Int. J. Engng Ed. Vol. 24, No. 3, pp. 567-580, 2008

Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2008 TEMPUS Publications.

A Methodology for Combining
Development and Research in Teaching
Undergraduate Software Engineering

HASSAN ARTAIL

American University of Beirut, Electrical and Computer Engineering, P. O. Box: 11-0236, Riad EI-Solh,
Beirut 1107 2020, Lebanon. E-mail: hartail@aub.edu.lb

In the most part, undergraduate students have been participating in research by working on faculty
projects through which they primarily contribute to the implementation and testing of algorithms
and systems. This paper presents a methodology that focuses on teaching students the skills of
doing research. The approach taken is based on integrating a research component into a third-year
undergraduate software engineering course. In this particular case, student groups studied a
relatively large number of journal papers relating to a specific source software engineering topic
in each semester the course was given, generated summaries, came up with ideas for research topics,
pursued the research and wrote papers that described their work. We illustrate how the research
component was integrated with the other components of the course, namely the software
development project and lectures. The paper concludes with an assessment of what students have
learned and a summary of the outcomes of the course in addition to the learned lessons.

Keywords: class projects; course design; student performance; teaching software engineering;

undergraduate research.

INTRODUCTION

EARLY IN THEIR CAREER, professionals are
likely to face situations that they did not encounter
before and will discover that certain types of work
can only be accomplished through collaboration
with colleagues. In such situations, an employee
has to rely on self-learning skills in order to better
face and resolve the challenge. Research in its
simplest form combines most of the skills required
during the professional life and graduate studies.
Although research is mostly stressed upon at the
graduate level, some initiations at the undergrad-
uate stage have proved to be fruitful.

This paper presents our experience in redesign-
ing the Software Engineering (SE) course, which
we have been teaching as a third-year undergrad-
uate course. Undergraduate students take this
course in their third year as part of the Computer
and Communication Engineering program. The
major change that was applied to the course is
the inclusion of a research component that spans
all the phases of a typical research activity. The
goal was to expose students to research as part of
the undergraduate program rather than expecting
them to acquire the necessary skills by working on
research projects of faculty members.

* Accepted 15 December 2006.

567

MOTIVATION AND BACKGROUND

Whether at the graduate or undergraduate
levels, most research is conducted under the super-
vision of one or several faculty members. Involved
students act as assistants and focus their efforts on
the accomplishment of a certain project-oriented
goal. In the majority of cases, the purpose of
involving undergraduate students is to assist
faculty in completing their research project objec-
tives [1-3]. In such cases, the focus is set on using
student’s capacity to solve technical problems and
write reports, rather than enhancing their know-
ledge and skills in doing research. Other goals for
involving undergraduates in research have been
cited but they were not presented as being the
driving force, but rather as side benefits. These
include preparing students for graduate studies [2]
and applying for scholarships [4] and discovering
student research interests [5]. Other reported bene-
fits include increasing collaboration among
students [2, 6] and between faculty and students
[2, 5], making it possible for students to contribute
to the design and development of systems and
products [7] and involving underrepresented and
minority groups in research [1, 2].

An indication of the attention that is being given
to undergraduate research is the emergence of
journals dedicated to the topic. Among those we
mention the Reviews in Undergraduate Research
[8] and the Caltech Undergraduate Research Jour-
nal [9]. Moreover, the importance of undergradu-
ate research has been widely acknowledged by

568 H. Artail

academia, industry and governmental agencies.
The Council on Undergraduate Research was
established to promote undergraduate student—
faculty collaborative research and raise the aware-
ness of governmental and private institutions on
the importance of undergraduate research [10].
Similarly, the National Conferences on Under-
graduate Research, which sponsors annual confer-
ences, focuses on the promotion of undergraduate
student achievements [11]. The US National
Science Foundation (NSF) has even set up a
program, called the Research Experiences for
Undergraduates (REU) [12], to financially support
and promote research participation by undergrad-
uate students. The objective of this program is to
seriously involve undergraduate students in
research projects and activities that are specifically
meant to foster research skills in these students.
The REU Website explains that this program
indirectly aims to attract undergraduates to and
retain them in careers in science and engineering.
Related to the theme of this paper, the NSF site
attests that research experience is one of the most
proven methods for interesting talented students in
fields linked with exploration and academic
research.

In the following, we present prior works that
share similarities with our approach in that they
deal with introducing students to research through
SE class projects or with providing practical
experience in developing software.

In an SE class, students were required to develop
software systems by inferring requirements from
selected technical papers for learning how to
handle incomplete requirements and developing
skills for gathering missing information from the
literature [13]. A real-life situation was simulated
by students taking on different roles (managers,
analysts, developers, etc.). This approach did not
offer students a complete experience, as it was
limited to the initial stages of doing research.
Second, by having group members take on distinct
roles, students were not able to apply many of the
learned methodologies in the project. Reportedly,
this class provided a motivation for including few
undergraduate students in a two-year funded
research project, in which half of the students
were paid from the grant while the others volun-
teered [14].

It was reported that volunteer students were not
as effective and many left the project before its
conclusion. An issue with depending on funded
projects to expose undergraduates to research is
that only a limited number of students tend to be
selected based on academic performance and
expressed interest. As a result, lesser performing
but capable students are often left out. Second,
funded projects usually require long-term commit-
ment and may not be suitable to all students
especially if they have to complete final-year
projects and undergo practical training. In another
reported experience, students engaged in SE prac-
tical training through two projects to practice SE

methodologies [15]. They received detailed docu-
mentation with examples and were actively super-
vised. In addition, students were obliged to work a
specific number of hours in the laboratory. With
this approach however, students missed on the
opportunity of autonomously investigating
problems and developing solutions from scratch.

Many universities require their undergraduate
students to complete a research project before
graduating. An example is the Senior Research
Project that is taken by Electrical and Computer
Engineering undergraduate students at the Univer-
sity of Illinois at Urbana-Champaign (UIUC) [16].
The course includes individual research work,
laboratory experiments, computer simulations
and software development. At the end, students
have to submit a written research proposal that
includes the results of their research. This course
has a continuation through a senior thesis, in
which students have to complete the research and
submit a thesis accompanied with an oral presenta-
tion.

