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An innovative way of teaching introductory circuit theory to higher education first courses of non-
electrical engineering students arises from our own teaching experience. In these students' learning
programme, circuit theory is located at the very early stages (first or second semester, when the
student is still not too skilled on maths). Fewer credits are being devoted to it, since it is viewed as
an introductory subject, a precursor to subsequent systems theory and electronics. In this paper we
wish to encourage teachers to give up the classical approach to circuits and replace it with the
proposed Laplace transform approach which, remembering A. Einstein's sentence, `Everything
should be made as simple as possible' allows circuit theory to be made much simpler. Perhaps, this
attitude could grow into a text book, definitively new and different, intended for teaching the basics
of circuits to first courses of non-electrical engineering students.
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INTRODUCTION

IT TAKES NO TIME to enter the amazon.com
web page and search for books under keywords
`Electric Circuits/Networks' and `Analysis/Theory'
to end up, even leaving aside those devoted exclu-
sively to problem solving and computer simula-
tion, with almost a hundred different titles, many
of them in successive new editions (up to the
tenth). References at the end of this paper are far
from including all of them: they are just a small
sample, but representative enough because, after
checking the contents of about fifty of them, none
has been found with the simplifying methodology
proposed in this paper.

Typically these text books are intended for
either the junior or sophomore year of under-
graduate electrical or computer engineering, so
that most of them share the same contents,
perspective and methods. Making an attempt at
organizing their content, six main conceptual
blocks could be distinguished, as in Table 1.

Where the more classical text books [1, 2] have
mostly changed through the years is in their
tendency to include state-of-the-art devices (opera-
tional amplifiers), tools (computer simulators) and
trends (services on line and e-learning support). But
contents, structure, mathematical tools and teach-
ing methodology remain almost the same. As clearly
exhibited by reference [3] title, once the inductor
and the capacitor and their differential current-
voltage characteristics have been introduced, three
different mathematical techniques are presented:

1. Transient responses in first- and second-order
circuits (block iii) are studied turning to time
domain differential equations;

2. Sinusoidal steady-state analysis (block iv) is
performed through the concept of phasor and
therefore involving complex exponential func-
tions;

3. Frequency domain analysis and responses
(block v) are developed with the Laplace trans-
form tool.

When not completely avoided [4±6], the Laplace
transform is left to the end of the book [3, 7±14]
and, therefore, to the end of the course.

Although such a schema is assumed to be well
suited for electrical engineers, there are some other
technical engineering disciplines where this frame-
work hardly fits, either due to the reduced number
of credits allocated for the course or to the special
bias in the training. For example, at the Public
University of Navarre, five different Engineering
Degrees (Higher Degree in Telecommunication En-
gineering, Diploma in Sound and Image Technical
Engineering, Diplomas in Mechanical Engineering
and Electrical Engineering and Higher Degree in
Industrial Engineering) are offered, including basic
circuit theory as a compulsory subject in the very
early educational stages [15]. Even though each one
is specifically focused on its own topics and training
purposes, the lack of time to cover all five first
blocks is a typical problem.

Our circuit teaching experience in the two first
engineering degrees indicated in the previous para-
graph, following the classical structure of the text
books, reveals some unpleasant drawbacks:

. First, analysis techniques and theorems intro-
duced in block ii) for the time-domain have to be
repeated later for phasorial notation and then
again for complex-frequency notation, which is
time consuming and rather boring.

. Second, as Laplace transform (LT) is at the end,
it becomes the most probable subject to be
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discarded whenever the course runs short of
time, which is a pity given its connection to
Fourier transform (for spectrum analysis and
modulation processes) and z-transform (for digi-
tal signal processing).

. Third, even though sinusoidal signals are essen-
tial in many fields, from electric power genera-
tion and transmission to satellite communication
and control, telecommunication engineers must
face and deal with many other different types of
signals (steps, pulses, impulses . . .) that do not
allow the phasor steady-state treatment.

. Fourth, this methodology leads to an apparent
disconnection between time response, related to
natural frequencies and damped behaviours
explained in block iii), and frequency response,
connected to transfer functions and Bode dia-
grams introduced in blocks iv) and v) when, in
the end, both of them are a direct consequence
of the system poles location.

There are other drawbacks too, which highlight
the benefits arising from our alternative proposal
based on the use of the Laplace transform as the
unique mathematical tool needed to analyse circuit
performance in domains of time and frequency,
with no loss of information and taking much less
mathematical effort and saving time. The success
of this approach is borne out by three years'
experience of teaching circuits in this way, after
ten years of facing the problems arising from
traditional methods.

THE LAPLACE TRANSFORM TOOL

Outlining some of the advantages:

. Analysis related to blocks iii), iv) and v) can be
more comfortably and easily performed just
from the s-domain transformed circuit.

. Assuming that students know how to perform
direct and inverse transforms, extraction of time
response and transient analysis is developed
without having to solve differential equations,
(DE).

