC), and Minimum-Norm methods are
eigenvector methods which can be used for obtain-
ing PSD estimates of Doppler ultrasound blood
flow signals [3, 9]. Since flow in arteries is pulsatile
and the red blood cells have a random spatial
distribution, the Doppler signal is time-varying
and random. Therefore, short-time Fourier trans-
form (STFT) and wavelet transform (WT) can be
used for spectral analysis of the arterial Doppler
signals [1]. Using these spectral analysis methods,
the time-dependent spectral distributions were
visualized and detailed documentations of the
Doppler signals were obtained [5].

COURSE DESCRIPTION

A MATLAB-based approach is one of the
topics in the biomedical instrumentation course
in the department of electrical and electronics
engineering. It is a selective course designed to
equip undergraduate and/or graduate students
with necessary programming and hardware
design skills and to acquaint them with the
latest biomedical instruments and their relation
with spectral analysis methods. These skills and
knowledge are crucial in the biomedical field,
which faces a constant shortage of trained engi-
neers with digital signal processing background.
The course includes biomedical instrumentation
theory, design, implementation and spectral
analysis methods applied to biomedical signals.
Prerequisite courses before biomedical instrumen-
tation are medical electronics and digital signal
processing.

Before embarking on the formulation of a
syllabus for the biomedical instrumentation
course, some important questions had to be asked:

1) How do we begin designing a biomedical instru-
mentation project from specification?

2) How do we teach the algorithms of MATLAB
functions in a fun and easy-to-absorb way?

3) How do we highlight the functionality of bio-
medical instruments and features and relate
them to the signal processing algorithms?

4) How do we create a laboratory session that fits
in with the lecture properly? How do we cover
the software and hardware tools used in the
design course?

5) How do we assess the students?
6) How do we evaluate the educational contribu-

tion of our course?

The biomedical instrumentation course, like the
other modules among the optional courses, is a 36-
hour lecture course. Course lectures are scheduled
for 12 weeks (consisting of a three-hour lecture
block per week), followed by two weeks of exams.
The course outline consists of the following:

. Basic concepts of biomedical instrumentation;

. Basic sensors and principles;

. Biomedical signal processing;

. The origin of biopotentials;

. Biopotential electrodes;

. Biopotential amplifiers;Blood pressure and
sound;

. Measurement of flow and volume of blood;

. Clinical laboratory instrumentation.

In a six-hour lecture, biomedical signal processing
involving Doppler blood flow signal processing is
explained. The course forms a part of computer
science and is very computationally intensive. The
key features of the MATLAB software and how
the signal processing and wavelet toolboxes of
MATLAB work with the course material are
given to the students in the lecture.

THEORETICAL BASIS

Classical methods (fast Fourier transform)
The FFT-based methods such as Welch method

are defined as classical methods. Welch spectral
estimator can be efficiently computed via FFT and
is one of the most frequently used PSD estimation
methods. In the Welch method, signals are divided
into overlapping segments, each data segment is
windowed, periodograms are calculated and the
average of periodograms is found [4,6±8]. xl�n�f g,
l � 1; . . . ;K are signal intervals and each interval's
length equals to M. The Welch spectral estimator
is defined as

P̂l� f � � 1

M

1

P

XM
n�1

v�n�xl�n� exp�ÿj2�fn�
�����

�����
2
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and

P̂W � f � � 1

K

XK

l�1

P̂l� f � �2�

where P̂l� f � is the periodogram estimate of each
signal interval, v�n� is the data window, P is the
average of v�n� given as

P � 1

M

XM
n�1

v�n�j j2, P̂W � f �

is the Welch PSD estimate, M is the length of each
signal interval and K is the number of signal
intervals.

Model-based methods
AR method: the most frequently used model-

based method because estimation of the AR para-
meters can be done easily by solving linear equa-
tions. The AR parameters can be estimated via
different estimation methods such as the Burg
method [4, 6±8]. This is computationally efficient
and yields a stable AR method. It is based on
minimization of the forward and backward
prediction errors and estimation of the reflection
coefficient.
From the estimates of the pth-order Burg AR

parameters, PSD estimation is formed as

P̂BURG� f � � êp

1� Pp
k�1

âp�k�eÿj2�fk

���� ����2
, �3�

where êp � êf ; p � êb; p is the total least squares
error.

