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Predictive uncertainty is an important concept that civil engineering students should understand.
The students need to realize that uncertainty is inevitable in spite of the efforts made to make
models, algorithms, and analysis techniques as accurate as possible. In this paper, the issue of
uncertainty is addressed through an illustrative example from the field of surface water quality
management. The example demonstrates that simple probabilistic analysis can be effective for both
walking the students through the issue of uncertainty and realistically quantifying the uncertainty
for real-life civil engineering applications.

Keywords: uncertainty; probabilistic analysis; hydrologic engineering; design accuracy; water
quality management

INTRODUCTION

ACCORDING TO WEBSTER'S DICTIONARY,
engineering is `the application of science and
mathematics by which the properties of matter
and sources of energy in nature are made useful
to people in structures, machines, products,
systems, and processes.' To many engineers and
engineering students the word `mathematics' and
the traditional perception of engineering imply
accuracy and precision. Engineering students
continuously deal with and are concerned about
systems and their accuracy. These concerns involve
measuring instruments, analysis techniques (e.g.,
optimization algorithms), or simulation and
prediction models. Chimeno et al. [1] correctly
observed and reported that engineering students
never think about the measurement uncertainty
and that the first barrier to overcome is to convince
the students that the measurement uncertainty is
an important factor. When students are asked to
use a few measuring tapes to measure the height of
one of the students, they will realize that slightly
different measurements may be reported by the
same student using various measuring tapes and
that slightly different measurements might be
reported by different students using the same
measuring tape.

When adopting simulation models to simulate
or predict a specific variable or phenomenon, the
predictive uncertainty is inevitable. The model
uncertainty may stem from uncertainty about its
structure, parameters, or input data [2]. In water
resources analysis, most design values are quantiles

derived from frequency curves [3] that assume a
certain probability distribution. There are inevita-
ble uncertainties about the probability distribution
itself as well as the values derived from the
distribution. Engineers and engineering students
may unjustifiably use such values with a few
significant digits to proceed with the design process
to produce what they believe to be a `precise'
design. They may ignore the fact that engineering
measurements, analysis, and modeling can be
accurate but may never be precise and will
certainly be overshadowed by uncertainty.

The aim of this paper is to help expose and
eliminate, through a case study about surface
water quality management, the misconception
that accuracy and uncertainty are dichotomous
in engineering practice. The simplified case study,
which can be presented to civil engineering
students, will demonstrate the possibility of being
highly uncertain in spite of using well established
standard engineering practices.

THE FALSE DICHOTOMY

In hydrologic design, it is common to rely on the
intensity±duration±frequency (IDF) curves [3] to
identify the rainfall design value needed for a
hydro-technical structure. The region-specific
IDF curves are constructed assuming that rainfall
is a pure random variable. Even though a value
read off the IDF curves is subject to a significant
level of uncertainty, it is common to ignore such
uncertainty, especially at the undergraduate level.
This is just one example of many possible examples
across various fields of civil engineering. Failing to* Accepted 18 September 2007.
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explicitly address the issue of uncertainty and
discuss it with the students is an unjustified case
of presenting the design process as a process that
encapsulates what we perfectly know. It is also an
indication of the extremely narrow approach to
engineering education [4]. Engineering students
need to understand that, as future designers, they
must present a complete picture of what is
perfectly known and what is uncertain because
this is important to decision makers.

As M. Wald noted in his editorial, the shift in
engineering education from science to vocational
education is inevitable [5]. In order to make future
decision makers and regulators willing to accept
risk and uncertainty-based analysis and designs,
and thus introduce uncertainty and frequency-
based environmental regulations, engineering
educators must ensure the introduction of such
concept in the engineering curriculum [6]. In spite
of the importance of teaching uncertainty in en-
gineering, there have been a few articles aimed at
addressing this issue [1, 7], and they focused only
on measurement uncertainty. There is a gap in
engineering education literature with respect to
teaching uncertainty in engineering analysis and
design. This paper is an attempt to help fill this gap
by presenting an illustrative example from the field
of surface water quality management.

Before introducing the illustrative example, it
might be useful to define uncertainty analysis as
the technique used to estimate the interval about a
result within which the true value is thought to lie
with a certain degree of confidence [7].

ILLUSTRATIVE CASE STUDY

The Total Maximum Daily Load (TMDL)
program recently emerged as the fundamental
approach to meet water quality standards in
water bodies. The TMDL process usually refers
to the plan to develop and implement the TMDL
of a quantifiable pollutant to achieve compliance
with a surface water quality standard [8]. Devel-
opment of TMDLs for different pollutants at the
watershed scale enables managers to enforce
constraints on the allowable level of pollutant
input. If the level of pollutant input or a water
quality parameter in a water body violates the
recommended value from the TMDL study, a
pollutant load reduction in the watershed could
be proposed [9].