Many faculty members who have written about
the subject of wundergraduate research have
acknowledged the inadequate level of student
educational background for conducting graduate-
level research [17]. A while ago, a group of
researchers had identified the desired characteris-
tics of curricula reform in undergraduate educa-
tion [4], with the broad categories being: 1) depth
of knowledge in specific areas; 2) involvement in
teamwork; 3) experience with open ended
problems; and 4) thorough approach to problems
and career. Taking the above into consideration,
we designed the research part of the course to
methodically teach students the individual steps
involved in performing research and having them
apply these steps toward conducting an actual
research project of their own. The Software En-
gineering course, which we taught for the first time
in the Electrical and Computer Engineering (ECE)
department at the American University of Beirut
(AUB) in the spring of 2004, was the right vehicle
to achieve the above goal, given that the subject of
Software Engineering is diverse and can be linked
with the many research topics that interest
students. Since then, we have also taught the
course in the fall of 2005 and in the spring of
2006, while using the same course design.

COURSE DESIGN

Traditionally the course of Software Engineer-
ing had two components: a development project
and two examinations. The project required
students to work in groups of two or three on
the design and implementation of a practical soft-
ware solution. Students were usually asked to
approach local organizations and offer them the
opportunity to develop moderately complex soft-
ware systems fully, free of charge. Traditionally,
students were able, in the most part, to make such

Combining development and research in teaching undergraduate software engineering 569

arrangements with small businesses in the service
industry and these businesses had to agree to hold
meetings with the students at their sites or at the
university to provide the necessary documentation.
Through this project, students get the opportunity
to meet real customers and apply the software
engineering methodologies that they have learned
in the classroom, beginning with requirement
gathering and ending with testing and deployment.

The major change we introduced to the course is
the inclusion of a research component, which we
describe in detail later in the paper. With this new
component, we were still able to provide full
coverage of the basic SE topics and to engage
students in practical software development. We
used the book by Pfleeger [18] and covered chap-
ters 2 through 13, which cover topics that are
normally included in a basic software engineering
course. The semester included 32 1Y2-hour lectures,
22 of which covered material from the book, four
discussed case studies and the balance were taken
up by group presentations and project discussions.
Students were expected to apply the SE methodol-
ogy to the various aspects of the software devel-
opment project. In particular, they were
responsible for generating and submitting to the
instructor requirement specifications, design docu-
mentation (including UML diagrams), design
complexity reports and Gantt charts for reporting
group and individual progress. Furthermore, at
the end of the semester, students had to conduct
a demonstration of the software in the presence of
a customer representative and submit a copy of the
code to the instructor.

Integration of research in the course

To make room for the new research component,
several measures were taken. First the develop-
ment project group size was expanded to six
students, with one member acting as the leader
and contact person for the group. We also let the
same groups who handled the development
projects work on the research projects. Second, a
laboratory instructor, with an MS degree in
computer science and SE teaching experience at a
local university, was employed to assist in the
coordination and evaluation of development
project activities. This included performing code
inspections and checking group progress. Third,
we used the WebCT software [19] to design a
Website (with chatting capability) for the course,
which provided a medium for interaction among
students or with the instructor and the laboratory
instructor.

At the start of the semester, students were asked
to answer a questionnaire designed to inquire into
the students’ backgrounds, attitudes toward
research, related interests, goals and career plans.
The results revealed that about half of the class
had some exposure to research, while the others
had little or no experience, as undergraduate
research was not stressed as an essential require-
ment. More than 80% of those who had some

research experience replied that previous research
had helped them learn more about a topic, despite
the difficulties they encountered due to the lack of
guidance in completing their assignments. Many
students demanded that more research be inte-
grated at the undergraduate level, while some
were uncertain due to the fear of becoming over-
whelmed by work. Through personal contacts,
many professors expressed reluctance to give
undergraduate students research assignments
through courses, believing that most students,
driven by the grade, will end up plagiarizing with-
out contributing to the topic. When asked about
their point of view on this issue, more than two-
thirds of the class said that this symptom is
prevalent in situations in which students are
asked to deliver research reports without having
a mechanism for early feedback.

Research component design

Taking into account that most students did not
have prior exposure to research and realizing that
a progressive approach might culminate in an
effective learning process, the course instructor
chose 18 full-text journal papers tackling various
angles of Open Source software (OSS) in spring
2004, Extreme Programming (XP) in fall 2005 and
software engineering practices in industry in spring
2006. The course design and methodology were the
same in all offerings. Hence, and to simplify our
discussion in this paper, we will concentrate on
discussing the work done by students in the spring
2004 class (the first time the new course design was
implemented) and, at the end of the paper, we will
compare overall student performance in all offer-
ings.

A guide (below) was provided outlining the step-
by-step process of conducting the research, start-
ing from the initial stage of reading the papers and
ending with writing a journal paper-like report:

® There are 18 papers related to software engin-
eering and Open Source. These papers are
zipped in the file papers.zip, which is available
on WebCT
® Each group must read all 18 papers as follows:
— Every group member should read three
papers.

— For each reviewed paper, a member summary
report must be written that is one-quarter to
one-third of a page long, and which highlights:
(1) basic idea, approach, technique, novelty, or
characteristics; (2) mentioned advantages or
pluses and limitations or issues; (3) your own
assessment and evaluation.

® The six group members should meet to link their
summaries together into one cohesive group
summary report that reads as if it was written
by one person:

— Whenever there are common features, ideas,
issues among the papers, these must be com-
pared and talked about in the same para-
graph.

570 H. Artail

— Distinct subjects must be covered in their own
paragraphs but if they are related to other
subjects (from other papers), then they ought
to be together.

— The report must reference the papers wherever
you refer to their content. Use numbers in
square brackets, e.g. [3], where 3 is the third
listed paper.

— I advise you to look at software engineering
journal papers as examples. These can be
found in the Engineering Library.

— Group reports must be close to two A4 pages,
single-spaced, 12-point font.

® Next, the members should discuss and brain-
storm ideas for improving on the method,
approach, or design that was described in one
or more papers. The group should then choose
one idea and write the idea report:

— Describes the idea.