MA method: one of the model-based methods in
which the signal is obtained by filtering white noise
with an all-zero filter [4,6±8]. Estimation of the
MA spectrum can be done by the reparameteriza-
tion of the PSD in terms of the autocorrelation
function. The qth-order MA PSD estimation is

P̂MA�f � �
Xq

k�ÿq

r̂�k�eÿj2�fk �4�

where r̂�k� is autocorrelation function estimates.
ARMA method: the spectral factorization prob-

lem associated with a rational PSD has multiple
solutions, with the stable and minimum phase
ARMA model being one of the model-based
methods [4,6±8]. A reliable method is to construct
a set of linear equations and to use the method of
least squares on them. Suppose that for an ARMA
of order p,q the autocorrelation sequence can be
accurately estimated up to lag M, where
M > p� q. Then the following set of linear equa-
tions can be written:

r�q� r�qÿ 1� � � � r�qÿ p� 1�
r�q� 1� r�q� � � � r�qÿ p� 2�

..

. ..
.

r�M ÿ 1� r�M ÿ 2� r�M ÿ p�

26664
37775

a1

a2

..

.

ap

26664
37775 � ÿ

r�q� 1�
r�q� 2�

..

.

r�M�

26664
37775; �5�

or equivalently,

Ra � ÿr: �6�
Since the dimension of R is �M ÿ q�xp and
M ÿ q > p the least squares criterion can be used
to solve for the parameter vector a. The result of
this minimization is

â � ÿ R�R� �ÿ1 R�r� � �7�
Finally the estimated ARMA power spectrum is

P̂ARMA� f � � P̂MA� f �

1� Pp
k�1

â�k�eÿj2�fk

���� ����2
, �8�

where P̂MA� f � is estimate of the MA PSD and is
given in equation (4).

Selection of AR, MA and ARMA model orders:
one of the most important aspects in the use of
model-based methods is the selection of the model
order. Much work has been done by various
investigators on this problem and many experi-
mental results are in the literature [6±8]. One of the
better known criteria for selecting the model order
has been proposed by Akaike [10], called the
Akaike information criterion (AIC). This is based
on selecting the order that minimizes equation (9)
for the AR method, equation (10) for the MA
method, and equation (11) for the ARMA method.

AIC� p� � ln �̂2 � 2p=N, �9�
AIC�q� � ln �̂2 � 2q=N, �10�

AIC�p; q� � ln �̂2 � 2�p� q�=N: �11�
where �̂2 is the estimated variance of the linear
prediction error. In the illustrative applications,
model orders of the AR, MA, and ARMA
methods were taken as 10 by using equations (9),
(10), and (11).

Eigenvector methods
Eigenvector methods are used for estimating

frequencies and powers of signals from noise-
corrupted measurements. These methods are
based on an eigen-decomposition of the correla-
tion matrix of the noise±corrupted signal. Even
when the signal-to-noise ratio (SNR) is low, the
eigenvector methods produce frequency spectra of
high resolution. These methods are best suited to
signals that can be assumed to be composed of
several specific sinusoids buried in noise [3, 9]. In
the illustrative applications, three eigenvector
methods (Pisarenko, MUSIC, and Minimum-
Norm) were selected to generate the PSD esti-
mates.

E. D. UÈ beyli1234



Pisarenko method: proposed by Pisarenko [11],
this is particularly useful for estimating PSD which
contains sharp peaks at the expected frequencies.
The polynomial A� f � which contains zeros on the
unit circle can then be used to estimate the PSD.

A� f � �
Xm

k�0

akeÿj2�fk �12�

where A� f � represents the desired polynomial, ak

represents coefficients of the desired polynomial,
and m represents the order of the eigenfilter, A� f �.

From the eigenvector corresponding to the mini-
mum eigenvalue, the Pisarenko method determines
the signal PSD from the desired polynomial [3, 9]

PPISARENKO� f � � 1

A� f �j j2 �13�

MUSIC method: this is also a noise subspace
frequency estimator. The MUSIC method
proposed by Schmidt [12] eliminates the effects of
spurious zeros by using the averaged spectra of all
of the eigenvectors corresponding to the noise
subspace. The resultant PSD is determined from

PMUSIC� f � � 1

1
K

PKÿ1

i�0

Ai� f �j j2
�14�

where K represents the dimension of noise
subspace, Ai� f � represents the desired polynomial
that corresponds to all the eigenvectors of the noise
subspace [3,9].