Elshorbagy et al. [9] and Ormsbee et al. [10] have
proposed a methodology for pH TMDL develop-
ment. Their idea is to convert the pH standard unit
into a quantifiable hydrogen ion load, and there-
fore recommend load reduction to ensure the pH
level in the stream does not fall below 6.0 in acidity
prone watersheds. The protocol relies on a regres-
sion relationship between streamflow (m3/s) and
hydrogen ion concentration (g/m3) based on
measured pH. The recommended load reduction
is based on meeting the standards at a chosen

single value of flow: the critical flow (Qc). The
relationship between hydrogen ion activity and pH
can be expressed as follows:

fH�g � 10ÿpH �1�
where pH is the negative log of the H+ ion activity
in mol/l. The H+ TMDL that results in at least a
pH level of 6.0 is determined based on the follow-
ing equation [10]:

TMDL � 2:45�Q: �2�
where TMDL is in g/day and Q is the streamflow
in (ft3/s).

Deterministic load reduction requirement
The methodology proposed by Ormsbee et al.

[10] for determining the required load reduction
relies mainly on the assumptions that (i) the H+
concentration can be linked to the streamflow
using a simple regression relationship without
error between streamflow and H+ concentration,
(ii) a designated critical flow (Qc) can be set a
priori and used to estimate the corresponding H+
concentration using the regression equation, and
(iii) a load reduction can be recommended based
on the difference between the estimated TMDL
(Equation (2) ) and predicted load. Clearly, the
deterministic methodology ignores possible predic-
tion errors that are represented by the model
residuals and parameters, and both the estimated
TMDL and the predicted load are evaluated at a
single value of streamflow (e.g., Qc), ignoring the
effect of the natural variability of streamflows.

Probabilistic load reduction requirement
Any TMDL program has to be designed in the

face of several types of uncertainty [11]. The
difficulties of water quality modeling and analysis
are aggravated by uncertainties inherent in many
steps throughout the modeling exercise. The
following uncertainties should be brought to the
attention of the students. First, the water quality
measurements are usually insufficient for reliable
calibration and validation of models. The regres-
sion models used for the case study under consid-
eration are no exception. Second, the impairment,
evaluated based on concentrations that exceed a
certain threshold, is dependent on flow. Flow is a
random variable, and those days when sampling
occurred may not represent the hydrologic condi-
tions over a long period of time. Finally, violations
and compliance evaluated by a model are subject
to uncertainties due to the parameters and/or
structure of the model.

The U.S. EPA guidelines for state water quality
assessments can be considered percentile-based
standards. They recommend listing a water body
as impaired if more than 10% of the samples from
that water body violate the water quality standards
[12]. An effective way of developing a percentile-
based TMDL has been proposed by Borsuk et al.
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[13] and adopted in this study. The residuals of the
regression models are fitted by a Normal distribu-
tion, and then a longer set of residuals (e.g., 1000
values) is generated using Monte Carlo simulation.
A predicted concentration value, identified using
the regression model at a certain flow value (e.g.,
Qc), can be replaced by a corresponding set of 1000
instances according to Equation (3).

Ci � �C � Ri �3�
where Ci is one of the possible concentration
values, �C is the mean concentration assessed
using the regression model, and Ri is one of the
residual values. Based on the generated set of
concentrations, Ci, forming a distribution Cc

(Fig. 1), the percentage of values violating the
standards can be calculated (e.g., 20% of the
values are higher than the permissible concentra-
tion).

The percentage estimated based on the above-
outlined methodology is a single prediction of the
frequency of standard violations (Fc) at a specified
flow. Information about the uncertainty in the
prediction of Fc is highly useful because it provides
a realistic expectation of the chances of compliance
with the percentile-based standards [13]. This
uncertainty is a quantitative index that represents
the probability distribution of the Fc values. Such a
distribution can be obtained by perturbing the
values of the regression model parameters (slope
m and intercept b). A set of m and b can be
generated based on the mean value and the stand-
ard error of the regression coefficients, maintain-
ing the correlation between them [14]. The
generated distribution of Fc values allows for
computing the 90% confidence interval (CI), and
the confidence of compliance (CC). The CC is the
probability that the violation (i.e., the Fc) does not
exceed a pre-specified percentile, such as the 10%
indicated by the U.S. EPA guidelines. More gener-
ally, the overall violation and compliance across all
flows can be estimated using historical flow values
or generated flow by a second set of Monte Carlo

simulations. The above-mentioned methodology is
repeated using a set of 3650 values of flow (equiva-
lent to 10 years of daily values) instead of a single-
valued flow (Qc). Values are averaged over all
flows.