. Using an innovative procedure (exploited only
rarely [3, 7, 8] and never in its entirety), the
underlying connection between complex-fre-
quency network functions and sinusoidal
steady-state performance is presented and the
way to avoid the use of phasors and complex
exponentials is explained.

. From here, steady-state output and frequency
response are easily derived from the transformed
circuit analysis.

More specifically, take a linear circuit containing
one, two or more energy-storage components. At
a given time t � to a sudden change occurs in the
circuit, so that the time-invariance condition is not
fulfilled and therefore two different network
analyses (before and after the change) are
required.

The following steps describe the systematic
methodology we propose to be applied when
solving circuit problems under these conditions in
order to obtain as much information as possible
about the output response in the time domain
y�t > to�, and about the circuit performance in
the frequency domain, but minimizing the
amount of mathematical knowledge required.

STEP LT.1ÐInitial conditions calculation. The
circuit before the change has to be analysed in
order to obtain the value at t � tÿo of every circuit
variable physically subjected to continuity, i.e.
voltages across capacitors and currents through
inductors. These are the only magnitudes whose
values remain compulsorily unchanged in a non-
time-invariance situation.

Table 1. Electric circuits, what the literature contains

Basic block Contents Mathematical tools

i Linear analysis Introduction. Electrical magnitudes. Basic concepts.
Kirchoff's laws. Independent and dependent sources.
Resistances. Series-parallel R circuits. Voltage and current
division. Operational amplifier.

Time functions integration and
differentiation.
Notions of trigonometry.

ii Analysis techniques Node and loop analysis.
Network theorems.

Equation systems solving.
Matrix arithmetic.

iii Time domain analysis Inductors, capacitors and duality. First order RL and RC
circuits. Second order linear circuits.

Methods to solve first and second
order differential equations.

iv Sinusoidal steady-state
analysis

Sinusoidal steady-state analysis by phasors and power
calculation.
Frequency response.

Calculus with complex numbers
and exponentials. Notions of
trigonometry.

v Frequency domain
analysis

Laplace transform analysis: basics and applications.
Transfer functions.
Principles of first and second order filters. Poles and zeroes.
Stability. Frequency response and Bode diagrams.

Laplace transform: direct and
inverse.
Complex functions polar
expression: magnitude and phase.

vi Additional chapters Transformers and magnetically coupled circuits. Two ports.
Interconnection of two ports. Polyphase circuits. Fourier
series and transform. Resonant and bandpass circuits.
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STEP LT.2ÐCircuit transformation into the s-
domain. The circuit topology after the change (for
t > to) has to be transformed into the complex-
frequency domain. When replacing the energy-sto-
rage elements by their respective impedances Zk�s�,
the previously calculated initial conditions are to be
incorporated through the adequate internal
sources, either voltage sources in series or current
sources in parallel, that represent the energy pro-
vided to the network by the reactive components
due to their memory capability.

STEP LT.3ÐAnalysis in the transformed s-domain.
Whichever way the unknown output magnitude y�t�
is defined and for any analysis technique used, the
presence of external sources (those that supply net-
work excitation) and internal sources (those that,
according to step LT.2, reflect initial conditions)
allows an easy recognition between the zero-input
Yzi�s� and the zero-state Yzs�s� contributions to the
transformed output variable Y �s�, even if super-
position principle is not applied. This analysis will
always yield an expression for the output transform
Y�s� as a ratio between two polynomials in the s
complex-frequency variable, that can be written as:

Y�s� � n�s�
d�s� � Yzs�s� � Yzi�s�

� N�s�
D�s� �X�s�|�������{z�������}

zeroÿstate

� 1

D�s�
X

k

ICk�s�|������������{z������������}
zeroÿinput

�1�

Here D�s� is obviously the system characteristic
polynomial, ICk�s� carries the information related
to the initial condition at the k±th reactive element,
and the sum in k is extended over all the energy-
storage elements contained in the circuit. X�s�
represents the Laplace transform of the single
external source x�t�.1

STEP LT.4Ð Inverse Laplace transform computa-
tion. Instead of a mathematical distinction between
natural and forced responses (both depending on
the excitation source), this method provides the
complete response naturally split into zero-input
and zero-state components, with the advantage of
knowing the excitation source is not needed to
compute the former, but just for the latter.

Such distinction between zero-input and zero-
state responses in the time domain is obtained
when the inverse transform of both contributions
in (1) is calculated separately,2 through the corres-
ponding partial-fraction expansion,

y�t > to� � y�t > to�jzs�y�t > to�jzi

� LTÿ1 Yzs�s�� � � LTÿ1 Yzi�s�� � �2�

STEP LT.5ÐSinusoidal steady-state response. As a
special case, it is next considered that the steady-
state is reached with the circuit excited by sinusoi-

dal sources which, when transforming into the
complex-frequency domain, are replaced by their
Laplace transform (instead of by the corres-
ponding phasor), making use of the well-known
transformed pairs:

x�t� � K cos!t u�t� ! X �s� � LT x�t�� � � Ks

s2 � !2

x�t� � K sin!t u�t� ! X �s� � LT x�t�� � � K!