Minimum-norm method: in addition to the
Pisarenko and MUSIC methods, the Minimum-
Norm method was investigated [13]. In order to
differentiate spurious zeros from real zeros, the
Minimum-Norm method forces spurious zeros
inside the unit circle and calculates a desired
noise subspace vector a from either the noise or
signal subspace eigenvectors. Thus, while the
Pisarenko method uses only the noise subspace
eigenvector corresponding to the minimum eigen-
value, the Minimum-Norm method uses a linear
combination of all noise subspace eigenvectors.
Using the Minimum-Norm method, the polyno-
mial A� f � is written as [13]

A� f � � A1� f �A2� f � �15�
where

A1� f � �
XL

k�0

bkeÿj2�fk b0 � 1 �16�

A2� f � �
XmÿL

k�0

ckzÿk c0 � 1 �17�

The Minimum-Norm PSD can be estimated as
follows [3, 9]:

PMIN� f ;K� � 1

A� f �j j2 �8�

where K represents the dimension of the noise
subspace.

Time-frequency methods
Short-time Fourier transform: spectral analysis

of the Doppler signal is performed using the STFT,
in which the signal is divided into small sequential
or overlapping data frames and FFT is applied to
each one. The output of successive STFTs can
provide a time-frequency representation of the
signal. To accomplish this, the signal is truncated
into short data frames by multiplying it by a
window so that the modified signal is zero outside
the data frame. To analyse the whole signal, the
window is translated in time and then reapplied to
the signal [1, 5].

In STFT analysis, the signal is multiplied by a
window function w�t� and the spectrum of this
signal frame is calculated using the Fourier trans-
form. Thus

STFT�t; f � �
Z�1
ÿ1

x���w�� ÿ t�eÿj2�f �d�

������
������
2

�19�

where x�t� represents the analysed signal.
Wavelet transform (WT): addresses the problem

of fixed resolution by using base functions that can
be scaled. The wavelets act in a similar way to the
windowed complex exponentials that are used in
the STFT, except that with the WT the length of
signal being analysed is not fixed. It is known that
wavelets are better suited to analysing nonstation-
ary signals, since they are well localized in time and
frequency. The property of time and frequency
localization is known as compact support and is
one of the most attractive features of the WT. The
WT of a signal is the decomposition of the signal
over a set of functions obtained after dilatation
and translation of an analysing wavelet. The main
advantage of the WT is that it has a varying
window size, being broad at low frequencies and
narrow at high frequencies, thus leading to an
optimal time-frequency resolution in all frequency
ranges. Furthermore, owing to the fact that
windows are adapted to the transients of each
scale, wavelets lack of the requirement of statio-
narity. Therefore, the WT has become a powerful
alternative to the STFT in analysis of the Doppler
signals [1,5].

Continuous wavelet transform (CWT) is defined
by

CWT�a; b� �
Z�1
ÿ1

x�t� �a;b�t�dt �20�

where x�t� represents the analysed signal, a and b
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represent the scaling factor (dilatation/compres-
sion coefficient) and the time (shifting coefficient),
respectively, and the superscript asterisk denotes
the complex conjugation.
 a; b��� is obtained by scaling the wavelet at

time b and scale a.

 a;b�t� � 1������
aj jp  

tÿ b

a

� �
�21�

where  �t� represents the wavelet.

ILLUSTRATIVE APPLICATIONS

Hardware
The data acquisition system used in the illus-

trative applications had five components as shown
in Fig. 1. These are ultrasonic transducer (5 MHz
for internal carotid artery, 10 MHz for ophthalmic
artery), analogue Doppler unit, analogue tape
recorder (Sony), analogue/digital interface board
(Sound Blaster Pro-16 bit), a personal computer
with a printer. The analogue Doppler unit was
equipped with an imaging facility that made it
possible to focus the sample volume at a desired
location. The beam of ultrasound transfixed the
vessel axis at an angle of around 60 degrees. The
output of the analogue Doppler unit was trans-
ferred to a PC via a 16-bit sound card on an
analogue/digital interface board.