Application to the Beech Creek watershed
The Beech Creek watershed in Western Kentucky

is used in this paper. The 1998 303(d) list of waters
for Kentucky [15] indicates that 3.4 miles of Beech
Creek, from the headwaters to the confluence with
Pond Creek in Muhlenberg County, does not meet
its designated uses for both contact recreation
(swimming) and aquatic life. The Beech Creek
watershed is entirely contained within Muhlenberg
County, in south-western Kentucky. The Beech
Creek watershed contains three main land uses:
resource extraction (mining and disturbed land
area), forest, and agriculture. Several non-point
loading sources were identified in the Beech Creek
watershed. In order to provide a more recent char-
acterization of the pH levels in the watershed, the
data shown in Table 1 were collected at the sites
indicated in Fig. 2.

Results and analysis of the deterministic approach
The use of the deterministic approach to TMDL

development, as briefly explained above and

Fig. 1. The probability distribution of the regression residuals represents the frequency of violation.

Table 1. Flow and pH monitoring results in the Beech Creek
Watershed

Site P1 Site P2

Date
Flow in cfs

(m3/s) pH
Flow in cfs

(m3/s) pH

10/24/2000 0.01 (0.0003) 2.74 0.03 (0.0009) 2.60
11/7/2000 0.06 (0.0017) 3.12 0.18 (0.005) 2.89
11/9/2000 0.44 (0.013) 3.49 1.90 (0.054) 3.06
3/27/2000 0.46 (0.013) 3.15 0.94 (0.027) 3.31
4/20/2001 0.02 (0.0006) 3.30 0.53 (0.015) 3.19
8/13/2001 0.01 (0.0003) 2.94 0.13 (0.0037) 2.85
8/22/2001 0.00 Ð 0.10 (0.003) 2.93
1/9/2002 0.15 (0.004) 3.58 0.51 (0.015) 4.50
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detailed by Elshorbagy et al. [9], results in a
TMDL of 0.014 lbs/day (6.36 g/day) of hydrogen
ions at critical flow at the mouth of the watershed
(Table 2). The critical flow is the lowest ten-year
annual discharge as proposed by the Kentucky
Division of Water (KYDOW). The TMDLs for
each individual sub-basin were obtained using a
simple mass balance technique. For a mass balance
to be obtained, the load at the watershed outlet
must equal the summation of the incremental load
from each sub-basin (Fig. 2). Therefore, the outlet
load is distributed throughout the watershed based

on sub-basin area. This process gives the larger
sub-basins a larger incremental load; likewise, it
gives the smaller sub-basins a smaller incremental
load. The load allocations for each sub-basin are
simply equivalent to the associated incremental
TMDLs shown in Table 2.

Based on a physical inspection of the watershed,
it is hypothesized that the decrease in pH in the
stream is directly related to the oxidation of pyrite
that occurs as runoff flows over the spoil areas
associated with previous mining activities in the
basin. Using the most recent monitoring data,
inductive (regression) models were developed for
each monitoring site. For brevity, only the model
developed for sub-basins 2 (site P2) is shown in this
paper (Fig. 3). A natural log transformation was
applied to both flow and concentration values to
obtain a linear relationship. The developed rela-
tionship may be used to predict ion concentrations
in the stream on the basis of streamflow. As can be
seen from Fig. 3, there is an inverse relationship
between flow and hydrogen ion concentration,
indicating a dilution effect at higher flows. It can
be reasonably concluded that non-point sources
are important because the dilution at higher flows
is not as significant as it would be if a constant
source was the only source of acidity, in which case
the regression model would have a slope of ±1.0.

It can be seen from Fig. 3 that the lower pH limit
of 6.0 (corresponding to an ion concentration of
0.001 g/m3 or ±6.9 on the log-scale) is violated at
all reasonable flows, including the critical flow.
Corresponding predicted hydrogen ion loads could
be calculated by multiplying flows and concentra-
tions. Application of this approach yields the
predicted loads at critical flow for each site, as
shown in Table 3. Note that for an independent
tributary the incremental load is equal to the
cumulative load for that tributary. In contrast, a
sub-basin that has flows entering from adjacent or
upstream sub-basins requires a mass balance appli-
cation to find the incremental load. For example,
the incremental load for sub-basin 2 is determined
by subtracting the load for sub-basin 1 from the
cumulative load for sub-basin 2.