— Describes the anticipated advantages and ben-
efits.

— Mentions its limitations and constraints.

® The members then should decide how to prove
their idea. This can be done through a test
program, code analysis, statistics, etc. Once
this step is completed, the group writes the
analysis report, which describes your work,
experiment, data, pseudocode, etc.

e Grading will be based on the following break-
down:

— Member summary reports: 15%.

— Group report: 20%.

— Idea report: 15%.

— Analysis report: 50%.

® Schedule:

— Students must follow the schedule below.
Along with the last three deliverables, each
group will present its progress in class within
10 minutes.

— Member summary reports: March 16.

— Group summary report: March 25.

Idea report: April 6.
Analysis report: May 21.

The class consisted of 36 students in the spring of
2004 (SP04), 38 students in the fall of 2005 (FAO05)
and 43 students in the spring of 2006 (SP06). The
number of groups ranged between six (SP04 and
FAO05) and seven (SP06). As mentioned in the box
below, each group was supposed to read the same
set of 18 papers, generate a literature survey-like
summary (phase 1), come up with one or more ideas
that would potentially lead to improved approaches
and/or concepts (phase 2) and finally, deliver a
report that contains analysis and validation of the
proposed approach or methodology (phase 3).

The intent behind the above arrangement was to
get students started with a current and interesting
SE subject and then identify a specific field of
interest on their own, then they study additional
papers to develop a background for their research.
The overriding goal was to let students experience
a sense of project ownership that will probably

form a motivational factor and provide training
for performance in situations similar to those
encountered during the initial phases of graduate
thesis work. Moreover, allowing students to
choose the subject gives them an option to
change topics in the early stages of the semester,
which then promotes the development of addi-
tional skills for feasibility studies, risk assessments
and evaluations of interests and long-term goals,
among others.

Members of each group were required to present
the progress of their research using PowerPoint
slides as part of each phase. The importance of
these presentations was not only their grade
weights, but also they obliged group members to
address the class, thereby honing their commun-
ication skills and proficiency. This opened the door
to comments from both the class and the instruc-
tor, which was deemed vital in improving the
quality of their work, as well as in keeping them
on the right track.

Performance assessment

In designing the course components and devis-
ing an assessment policy that is representative of
performance, the instructor drew on his 11 years of
professional experience in software development.
In addition, the laboratory instructor provided
assistance in evaluating assignments related to
the development project and in giving a second
opinion on the research project reports. To ensure
close to equal participation and involvement of
group members in all aspects of the development
project, we required students to use the Microsoft
Project™ software for task scheduling and track-
ing and submit generated Gantt charts at preset
dates to the laboratory instructor for evaluating
group and individual progress.

Timing of research component offering

To fulfill the Bachelor of Engineering (BE)
requirements, students must spend the summer of
their third year on practical training (internship).
Many of those who plan to pursue graduate studies
arrange to spend the summer at universities in
Europe and in North America, to work on faculty
research projects, mainly to increase their chances
of gaining acceptance to graduate programs at those
universities. The integration of research education
into the third-year SE class is well timed for
students, as it enables them to become more effec-
tive in their internship assignments. As for those
who elect to go to the industry for training, the
gained research skills can potentially improve their
problem-solving skills and self-reliance, which are
characteristics that employers desire.

CLASS PERFORMANCE

Research phase 1: literature summary
To ensure individual contribution, it was
required that the 18 papers be divided among the

Combining development and research in teaching undergraduate software engineering 571

members of each group as equally as possible.
Each person had to read and summarize the key
concepts of the three papers and submit a two-
page report. The members of every group then
discussed their understandings of the papers and
combined their individual summaries into a coher-
ent summary up to three pages in length. This was
reportedly a major challenge, as the members had
to decided the key concepts to keep and how to
link them together and still point out the specific
topics that the papers addressed. Furthermore,
students were asked to include their remarks and
provide suggestions that may represent alternative
approaches.

Reports: all groups were able to report the
obvious concepts that were present in the papers.
More specifically (in the SP04 class), they elabo-
rated on the positive characteristics of Open
Source, namely flexibility, low cost, stability and
reliability. Similarly, they reported the limitations,
vulnerabilities, lack of standards, relatively poor
interfaces and maintenance issues. Finally, every-
one stressed the need for thorough documentation
to enable developers to successfully integrate Open
Source code with their own. However, when it
came to the implicit and profound themes, only
selected groups were able to identify and discuss
these in their reports. Such topics included the role
of redundancy in detecting software faults, bene-
fiting from hacker skills in designing secure code,
role of open forums in reducing the time to
deployment and the views of profit-making soft-
ware companies on Open Source and abandoned
code.

To judge the different groups while keeping in
mind that the summaries for the 18 papers were
limited to two pages, we categorized the different
subjects in the papers into obvious topics and
implicit topics. We also added a third measure
about the organization of the paper and the flow
of topics presented (illustrated in Table 1). The
assessment was based on the proportion of
subjects that each group was able to pinpoint
and on how each group structured its paper.

Presentations: the presentations were meant to
get students comfortable with addressing a sizable
crowd, where it is crucial that they exhibit self-
confidence and the ability to capture the interest of
the audience. Instead, an overall trend of inade-
quacy of preparation, clarity of speech and of
relaying ideas was observed. The presentations,
however, were very beneficial in allowing all
groups, who had read the same 18 papers, to

learn from each other and to identify ideas and
concepts that they had missed in their own summa-
ries.

Group members were required to present key
points and evaluations of the articles that were
read. They had up to half an hour (about 5 minutes
per person) to assess the main topics of each paper.
A close analysis of the presentations revealed two
levels of differences. The first results from analyz-
ing how each group presented the same articles and
what main points were valued to be worth sharing
with the class. The second was the discrepancy in
style, skill and effort that arose between indivi-
duals of the same group.

Table 2 presents the performance of the six
groups in the SP04 class according to three sets
of criteria. The numbers revealed the consistent
performance of most groups in the content cat-
egories. As for presentation skills and inner-group
uniformity, there were discrepancies between
groups, indicating possible differences in motiva-
tion, background, presentation and other skills.
Finally, it was noted that the relatively close
performance averages across all categories was
mainly because most groups included a mixture
of strong and mediocre performers, a fact that was
reflected through the standard deviations of the
last set of categories.