Doppler power spectra and sonograms
Doppler power spectra describe the distribution

of power with frequency. In the illustrative appli-
cations, internal carotid and ophthalmic arterial
Doppler signals were processed to achieve Doppler
PSDs and sonograms. In order to achieve Doppler
PSDs and sonograms, the signal processing and
wavelet toolboxes of MATLAB were used. Clini-
cally useful information can be extracted from the
Doppler PSDs and sonograms. Since the velocity
components are proportional to the Doppler
frequency shifts, the Doppler PSDs giving the
shape of the velocity distribution within the
artery. PSDs of internal carotid arterial, Doppler
signals were obtained using the FFT, AR, MA,
and ARMA methods [4]. Sample PSDs of the
internal carotid arterial Doppler signals for an
unhealthy subject having artery stenosis are
presented in Fig. 2.

The FFT has large variance and is a poor

spectral estimator, as can be observed in Fig. 2.
The assumption that the autocorrelation estimate
is zero outside the window severely limits the
frequency resolution and the quality of the PSD
estimates that are achieved using the FFT method.
Owing to the limitations of the FFT method,
model-based spectral estimation methods are
extremely valuable for Doppler signal analysis.
The AR method avoids the problem of leakage
and provides better frequency resolution than the
FFT method. The AR equation may model spectra
with narrow peaks and this is an important feature
since narrowband spectra are quite common in
practice. The MA method is valuable when the
PSD is characterized by broad peaks and/or sharp
nulls. As is apparent from Fig. 2, smooth internal
carotid arterial Doppler PSDs are obtained by the
MA method. Because the MA method is not a high
resolution spectral estimator for processes with
narrowband spectral features, the MA method
has been found inappropriate for obtaining inter-
nal carotid arterial Doppler PSDs. Spectra with
both sharp peaks and deep nulls can be modelled
by the ARMA method. By combining poles and
zeros, the ARMA method provides a more effi-
cient representation, from the viewpoint of the
number of model parameters, of the spectrum of
a random process. It is clearly shown in Fig. 2 that
both the AR and ARMA methods generate similar
PSD estimates. The AR and ARMA method's
performance characteristics (determining peak
frequencies and power levels of Doppler PSDs
and correlation coefficients between the methods
calculated from Doppler PSDs) have been found
to be superior to the FFT and MA methods, as can
be observed in Fig. 2 [4].

The Doppler shift signal contains a wealth of
information about blood flow occurring within the
sample volume of the Doppler ultrasonography.
The most complete way to display this information
is to perform spectral analysis and present the
results in the form of a sonogram. The variation
in the shape of Doppler power spectrum as a
function of time can be presented in the form of
a sonogram. A number of parameters related to
the blood flow may be extracted from the sono-
grams and these are of high clinical value. The
indices derived from the sonograms defined as
resistivity index (RI), pulsatility index (PI) and
used for the evaluation of arterial Doppler sono-
grams. RI and PI are defined as

RI � �S ÿD�=S �22�

Fig. 1. Block diagram of measurement system.
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PI � �S ÿD�=M �23�

where S is maximum systolic height, D is end
diastolic height and M is mean height of the
sonogram (Fig. 3).

In Fig. 4, internal carotid artery flow sonograms
recorded from an unhealthy subject having artery
stenosis are given. Internal carotid artery flow
sonogram in (a) is obtained using the FFT
method, in (b) using the AR method, in (c) using
the MA method, and in (d) using the ARMA
method. As is seen from Fig. 4, in the FFT
sonogram spurious frequencies are seen and
systole and diastole are not clear. The sonogram
obtained using the MA method has very low
frequency resolution. Internal carotid arterial
Doppler sonograms of unhealthy subject obtained
using the AR and ARMA methods are more clear
and have higher spectral resolution compared with
the FFT and MA methods' sonograms [4].

The calculations of RI and PI from internal
carotid arterial Doppler sonograms obtained
using the FFT and MA methods are difficult since
systole and diastole are not clear as seen in Figs 4(a),
4(c). On the other hand, internal carotid arterial
Doppler sonograms obtained using the AR and
ARMA methods (Figs 4(b) and 4(d) ) are clearer
so that the calculation of RI and PI from these two
methods' sonograms will not be difficult. There is a
distinct qualitative improvement in the Doppler
sonograms obtained using the AR and ARMA
methods over the FFT and MA methods, which is
in agreement with other published results [4].