Fig. 2. Beech Creek watershed sampling sites.

Table 2. Lowest ten-year mean annual flows and
corresponding TMDLs (after [10] )

Sub-basin
Area in mi2

(km2)
Q in cfs
(m3/s)

TMDL in lbs/
day (g/day)

Total 4.12 (10.55) 2.56 (0.073) 0.014 (6.36)
1 1.25 (3.2) 0.78 (0.022) 0.004 (1.82)
2 2.87 (7.35) 1.78 (0.051) 0.010 (4.54)

Fig. 3. Flow vs H+ concentrations at site P2.

A. Elshorbagy140



The required load reduction for a watershed is
the amount by which the actual in-stream load
must be reduced in order to meet the TMDL. This
is calculated by subtracting the incremental
TMDLs (Table 2) from the incremental predicted
loads for each sub-basin (Table 3). This approach
allocates the total load reduction for Beech Creek
(site P2) between each of the contributing sites in
the watershed, so that the entire watershed is
rehabilitated and the pH is improved throughout
the stream network. Application of this approach
yields the values of required load reductions in
Table 3.

Results and analysis of the probabilistic approach
The probabilistic analysis outlined earlier is first

performed to estimate the frequency of standard
violations (Fc) at the critical flow, and the uncer-
tainty in this frequency. Then a target set of flow
values is used to estimate the overall frequency of
violations and the associated uncertainty. A set of
3650 values of historical flow was used in this
analysis to represent a possible range of flows.
The results indicate that there will be 100% viola-
tion of standards (i.e., pH < 6.0) within the entire
range of ten-year flows because concentrations are
far exceeding the permissible level (Fig. 3).

Load (non-point source mass input) reduction
scenarios can be perceived as different slopes in the
regression-based model, keeping the intercept (i.e.,
the concentration at flow where ln Q � zero)
constant. It should be noted that the concentration
of a point source pollution in a stream decreases
linearly with increasing flow; i.e. doubling the flow
causes the concentration due to the same load to
decrease to half (i.e., slope of ±1 of the regression
line). Different levels of point source pollution are
expected to generate similar regression lines (slope
of ±1) with different values of regression intercept.
Based on the same logic, varying the levels of non-
point source pollution means varying the slope of
the regression line while keeping the intercept

constant. Knowing that the H+ value of ±6.9
secures compliance with the standard, load reduc-
tion scenario 1 based on the deterministic
approach at Qc can be represented as a new line
passing through pH = 6.0 at Qc (Fig. 4).

The probabilistic analysis based on distribution
of residuals is performed with the new line repre-
senting the load reduction scenario 1. It is found
that, at Qc there are 50 % chances of violating the
standards (i.e., pH < 6.0) due to the remaining
variability. Apparently, this happens when a posi-
tive residual (i.e., residuals falling on the upper side
of the regression line) causes the concentration to
be higher than the deterministic value. The uncer-
tainty about this estimate can be assessed by
performing Monte Carlo simulation on the para-
meter uncertainty. A set of 1000 values of model
parameters are generated using Normal distribu-
tion for the slope (m). The value of m is used as the
mean value while the standard error (0.09) of the
slope of the original regression equation (Fig. 3) is
used as the standard deviation. Further, the overall
exceedance frequency can be estimated using the
3650 range of flows. The expected exceedance (Fc

values averaged over the 3650 flow values) is found
to be 68%, and the confidence of compliance
(percent of times when Fc is less than 10%) is
around 27% (Table 4). This is a nontrivial outcome
of the probabilistic analysis that suggests that
enforcing the single-valued TMDL based on the
deterministic analysis [10] means that the pH level
in the stream could be violated 68% of the time.
This is not surprising since the critical flow is
chosen to be the mean annual flow. Only 34% of
the daily flows in the last ten years exceed the
critical flow Qc, thus creating critical conditions
(violation of standards) 66% of the time. Appar-
ently, the confidence that pH could meet the
standards (CC) is low (27%). The important
point in this discussion is that a margin of safety
is needed to reduce the risk of violation in the
water body.

Table 3. Predicted H+ loads (after [10] )

Sub-basin
Cumulative Q
in cfs (m3/s)

Cumulative load
in g/day

Incremental load
in g/day

Required load
reduction in g/day

1 0.78 (0.022) 1107 1107 1105
2 2.56 (0.073) 5372 4265 4261

Table 4.