Finally, we combined our assessments of the
individual summaries, group summaries and
group presentations into one chart (Fig. 1). The
objective was to investigate possible correlations
between these three components and to provide a
picture of the class performance for this first
phase. From the figure, where the grades for the
individual summaries and presentations were aver-
aged for each group, one can observe the low or
lack of correlation between the performances on
all three components. It is especially surprising to
observe the significant inconsistencies between the
assessments of the individual summaries and
group summaries. This could be attributed to the
lack of coordination and organization skills within
the groups. Searching for a more concrete expla-
nation, we also included in the figure the in-group
standard deviations that correspond to the presen-
tations and individual summaries. As seen, the
two curves are correlated. Since there are
common elements (e.g. interpersonal skills) that
affect performance in the two corresponding
areas, one can relate the discrepancies in the
performances for each group to a low level of
homogeneity and coordination.

Table 1. Group performance in identifying and organizing topics (SP04 class)

Topics and paper structure

Group number

1 2 3 4 5 6

Obvious topics: characteristics, limitations and desired features 75 8 9 95 85 8
Implicit topics: redundancy, fault detection, hacker’s experience, forums, software companies, etc. 55 4 6 9 65 7
Organization and flow 66 6 65 9 7 65

572 H. Artail
Table 2. Categorized group performance for presentations (SP04 class)
Group Number
Criterion Weight 1 2 3 4 5 6 Average Std Dev.
Content Main ideas 7% 1 2 3 4 5 6 8.7 0.8
Key concepts 11% 8 9 8 9 8 10 73 0.5
Positives/negatives 11% 7 8 7 7 7 8 7.0 0.6
Own evaluations 12% 6 7 7 7 7 8 7.5 0.8
Presentation Attracting attention 5% 7 7 7 8 7 9 6.3 1.2
Speaking skills 5% 5 8 6 7 5 7 6.0 1.1
Feeling at ease 4% 5 6 6 6 5 8 6.5 1.5
Ilustrations 8% 6 7 5 7 5 9 7.0 1.1
Logical transitions 8% 6 7 7 6 7 9 8.0 1.1
Adequate length 6% 6 8 8 9 8 9 8.2 1.5
Uniformity Content 8% 7 6 8 10 9 9 6.8 1.3
Style 7% 5 7 7 9 7 6 7.3 1.4
Weighted average 8% 7 5 9 8 8 7 7.3 1.4

| = Presentation

—= Indivicieal Reporis

— Group Repors

—ik— Presentation 5td. Dev —a— Hepon S1d. Dew

10.0 +
$ a0l
E TP ety
® B0+ M \
<
'gfz- &
&
S50 4)

1) 3

15
— iz #
wl =)
N o &
T 0os B
|+l]
Ml | |4l E
o3 &

. A e ilg

4 5 &

Group Number

Fig. 1. Group performance of phase 1 activities (SP04 class).

Research phase 2: idea development

In this phase, students had to analyse their own
idea and give a brief introduction on how they
would apply it to a particular research topic. This
requirement demands more expertise and before-
hand preparation, as it is not sufficient to simply
highlight specific concepts and present them in
class. Students are now required to discuss tenta-
tive and undemonstrated theories, while attempt-
ing to convince their audience. In this phase, the
groups had to both submit written idea reports and
then give a presentation explaining the ideas that
will form the foundation for their research. They
were asked to propose improvements of already
existing methodologies, new approaches, or in-
depth analysis of an OSS-related topic.

Reports: the reports gave more insights and
details about the proposed ideas for research.
For illustration, we provide below a brief descrip-
tion of the proposal of each group, taken from the
SP04 class:

® Group 1 proposed building a knowledge base
for storing and accessing source code that is
developed by students and instructors.

® Group 2 was interested in analyzing the ability
of future techniques to discover and model soft-
ware development processes.

e Group 3 wanted to investigate the use of Open
Source in academia and the lack of documenta-
tion and non-conformance to standards that are
associated with OSS.

® Group 4 proposed to research the impact of
Open Source on selected software development
models. The effort should focus on the state,
organizational and control views of the models.

e Group 5 wanted to examine the threats that
Open Source may pose on companies such as
Microsoft. The work is to identify software that
lends itself to Open Source and the one most
suitable to be proprietary.

® Group 6 intended to examine OSS copyrights
and the conditions that are placed on the use of

Combining development and research in teaching undergraduate software engineering 573

Open Source in developing commercial soft-
ware. The group was to also report on the use
of OSS in the Middle East.

The feedback that was given to groups in both
offerings related to two areas: paying more atten-
tion to the analysis aspects of the study and
favouring depth over breadth. For example, the
above-listed subjects proposed by Groups 1, 3, 5
and 6 are not considered the most significant for
software engineering, but nevertheless the instruc-
tor allowed for less related subjects, because the
main objective of the research assignment was to
teach students the processes of carrying out
research and developing related skills, rather than
solving SE problems. The goal of the development
projects, on the other hand, was to have students
build software systems methodologically in accor-
dance with SE frameworks.

Presentations: this was the second required
presentation and had to include the reasons
behind the ideas. The objective was to force
students to foresee how to implement their ideas
within an actual real world context, where
constraints are omnipresent issues. It was observed
that students were more comfortable in presenting,
for many it was the first time they had to devise a

way for enhancing a methodology. As in the survey
phase, all members of each group took part of the
presentation. Here, however, the presentation
centered around one theme and students were able
to take turns in explaining different facets, scope
and timeline. Because the presentations were short
(about 10 minutes), students were assessed as a
group, not individually, based on four main scales
as indicated in Table 3. In particular, Groups 4 and
6 did a great job in defining their selected topics,
identifying the aspects of their idea and outlining
the plan of action they intended to follow in the
research. As for the other groups, they were lacking
in one or more facets.