Eigenvector methods are based on an eigen-
decomposition of the correlation matrix of the
noise±corrupted signal. Even when the SNR is
low, the eigenvector method produces a frequency

spectrum of high resolution. These methods
provide sufficient resolution to estimate the sinu-
soids from the data. Hence, to gain some noise
immunity it is reasonable to retain only the prin-
cipal eigenvector components in the estimation of
the autocorrelation matrix. The Pisarenko,
MUSIC, and Minimum-Norm methods were
employed to determine PSDs of the internal caro-
tid arterial Doppler signals [3]. Using the
frequency estimations provided by any one of
these methods, the power levels of the signal can
be determined from the power matrix.

In the Pisarenko method, the eigenvector asso-
ciated with the minimum eigenvalue of the esti-
mated autocorrelation matrix is used to calculate
the PSD. This method may produce spurious zeros
and has a relatively poor statistical accuracy
[3,9,11]. In all cases, the Pisarenko PSD showed
extra peaks as compared to PSDs obtained from the
MUSIC or Minimum-Norm methods (Fig. 5).

Fig. 2. Internal carotid arterial Doppler PSDs recorded from an unhealthy subject having artery stenosis: FFT, AR, MA, ARMA
methods.

Fig. 3. Diagram illustrating variables involved in definitions of
RI and PI. S is maximum systolic height, D is end diastolic

height and M is mean height of waveform
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(a) (b)

(c) (d)

Fig. 4. Internal carotid arterial Doppler sonograms recorded from an unhealthy subject having artery stenosis: (a) FFT, (b) AR, (c)
MA, (d) ARMA methods

Fig. 5. Internal carotid arterial Doppler PSDs recorded from an unhealthy subject having artery stenosis: Pisarenko, MUSIC,
Minimum-Norm methods.
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Since the Pisarenko method showed a tendency
to generate spurious zeros, the Pisarenko was
considered inappropriate for the internal carotid
arterial Doppler signals. The MUSIC method
eliminates these spurious zeros by averaging the
spectra from all of the eigenvectors corresponding
to noise subspace. The MUSIC method is the most
widely studied, computationally simple, high-reso-
lution eigenvector method [3,9, 12]. From Fig. 5, it
is apparent that the MUSIC method is the most
suitable method for the internal carotid arterial
Doppler signals. The Minimum-Norm method
treats the problem of spurious zeros by forcing
them inside the unit circle (Fig. 5). Both the
MUSIC and Minimum-Norm methods produce
similar spectral characteristics with nearly identical
peak frequencies. This similarity held for all inter-
nal carotid arterial Doppler signals obtained from
healthy and unhealthy subjects having artery
stenosis and occlusion indicating that the
frequency peaks can be accurately estimated
using either method [3]. Variance of the MUSIC
spectra is smaller than the Minimum-Norm meth-
od's variance. The MUSIC method provides
asymptotically unbiased estimates of a general set
of signal parameters approaching the Cramer-Rao
accuracy bound. According to statistical analysis,
the MUSIC method's performance characteristics
have been found to be superior to the Minimum-
Norm method [3].

In Fig. 6, ophthalmic artery flow sonograms
recorded from an unhealthy subject having
ophthalmic artery stenosis are given. Ophthalmic
arterial Doppler sonogram in Fig. 6(a) is obtained
using the STFT, in Fig. 6(b) using the WT. As is
seen from Fig. 6, there is a distinct qualitative
improvement in the sonograms obtained using
the WT over the STFT. In the STFT analysis,
taking the FFT of a short data frame of the
Doppler signal leads to a distortion of the spectral
estimate and leakage of signal energy into spurious
side lobes due to the sharp truncation of the signal.
Therefore, the STFT sonograms have spurious

frequencies and the STFT does not produce clear
sonograms. The advantage of the WT over the
STFT is the optimization of the time-frequency
resolution [5].