Load reduction
scenario

pH at
Qc

Expected exceedances
(%)

90% confidence
interval

Confidence of
compliance

Base case 3.3 100 0.0
Scenario 1 6.0 68 67±69 27
Scenario 2 6.5 54 53±55 42
Scenario 3 7.0 45 43±46 53
Scenario 4 7.5 38 37±40 59
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DISCUSSION

There is no doubt that engineering, at its core, is
decision making [16]. Making decisions under
uncertainty is inevitable for engineers during plan-
ning, analysis or simulation, design, implementa-
tion or construction, and management. Engineering
students need to learn that, while applying the most
accurate available methods for analysis and design,
accuracy and uncertainty are not dichotomous.
Walking the students through an example such as
the one presented in this paper can help make this
concept clear.

The 4261 g/day value of load reduction (Table 3)
for sub-basin 2, recommended based on the deter-
ministic approach, has been tested within the
context of the probabilistic approach. The expected
frequencies of violation (expected exceedances)
discussed earlier, and presented as scenario 1 in
Table 4, point out the need for considering other
load reduction scenarios. Three more scenarios of
additional load reduction are considered by chan-
ging the slope of the flow-concentration relation-
ships (Fig. 4). The scenarios are designed so that the
pH level is increased to 6.5, 7.0, and 7.5 at the critical
flows for scenario 2, 3, and 4, respectively. These
values correspond to ln ion concentrations of ±7.88,
±8.97, and ±10.13 on the vertical scale of Fig. 4.

The Monte Carlo simulation performed with
regard to scenario 1 was repeated with the other
three scenarios for site P2. The results of the
analysis are summarized in Table 4. For example,
the expected exceedances at site P2 can be reduced
from 68% (scenario 1) to 38% (scenario 4) by
raising the pH level at the critical flow from 6.0
to 7.5. At this point the confidence of compliance
increases from 27% to 59%. U.S. EPA guidelines
allow up to 10% violation; therefore 10% can be
interpreted as the recommended value of expected
exceedance. Once the confidence of compliance or
the expected exceedance is set in advance, the load
reduction requirement can be quantified. The

probabilistic analysis summarized in Table 4
provides a deeper insight and more comprehensive
perspective than that offered by the deterministic
approach for the pH TMDL development.

Through this real example of surface water
quality management, it can be made evident to
senior engineering students that the deterministic
approach is insufficient because it presents to
decision makers and managers only what we
know about a situation. The probabilistic
approach, through the expected exceedance and
the confidence of compliance indices, also presents
what we are uncertain about. In engineering voca-
bulary, this can be translated into a quantifiable
margin of safety to increase the recommended load
reduction, and to increase the awareness about the
possibility of violation even after management
measures are taken.

The utility and the impact of the approach
presented in this paper for teaching uncertainty
has been assessed only based on the positive feed-
back and students' evaluation at the end of the
uncertainty component of the course. However, it
is planned and recommended to conduct an exer-
cise-based assessment of the approach. Before
teaching the uncertainty component, an exercise
should be designed to urge students to make a
management decision on a case study based on the
results of the deterministic approach. Afterwards,
students should be required to repeat the decision
analysis process, taking into account the uncer-
tainty-based results. In-class discussions and
comparative analysis of the two separate decisions
are expected to deepen the understanding and the
applicability of the taught concept.

Finally, it should be noted that the probabilistic
approach has been used in this paper to address
the predictive uncertainty, but it is not the only
candidate for the problem. Others have shown the
applicability of the Bayesian approach [14] and the
fuzzy logic concept [17, 18] for addressing uncer-
tainty-related issues. However, the probabilistic

Fig. 4. Four load reduction scenarios at sub-basin 2.
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approach could be the most appropriate one for
undergraduate students, since the other
approaches are introduced only at the graduate
level at many educational institutions.

CONCLUSIONS

The predictive uncertainty encountered in en-
gineering design and analysis is an important
concept for civil engineering students. Developing
accurate algorithms and models does not mean
that uncertainty can be easily avoidable. The real-
life illustrative example used in this paper from the
field of water resources engineering demonstrated

that simple probabilistic approaches are useful in
addressing uncertainty issues. The approach
presented in this paper is simple enough to suit
senior level undergraduate engineering students
and comprehensive enough to address the issue
of uncertainty realistically. The example has the
potential of clarifying to engineering students that
we, as engineers, are better off presenting to
decision makers what we are uncertain about.
This does not compromise the accuracy of our
techniques.
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