The assessment of the groups on both the
presentations and reports are shown in Fig. 2. In
contrast to how the groups fared in phase 1, here it
appears that a correlation exists between the
performances on the presentations and on the
reports. This may be indicative of the fact that
student presentation skills have improved and are
no more hindering the ability of the presenters to
express their thoughts.

Research phase 3: analysis
For this last stage, the groups had to submit
final written reports that present the analysis of

Table 3. Group performance in idea presentation (SP04 class)

Group Subject of research Weights Type
40% Novelty 20% 15% 25% Weighted
info. Plan info. Enthusiasm Clarity System Approach Analysis average
1 OSS knowledgebase 7 8 7.5 8.5 v v — 7.7
2 New OSS modeling 7 7 7.5 8.5 — — — 7.5
3 OSS computing center 8 7 6.5 8.5 v — — 7.7
4 Affect of OSS on SE models 8 7.5 9 8 — — v 8.1
5 Affect of OSS on Microsoft 6 8.5 8 9 — — 4 7.6
6 Open Source and copyrights 9 7 8 8 — — v 8.2
o Presentations g Reports
10.0

E

E 2.0 -

;@. &8.0 - — — 1 =

[

% 7.0 -

=

£ 60 -

5.0 —— — — —
1 2 3 4 5 6

Group Number

Fig. 2. Performance of groups in presenting and reporting ideas (SP04 class).

574 H. Artail
Table 4. Categorized group performance for the analysis reports (SP04 class)
Weight

0.25 0.3 0.2 0.1 0.15 Weighted
Group Significance Novelty Clarity Structure References average
1 8 7 8.5 7.5 6 7.5
2 9.5 9 8.5 8.5 8.5 8.9
3 7 7.5 8 8 6 7.3
4 8.5 7 9 8 8.5 8.1
5 7 7.5 8 7 9 7.7
6 9 9.5 9 8 10 9.2

proposed approaches, results of surveys or design
of systems, in addition to giving PowerPoint
presentations. The majority of the grade that was
designated to the research component (20% of the
overall course grade) was awarded to this report.
We briefly describe below the reports that were
submitted by the groups in the SP04 class.

Reports: the reports of Groups 1 and 3 centered
around one idea. Through surveys, they found that
while working on projects, students spend much of
their time building non-value-added software and
that they are able to deliver more functional soft-
ware if they had access to written code that
implements utility functions and user interfaces.

Group 2 tackled several related topics such as
the non-applicability of traditional models to OSS
development and discussed the necessary changes
to the Waterfall and Spiral models, dealing with
the idea that OSS evolution and maturity is
directly correlated to utilization and further devel-
opment. Other parts of the report dealt with Open
Standards, the role of UML in standardizing OSS
development and distributed software develop-
ment. The report may seem non-focused but the
group was skillfully able to link the different
subjects under the theme of OSS development.

Group 4 learned from a survey and other means
the desired characteristics of models that would
apply to OSS development. In addition to propos-
ing a new model, termed the Cyclic Model, the
group proposed modifications to the Waterfall,
Prototype, Spiral, Transformational and V
models, mostly by incorporating feedback paths
from the testing and maintenance stages to the
design stages. The report concludes by discussing
the applicability of the models to a senior-level
software project.

The report of Group 5 presents findings that
point out a general trend in which developers
increasingly integrate OSS in building software
solutions. The report also cites cases in which
management opts for commercial solutions that
are supported by big companies, such as Micro-
soft, due to factors relating to the criticality of
customer service and familiarity of employees with
commercial software, e.g. Windows.

The report of Group 6 addressed the issue of
OSS copyright. It contrasted commercial software
licensing to freeware licensing and discussed the
differentiating characteristics of some well known

OSS public licenses. Reported statistics depicted
the status of the legal systems, as they relate to
intellectual property protection, in five Arab coun-
tries. It is worth noting that the group obtained
this information through interviews with promi-
nent lawyers and professors of law and through
digging into news archives.

Having explained the topics tackled by the
different reports, we now present the evaluations
that were based on several criteria, as shown in
Table 4.

The average quality of the reports was reason-
ably good and it was obvious that almost every
group put in considerable effort, including
conducting surveys, holding interviews and carry-
ing out investigations. Groups 6 and 2 were the
best performers, in that their work was original,
informative and well presented. The majority of
groups resorted to surveys and/or personal inter-
views. Some used these to learn about the level of
utilization of certain techniques (Group 4), others
wanted to get a feel for the need for particular
capabilities (Groups 1 and 3), while the rest were
seeking specific information relating to the status
of software sharing and copyrights (Group 6). All
groups, but one, came out with recommendations,
new approaches or designs. Finally, it is worth
elaborating on the References criterion in Table 4,
which was used to evaluate the use of additional
references (other than the 18 papers referenced
above) by the groups. Groups 1 and 3, each cited
two conference papers and two Web documents.
Groups 2 and 4 were also comparable in this
respect as each group cited three additional journal
papers, two conference papers and one Web docu-
ment (Group 2 only). Group 5 cited eight Web
documents and five technical reports. Finally,
Group 6 topped the scale by citing five additional
journal papers, four technical reports, two news
articles and two Web documents. In all, four of the
six groups did a decent job in finding related work
and in using it to support their research.

Presentations: the members of each group had to
decide how to explain their research and findings
effectively and devise a strategy for making the
transition between members seamless and smooth.
Every group had 20 minutes of presentation time in
addition to 10 minutes for questions and answers.
Having presented in the class twice before, it was
obvious that most students felt more comfortable

Combining development and research in teaching undergraduate software engineering 575

when carrying out their parts of the presentation.
For evaluation, five general criteria were consid-
ered when assigning points to students. These
concerned their ability to explain the research
background, to specify their contributions, to
portray the significance of results or analysis, to
discuss the implementation issues that were
encountered and to answer questions effectively.
As each student was handling one part of the
presentation, not all criteria were applicable. The
evaluations are presented in Fig. 3. This figure
shows a clear correlation between performances
on the reports and presentations. The within-
group standard deviations of presentation perfor-
mance are moderately low and do not fluctuate
significantly across groups. One may conclude
that, after few presentations (three to four), a
class such as this (third year Computer Engineer-
ing) may reach a steady level of presentation skill
variability across all students. Any remaining vari-
ability could be tied to external factors such as
student background and motivation.