Signal processing and wavelet toolboxes of
MATLAB

Command windows of MATLAB taken from
students' projects related to the acquisition of
Doppler power spectra and sonograms are
presented in Figs 7 and 8. The signal processing
toolbox functions are algorithms, expressed mostly
in M-files, that implement a variety of signal
processing tasks. These toolbox functions are
specialized extension of the MATLAB computa-
tional and graphical environment [14]. The selected
functions in MATLAB's signal processing toolbox
are listed in Table 1. The students can read the
explanations of the listed functions and can obtain
the spectra and sonograms of their own signals. The
listed functions can be used in order to perform
application of the signal analysis methods
mentioned above to biomedical signals. The perfor-
mance characteristics of the signal analysis methods
can vary according to the signal under study. In this
paper, we emphasized the superiority of the AR,
ARMA methods among the model-based methods,
the superiority of the MUSIC method among the
eigenvector methods and the superiority of the WT
among the time-frequency methods for the Doppler
ultrasound blood flow signals.

The signal processing toolbox is a collection of
tools built on the MATLAB numeric computing
environment. The toolbox supports a wide range
of signal processing operations, from waveform
generation to filter design and implementation,
parametric modelling, and spectral analysis. The
toolbox provides two categories of tools.

Command line functions in the following cat-
egories:

. Analogue and digital filter analysis;

. Digital filter implementation;

(a) (b)

Fig. 6. Ophthalmic arterial Doppler sonograms recorded from an unhealthy subject having ophthalmic artery stenosis: (a) STFT,
(b) WT
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. FIR and IIR digital filter design;

. Analogue filter design;

. Filter discretization;

. Spectral windows transforms;

. Cepstral analysis;

. Statistical signal processing and spectral analy-
sis;

. Parametric modelling;

. Linear prediction;

. Waveform generation.

A suite of interactive graphical user interfaces for

. Filter design and analysis;

. Window design and analysis;

. Signal plotting and analysis;

. Spectral analysis;

. Filtering signals.

The wavelet toolbox is a collection of functions
built on the MATLAB technical computing en-
vironment. It provides tools for the analysis and
synthesis of signals and images, also tools for
statistical applications, using wavelets and wavelet
packets within the framework of MATLAB [15].
The selected functions that are available in
MATLAB's wavelet toolbox are listed in Table 2.

The toolbox provides two categories of tools:

. Command line functions;

. Graphical interactive tools.

The first category of tools is made up of functions
that you can call directly from the command line

or from your own applications. Most of these
functions are M-files, series of statements that
implement specialized wavelet analysis or synthesis
algorithms. The second category is a collection of
graphical interface tools that afford access to
extensive functionality. The wavelet toolbox
provides a complete introduction to wavelets and
assumes no previous knowledge. The toolbox
allows you to use wavelet techniques on your
own data immediately and develop new insights.
You can change the way any toolbox function
works by copying and renaming the M-file, then
modifying your copy. You can also extend the
toolbox by adding your own M-files.

EVALUATION AND ASSESSMENT

Student interaction with MATLAB toolboxes
To keep sustainable interest in the education

process and with many students enrolling in
colleges with some computer literacy, it is essential
to reinforce the engineering education curriculum
with computer-aided teaching tools that are inter-
active as well as educational [16]. At the beginning
of the biomedical instrumentation course, the
students receive a handout showing the key
features of MATLAB software and how the
signal processing and wavelet toolboxes work
with the course material. The practicality of
students using MATLAB functions is that they

Fig. 7. Command window of MATLAB taken from students' project to obtain Doppler power spectra
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will be able to develop their own functions by
modifying MATLAB functions. The use of
MATLAB functions in an interactive and easy
way to analyse the Doppler blood flow signals
(or signals under study) by the whole spectral
analysis methods rather than one spectral analysis
method will be more informative for the students.
The examples stored for the students in the elec-
tronic handbook database of the course generate
complete analysis of the whole spectral analysis
methods allowing the students to examine the
parameters and estimate the values of the para-
meters involved in the various methods.

There are several main benefits of computer-
aided teaching as it relates to the distance-learning
environment:

. Self-placed learning is available, suitable for all
abilities.

. Graphics, animation and simulations are easily
incorporated.

. Using hypertext, there can be many ways to
access the same piece of information, with the
caveat that some parts may never be accessed,
and students may be left unsure whether they
have covered all the necessary material.

. Computer-based testing can easily be integrated
with a computer-aided teaching package, giving
students instant feedback, either directed or
undirected.

Fig. 8. Command window of MATLAB taken from students' project to obtain sonograms

Table 1. Selected functions available in MATLAB's signal
processing toolbox

Function Explanation

pburg Power Spectral Density Estimate via Burg's
method

pcov Power Spectral Density Estimate via the
Covariance method

peig Power Spectral Density Estimate via the
Eigenvector method

periodogram Power Spectral Density Estimate via the
periodogram method

pmcov Power Spectral Density Estimate via the
Modified Covariance method

pmusic Power Spectral Density Estimate via the
MUSIC method

pwelch Power Spectral Density Estimate via Welch's
method

pyulear Power Spectral Density Estimate via the Yule-
Walker AR method

arburg AR parametric modeling via Burg's method
arcov AR parametric modeling via covariance

method
armcov AR parametric modeling via modified

covariance method
aryule AR parametric modeling via the Yule-Walker

method
specgram Calculates spectrogram from signal
corrmtx Autocorrelation matrix
sptool Signal processing toolÐGraphical user

interface
fdatool Filter design and analysis toolÐGraphical user

interface
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. On a more subtle level, computer-aided teaching
offers relative freedom from discrimination
because of physical characteristics which may
arise in the traditional classroom. (It also pro-
vides a solution for those with physical disabil-
ities for whom attending and navigating a
university campus might prove too difficult.)

Student evaluation and grading
Grading in the class was initially based on

quizzes (short answer, 15%), two midterm exams
(one of them is open-book exam, 40%), final exam
(40%) and final report (5%). All students are
required to prepare a final report on a topic that
is of particular interest to them. To discourage
procrastination, sample topics and details regard-
ing the report format are distributed with the class
syllabus. Students are required to select their topic
and identify several relevant references by
midterm. The early literature search helps students
determine the abundance or paucity of resources
for their topic. Students must then meet the
instructor to discuss their potential topic and
obtain official approval. The full report, which is
10±15 text pages, is then due on the last day of
class. The report is evaluated by the instructor in
terms of content (60%), discussion with respect to
class material (30%), spelling, grammar and length
(5%). The remaining 5% of the project grade is
based on the student's preparedness for the preli-
minary project meetings with the instructor. The
same instructor taught all of the offerings of the

course and assigned the final grades for all of the
students using essentially the same criteria. Conse-
quently, it is felt that the potential variations in
grades among offerings tend to even out, making
the average grade for each group a reasonable
metric for comparing their overall performance.

Course evaluation
To assess and evaluate the students' impressions

of course structure, discussions were held with
them and a brief questionnaire was developed for
distribution and collection at the end of each
session. The course evaluation form contains ten
multiple choice questions and other comments of
the students. The multiple choice questions are
graded 1 to 5, with 5 indicating full agreement. A
sample size of 30 students + 42 students was
available over two years of the programme.
Table 3 shows responses to the multiple choice
questions, indicating that, in general, students find
the experience a very positive one, with particular
emphasis on the presentation quality, course navi-
gation, MATLAB examples and the notes related
to course contents. The main recommendation was
the inclusion of more real-world applications and
implementations of biomedical instruments. In
general, the authors were very encouraged with
the overall student reaction to the course, both in
terms of formal evaluation and informal comments
from students over the duration of the course. The
authors believe that these results demonstrate that
the course contents do enhance the students'
understanding of spectral analysis of Doppler
blood flow signals and that students recognize
the importance of signal processing training and
experience in their professional futures.