IMPACT AND ASSESSMENT
OF LEARNING

Many researchers reported on the benefits of the
undergraduate research programs, such as
students obtaining employment [7], publishing
papers in conference proceedings and journals
[20, 6], or pursuing graduate studies [20, 2]. To
study the impact of integrating a research compo-
nent into the undergraduate software engineering
course, we employed several measures. First, we
compared the assessment of student work in all
three course offerings that were mentioned above,
to ensure that the discussed results are not acci-
dental. Second, we analyzed student assessments

and examined the feedback obtained from students
at the end of the semester. Third, we studied the
incurred cost by examining the time spent on the
additional course component from the student and
instructor point of views. Finally, we looked at the
annual exit survey results conducted by the univer-
sity’s Career Center, which compiles statistics
about graduating students. Of particular interest
to our study was the proportion of ECE under-
graduate students who opted to pursue graduate
studies versus those who chose to start their
professional career after getting their BE degrees
in the years 2004 and 2005, in order to see if the SE
course could have influenced this proportion.

Student learning

When considering the reports, one notices that
they differed in terms of purpose, content and
needed skills. Furthermore, the first and second
reports were, in the most part, very short relative
to the third in all three classes. This made it
impossible to infer student (group) learning from
the three reports.

The presentations, however, share many
common features, thus allowing us to derive learn-
ing trends. For this purpose, we plotted the three
phase assessments for each group of the three
classes (in the top part of Fig. 4, averages across
students were computed for phases 1 and 3), in
addition to the trends across all groups in the
bottom part. As shown, all groups show steady
improvements, albeit to varying degrees. In
general, groups that started out the lowest
improved the most when going from phase 1 to
phase 2. Also, it is interesting to observe that all
but one group in the FA0S5 class were able to attain
almost the same high level of presentation skills by
the end of the semester. Part (d) of the figure plots
the linear trend curves that were fitted to the

— Presentations —— Reporis —&— Presentation Std. Dew

10.0 +— — 1.0
£ = .
Qa0 _— 1 -~ 08
Eﬂ NN i Ll 0.& :-E
3 o=
j -t - &
£ 70 A | 04 &
L "] =
B R i)
£ B0 L 02 W
50 Do
1 2 3 4 5] &

Group Mumbser

Fig. 3. Group performance in the analysis phase of the research (SP04 class).

576 H. Artail
OoSurey @ldea DAnalysis | oDSurney pldea pAnalysis ' OoSurey @idea pAnaksia
i0 o - I ———————] 10 =
Spring 2004 Fall 2005 Spring 2006
k=] . e B = | = y =
50 Es | N dll o 0591 -
E B -8 g L E =
B - - - & i &4 N
g | ' E 8
g 7 E T &7
3 E %
EE Es Es-
g - .] . § WL -
1 2 3 4 H & 1 2 3 & &5 E 1 2 3 4 5 8 7
Group number Group number Group number

(@)

(b)

©

10
'E L=
()
§ 8
-]
E T - e —— e .
E | oSprng 2004
E g Fall 2005
o Spring 2006 |
5 — — S =
Survey Idea Analysis
Project phase

(d

Fig. 4. Individual group performance on presentations (a—c) and trends over all groups (d).

averages for each class taken across groups. The
slopes of the curves ranged between 0.31 (FAO0S)
and 0.53 (SP06). Students improved by an average
of four points through each phase transition (a
total of 8 points throughout the course).

Student assessments

At the conclusion of the course, students were
asked to evaluate what they had learned through
the research part of the course. This was not a
multiple choice questionnaire, but rather an open
forum through which students expressed their
appraisals and thoughts in their own words.
Judging from the feedback (from a total of 108
students in all three classes: an 84% response rate),
we were able to conclude that the added research
component in the SE course helped students to:

® Acquire knowledge and skills in an academic field
that transcends traditional classroom study.

® Clarify academic and career interests and goals.

e Gather new knowledge about current topics in
software engineering research.

® Enhance skills in communication, independent
thinking and problem solving.

® Promote experience in performing research, con-
ducting presentations, writing technical papers
and doing group work.

® Increase professional and academic credentials
to support applications for scholarships,
awards, career employment and entry into grad-
uate schools.

The above points provide an indication of the
amount and type of benefits that students received

Combining development and research in teaching undergraduate software engineering 577

from this class experience. Not only does it show
that skills were enhanced and experience was
gained, but there is a sense of benefiting toward
reaching career goals.

Cost for adding the research component into the
course

When asked, close to 40 randomly selected
students from the three class offerings estimated
the weekly time it took them to work on the course
and on the research component. According to the
numbers, the average weekly time for the course
was 8.3 hours with a standard deviation of 2.1, out
of which the research component consumed an
average of 3.4 hours with a standard deviation of
1.2. Students pointed out that the load of the
course is high, when compared to that of a typical
third year technical course, which was estimated at
close to 6 hours per week. We note that the average
load of a third year computer engineering student
is five lecture courses plus a laboratory course,
totalling 16 credit hours per semester. It is also
worth noting that most students end up mixing
technical courses with one or two humanity-type
courses, which demand much less time, thus
enabling them to commit more time to the techni-
cal courses. Another factor that helped students
with all the components of the course was the large
group size, consisting of six students in most
groups, which reduced the average load on each
student while working on both the research project
and the software development project (discussed
below).

As to the additional load on the instructor, the
research component required regular follow-up, in
addition to reading the reports and giving timely
feedback. Given the help that was received from
the experienced laboratory instructor in coordinat-
ing and assessing the development project activities
and providing a second opinion on the research
reports, the time that was required to run the
course was still manageable.