Future modifications
Usually, a course must be modified on a regular

basis to stay current and to keep the interest of the
students. Based on feedback from students, alumni
and industry representatives, potential topics that
may be added in the future include functional
electrical stimulation (technology, status and
applications), augmentative and alternative com-
munication (assessment, current products and en-
gineering opportunities). Finally, we determine
several tools that provide data with which this

Table 2. Selected functions available in MATLAB's wavelet
toolbox

Function Explanation

wmaxlev Maximum wavelet decomposition level
wfilters Wavelet filters
cwt Real or Complex continuous wavelet

coefficients 1-D
dwt Single-level discrete 1-D wavelet transform
wavedec Multi-level 1-D wavelet decomposition
waverec Multi-level 1-D wavelet reconstruction
dwt2 Single-level discrete 2-D wavelet transform
wavedec2 Multi-level 2-D wavelet decomposition
waverec2 Multi-level 2-D wavelet reconstruction
waveinfo Information on wavelets
wavedemo Wavelet toolbox demonstrations

Table 3. Responses to multiple choice questions

Course aspect Year 1 (30 students) Year 2 (42 students)

Presentation quality 4.35 4.42
Ease of access to course notes 4.57 4.48
Ease of navigation through course 4.34 4.41
Usefulness of MATLAB examples 4.56 4.62
Usefulness of weekly summaries 4.05 4.23
Usefulness of quizzes 3.46 3.89
Giving opportunity to demonstrate individual initiative and creativity 4.53 4.25
Valuable to professional future 4.32 4.47
Recommending this course to other students 4.78 4.83
Sufficiency of examples 4.26 4.34
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course and programme are evaluated. These tools
include:

1) student performance (grades);
2) course portfolios;
3) student involvement in cooperative education

and interdisciplinary programmes;
4) student research experience;
5) student preparation and matriculation into

postgraduate studies;
6) student involvement in engineering honour

societies and organizations;
7) student surveys;
8) industry and advisory boards.

Educational contribution
The main goal of the tool was the development

of an educational platform allowing students to
improve their knowledge about new trends in
signal processing. A number of suggestions about
the contribution to education were made. Several
features have been taken into account:

. The students were asked to use the signal
processing and wavelet toolboxes of
MATLAB. They not only save time by calling
these M-files but also have time to explore other
practical issues. By analysing the functions of
the toolboxes, students are given a good plat-
form on which they can learn how to write their
own optimized functions. From the feedback,
students benefited most by working with these
efficient programming templates.

. It was found that students who did well in the
practical session also performed well during
their open-book examination. The reason is
obvious: these students have tried out and
understood the process of modelling signals,
and examination questions are normally based
on these practical issues. Some questions also
tested the students' creativity, that is ability to
come up with a novel solution to a problem. The
real benefit of open-book examinations is that
they test the students' ability to solve a particu-
lar engineering problem in a real-life situation,
not the facility with which they remember long
equations, formulas, benchmarking tables, etc.,
as in the traditional closed-book examination.

. The system allows students to apply fundamen-
tal techniques for Doppler ultrasound blood
flow signals. The main goal is to let students
gain confidence before attempting to tackle
more complex problems. These projects are

also open-ended, allowing students to broaden
the assignment; good students will attempt these
parts and gain extra bonus marks.

. Evidence from the feedback demonstrates that
most students expressed their strong support and
keenness in working on these projects. Some
students who had a good project involvement
experience stayed on for their graduate study.

CONCLUSION

A theoretical basis of signal processing methods
was presented starting with the basic equations
and performing applications of these methods to
arterial Doppler signals. The signal processing
methods were used to obtain the Doppler power
spectra and sonograms which were given as illus-
trative examples. The intent of analysis of the
Doppler ultrasound blood flow signals was to
serve as an introduction to the use of the signal
processing methods and thus motivate their teach-
ing with the help of MATLAB in the classroom.
We emphasized the performance characteristics of
the signal processing methods (classical, model-
based, eigenvector and time-frequency methods)
for applications to the arterial Doppler signals.
The drawn results can be helpful to the students.

However, analysing their own signals with vari-
ous signal processing methods will be better
because the performance characteristics of the
methods can vary according to the signal under
study. MATLAB was introduced in this concept
because of its ease in building mathematical func-
tions and its powerful graphical user interface for
displaying the results. The students can undertake
the projects related with signal processing as a part
of their homework assignments, making it easy to
visualize the intricacies and understand the rela-
tionship between the different parameters involved
in the methods. We believe that the hands-on
experiences allowed the undergraduate and/or
graduate students to understand signal processing
theory and applications better, particularly when
they had the opportunity to hear and see real
signals being processed and to observe the impact
of mathematical operations on these signals. Our
experience has shown that this teaching platform
and methodology have clearly heightened student
interest in the learning of signal processing
methods and applications.
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