Influencing career choices after graduation

An interesting finding would be to understand
the potential impact of the introduced research
component of the SE class on the decision of
students for choosing the type of career path
after graduation. More specifically, we are inter-

Table 5. Plans after graduation for ECE students

Year 2004 Year 2005
Graduate studies 42.67% 47.33%
Employment 47.63% 45.2%
Graduate studies and employment 9.7% 7.47%

ested in learning about the proportion of students
who elected to pursue graduate studies to those
who opted to start a professional career, before
revising the SE course and afterwards. Unfortu-
nately, at the time of writing this paper we were
only able to acquire two data sets from the
university’s Career Center for surveys conducted
in September of 2004 (concerns graduating
students who took the older version of SE) and
September of 2005 (covers students who enrolled
in the spring 2004 class). The survey results
included the student names, so we were able to
identify those who took SE classes (at AUB
students should take SE or Operating Systems in
order to graduate). In addition to having only two
data points, we recognize that many other factors
(i.e. besides being exposed to research during
undergraduate studies) affect students’ decisions
about career paths. Nevertheless, we mention the
survey data, given that there is a possibility that
serious exposure to research has indeed affected
student decisions. The data is presented in Table 5,
which shows that the number of students who
chose to go into graduate studies increased by
more than 10% going from 2004 to 2005.

Assessing individual contributions to group work
This section discerns the research project tasks
that were performed by individual members of the
group and by the group as a whole. Ensuring that
members of the group put in equal effort (in the
approximate sense) was a key objective, so as to
distribute the load fairly among members and to
correctly assess the efforts of each member. Table 6
summarizes the individual and group responsibil-
ities toward completing the research project.
Making students aware of their responsibilities at
the onset of the semester has helped in avoiding
major issues relating to lack of participation in-
group activities. It helps also to mention that in
regards to the development project, the required

Table 6. Member and group tasks

Phase 1: literature summary

Phase 2: idea

development Phase 3: analysis

Reading Summary
papers report

Presentation

Idea report/
presentation

Analysis report/
presentation

Member Read 3 papers 2 page summary

Group Discuss 18 papers 3 page summary

Present his/her own
report part

Manage coherent
report presentation

Present a part of the Present a part of the
idea research and findings
Submit one common
analysis report/
presentation

Submit one common
idea report/
presentation

578 H. Artail

Table 7. Elements of the development project

Project element

Book chapters Weight (%)

Project description report — 5
Activity list, effort estimates, preliminary schedule and personnel assignments 3.4 10
Functional diagrams and pseudo code 5, OM 7
Design complexity report 8
UML diagrams 10
Project meetings, code inspections and Gantt charts 7, OM 20
Fault log and fault report 8,9 10
Demonstration of developed system — 30

Gantt charts that had to be submitted by students
after the completion of each major milestone have
greatly helped in keeping track of individual efforts
and contributions. Finally, it was natural for the
instructor to consider his evaluation of individual
contribution to the group effort when awarding
grades to work on the projects.

SOFTWARE DEVELOPMENT PROJECT
COMPONENT

Although it is not the focus of this paper, we
discuss briefly the software development project,
which is the most important element in the SE
course since it allows students to apply the learned
SE concepts while developing a practical database-
driven software system. The elements of this
project are shown in Table 7 along with the
corresponding book chapters and the weights for
calculating the total grade for the project, which
constituted 40% of the overall course grade. The
shown symbol ‘OM’ denotes outside material that
was used as a supplement to the book. An example
is the part of the lecture that was spent on
explaining the many forms of pseudo code, or
the two hands-on sessions on using the Microsoft
Project software (for task scheduling and progress
tracking) and using the Visio software (for gener-
ating UML diagrams).

As we have done earlier, we provide a list and
brief description of the projects that were done by
students in the spring 2004 class. The list is
depicted in Table 8.

The first project is related to the group’s
research, where the lab instructor acted as the
customer. The third project was an implementa-
tion of a Web page change detection system that
was described in a journal paper. The customer for
the group was a graduate student who wanted to
compare the performance of his approach to the
one in the paper. The remaining projects were done
for organizations that actually needed the systems.

The members of Group 1 struggled initially to
agree on a topic for their development project but
finally decided to choose the implementation of
their research idea as the subject. These students
indicated that they worked on the course require-
ments for an average of six and a half hours per
week, which was the lowest among all groups.
Although combining the development and

research project is expected to save time, students
had to wait for the completion of the investigation
stage, which includes surveying prior work, think-
ing about a topic and deciding what needs to be
developed. Actually, the developed system of
Group 1 was missing functionalities that were
specified in the design requirements, implying
that the members ran out of time.

The third development project was the most
demanding. Students in the group estimated that
they spent more than 10 hours per week toward the
course, which was the result of agreeing to a full
implementation of a system that was not comple-
tely defined. They were able to deliver a complete
system but this may have been at the expense of
their performance in other courses, as one student
stated. This however was totally driven by the
students’ interest in the subject they worked on.

As for student performance, each group
completed the tasks shown in Table 7. The demon-
stration, which was done at the end of the seme-
ster, was conducted in the presence of the customer
and focused on the functionality, usability and
robustness of the developed system. The total
project grade was a weighted average of the
scores on the individual elements in accordance
with the weights shown in Table 7 (shown in Fig.
5). Group 3 of the SP04 class received nearly a
perfect score due to the quality and the size of the
completed work. Most importantly, the group was
able to deal with incomplete specifications and
develop an entire Web page detection that was
only missing a crawler. Next, from the same class,
it was group 2 that developed a practical system
for a local pharmacy, which was highly praised by
the customer. Group 5 received the lowest score, as
the developed system was functional, but scored
poorly on the usability scale. The remaining
groups did fairly well as they were able to develop
systems that met the requirements and got positive
remarks from their customers.

Table 8. List of student development projects

Group Short project description

Knowledge base system for educational use

Inventory and payroll system for a pharmacy

Web page change detection system

Delivery tracking system for a food distribution company
Online hiring system for a contracting company
Database management and synchronization system

AN AW =

Combining development and research in teaching undergraduate software engineering 579

o 2pplication g research g Tests (awg.)

100 =y

I'_ [

B0 4 T

G0

4.0

Instrecior Assessmend

204

4 = =]

Group Humbar

Fig. 5. Group performance on the development project.

CONCLUSION AND LESSONS LEARNED

Through the addition of the research component
to the Software Engineering course, students were
able to enhance their learning by performing real
research and tackling professional issues such as
conducting presentations and participating in
group work. Despite the necessity to commit
more time, the students’ successful performances
in traditional components of the course showed
that integrating research into the program did not
adversely impact their overall output. As a reme-
dial, one area that may be improved in future
offerings is to make provisions related to the
research subject, logistics and perhaps the develop-
ment project in order to reduce the time required
from students to complete the requirements, with-
out compromising the objectives. For instance,
before the start of the semester, delegating the

task of finding development projects to the lab
instructor or the Career Center could save students
time by enabling them to select and control the
scope and size of the projects beforehand.

To investigate possible connections between the
performance of students on the tests, development
project and research projects, we computed the
correlation coefficients between the performance
of the class on the research project and its perfor-
mance on tests on one hand and its performance
on the development project on the other hand.
These coefficients, which are plotted in Fig. 6,
suggest a relationship between performance on
tests and performance in research and a stronger
relationship between performance on the develop-
ment project and that on the research project. This
shows that students in general were able to dedi-
cate the needed effort to all the components of the
course and obviously find the time to do it. The

0.4

0.8

0.4

o Testis - Research

o DeElopment - Research

Correlation coefMicient

0.2

=

Spring 2004

Fall 2005

Spring 2008

Fig. 6. Coefficient values for correlation between performance on tests and research and between performance on software
development and research.

580

lack of a perfect correlation implies that the three
elements (tests, development and research) require
different sets of skills and serve to accomplish
complementary objectives.

Finally, it should be mentioned that we exam-
ined the curriculum proposed by Bagert et al. [21],
which incorporates suggested material for SE
classes. It breaks the SE body of knowledge into
four areas: core, foundations, recurring and
supporting. A research component could be
added to the recurring area, which includes

H. Artail

components that may be encountered throughout
the core area phases. The goal is to equip students
with skills that would enable them to adapt learned
concepts to the continuously evolving nature of
practical software development (e.g. Open Source,
Extreme Programming, etc.). The research compo-
nent of the SE course is expected to promote the
investigative and problem analysis skills of
students and raise their awareness of the large
body of research literature that treats new SE
methodologies and techniques.

\© o

10.

12.

13.

14.

15.

16.

17.

18.

19.

21.

REFERENCES

. A. Lopez and K. Messa, An undergraduate research program in multi-paradigm software design,
Proc. of the SIGCSE Technical Computer Science Education Symp., 26(1), 1994, pp. 271-275.

. S. Humphreys, Summer Undergraduate Program in Engineering Research at Berkeley, Proc. of the
Teaching and Learning in an Era of Change Conf., 3, 1997, pp. 1137-1139.

. E. Bogucz and E. Spina, Comprehensive undergraduate research program as a sample graduate
school experience, Proc. of the ASEE Conf., 1(1), 1995, pp. 1-4.

. D. Sabatini, Teaching and research synergism: the undergraduate research experience, Journal of
Professional Issues in Engineering Education and Practice, 123(3), 1997, pp. 98-102.

. P. Johann and F. Turbak, Lumberjack summer camp: a cross-institutional undergraduate research
experience in computer science, Computer Science Education, 11(4), 2001, pp. 279-304.

. H. Davoodi, F. Just, A. Saffar and M. Noori, Collaborative undergraduate research, Proc. of the
Frontiers in Education Conf., 3, 1999, pp. 19-20.

. M. Kurland and H. Rawicz, Involving students in undergraduate research and development: two
perspectives, Proc. of the Engineering Education for the 21st Century Conf., 2, 1995, pp. 1-6.

. Reviews in Undergraduate Research, 2006. [online] available: http://www.ruf.rice.edu/~rur/

. Caltech Undergraduate Research Journal, 2006. [online] available: http://www.curj.caltech.edu/

front/indexUC.php

Council on Undergraduate Research, 2004. [online] available: http://www.cur.org/

. National Conferences on Undergraduate Research, 2006. [online] available: http://www.ncur.org/

Research Experiences for Undergraduates, National Science Foundation (NSF), 2005. [online]

available: http://www.nsf.gov/pubs/2005/nsf05592/nsf05592.htm

N. Passos, Software engineering requirements, analysis in the classroom, Journal of Computing in

Small Colleges, 12(4), 1997, pp. 48-57.

N. Passos and S. Carpenter, True undergraduate research: foundation for graduate studies and

critical thinking, Proc. of the Frontiers in Education Conf., 3, 1999, pp. 7-12.

S. Jovalekic, Project-oriented approach to software engineering education in a multidisciplinary

environment: objectives, realization, evaluation, Proc. of the Frontiers in Education Conf., 2, 1996,

pp. 501-505.

University of Illinois at Urbana-Champaign, ECE Illinois, http://courses.ece.uiuc.edu/ece497/

index.asp#497

R. Greendyke, Graduate level research from undergraduate students: the lessons learned by

student and professor alike, Proc. of the Frontiers in Education Conf., 3, 2002, pp. S4C/1-6.

S. Pfleeger, Software Engineering Theory and Practice, 2nd ed. Prentice Hall, Upper Saddle River,

NJ (2001).

WebCT Inc. WebCT Campus Edition datasheet, 2004. [online] available: http://www.webct.com/

. M. Shah and K. Bowyer, Mentoring undergraduates in computer vision research, IEEE Trans-

actions on Education, 44(3), 2001, pp. 252-257.

D. Bagert, T. Hilburn, G. Hislop, M. Lutz, M. McCracken and S. Mengel, Guidelines for Software

Engineering Education Version 1.0, Technical report CMU/SEI-99-TR-032, Carnegie Mellon

University (1999).

Hassan Artail, worked as a system development supervisor at the Scientific Laboratories of
DaimlerChrysler, Michigan, before joining AUB in 2001. At DaimlerChrysler, he worked

fo

r 11 years in the field of software and system development for vehicle testing applications,

covering the areas of instrument control, computer networking, distributed computing,
data acquisition and data processing. He obtained BS and MS degrees in Electrical
Engineering from the University of Detroit in 1985 and 1986 respectively and a Ph.D.
from Wayne State University in 1999. He is currently an Associate Professor and is carrying
out research in the areas of Internet and mobile computing, distributed systems, ad hoc
networks and data management, in addition to computer and network security.