s2 � !2

9>>>=>>>; �3�

Whenever the circuit under analysis contains
several sinusoidal sources of the same frequency
but not in phase, which is a quite ordinary situa-
tion, the best and shortest way to proceed to
achieve their Laplace transform (it is not usual to
find this pair in tables) is to turn to trigonometric
relations and the above transformed pairs in (3) to
get the most general expression,

x�t� � K cos�!t� �� u�t�
� K cos!t cos�ÿ sin!t sin�� � u�t�
) X �s� � LT x�t�� �

� Ks cos�ÿ K! sin�

s2 � !2

� M�s�
�sÿ j!��s� j!� �4�

that should be used as the ac steady-state input
transform (understanding that angle � can be
either positive or negative) when computing the
zero-state contribution in (1). Only the zero-state
contribution is of interest since the final aim here is
to obtain the forced response; a zero-input compo-
nent only renders a natural response so that it can
be neglected in (1),

Y �s� � Yzs�s� � N�s�
D�s� � X�s� � H�s� � X�s�

� H�s� � M�s�
�sÿ j!��s� j!� �5�

On the one hand, energy-storage elements could be
replaced just by their respective impedances if only
ac steady-state is pursued, which means that step
LT.1 can be completely avoided and step LT.2
considerably simplified.

When (5) is expanded into partial-fractions, just
one of them yields the forced response Yss�s�, and
the remaining ones produce the natural response,

Y�s� �Yzs�s� � As� B

�s2 � !2�|�����{z�����}
forced

�
X

i

XMi

m�1

Di;m

�sÿ pi�m �
X

k

XMk

m�1

Ek;ms� Fk;m

�sÿ �k�2 � �2
k

� �m

|��������������������������������������������{z��������������������������������������������}
natural

�6�

Here, in the transformed natural component
expression, the sum extended over i takes account
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of the system pi real poles, with possible multi-
plicity Mi, meanwhile the sum over k covers those
poles forming complex-conjugate pairs (�k � j�k),
with possible multiplicity Mk. Since this is the
natural component of the zero-state contribution,
it is related to the inertial behaviour of reactive
elements and is therefore called the natural
response inertial component.

To neglect this natural component means there
is no need to calculate its constants, but just A and
B, because the steady-state contribution will be
always a recognizable partial-fraction in (6) carry-
ing information about excitation frequency (it is
assumed the circuit is not an oscillator). The easiest
way to derive A and B values is applying the
residues method,

Yss�s� � As� B

s2 � !2
� �R1 � R2�s� j!�R1 ÿ R2�

s2 � !2

� R1

sÿ j!
� R2

s� j!
�7�

Where, according to (5), the residues are computed
as,

R1 � �sÿ j!�Yzs�s�js�j!� �sÿ j!�H�s�X�s�js�j! �
H� j!�M� j!�

j2!

R2 � �s� j!�Yzs�s�js�ÿj!� �s� j!�H�s�X�s�js�ÿj! �
H�ÿj!�M�ÿj!�

ÿj2!

9>>=>>; �8�

Since H��j!� and M��j!� are complex functions,
it is convenient to express them in polar form. At
the view of (4),

M�j!�
j2!

� !K�j cos�ÿ sin��
j2!

� K

2
cos�

� j
K

2
sin� � K

2
� ej� � K

2
��

M�ÿj!�
ÿj2!

� !K�ÿj cos�ÿ sin��
ÿj2!

� K

2
cos�

ÿ j
K

2
sin� � K

2
� eÿj� � K

2
� ÿ �

Circuit transfer function H�s� exhibits conjugate
symmetry,3 so that it is verified H�ÿj!� � H�� j!�
and therefore,

H� j!� � H� j!�j j � e j�H�j!� � H� j!�j j �H� j!�
H�ÿj!� � H�ÿj!�j j � e j�H�ÿj!� � H�� j!�
� H� j!�j j � ÿH� j!�

Carrying these polar expressions into residues
equations (8) and then to coefficients A and B in
(7), leads to

A � R1 � R2 � H� j!�K
2

e j� �H�ÿj!�K
2

eÿj�

� K H� j!�j j cos �� �H� j!�� �

B � j!�R1 ÿ R2� � j! H� j!�K
2

ej� ÿH�ÿj!�K
2

eÿj�

� �
� ÿ!K H� j!�j j sin �� �H� j!�� �

From here the output steady-state (t greater than
zero) response is finally obtained as the inverse LT
transform of (7),

yss�t� � LTÿ1�Yss�s�� � LTÿ1 As� B

s2 � !2

� �
� A cos!t� B

!
sin!t �

� K jH� j!�j; �cos!t cos��� �H� j!��
ÿ sin!t sin��� �H� j!��� �
� K jH� j!�j cos�!t� �� �H� j!�� �9�

In the end, the steady-state circuit output response
is a sinusoidal waveform with the form yss�t� �
K 0 cos�!t� �0� where amplitude K 0 and phase �0
are easily obtained from the input waveform when
the circuit transfer function H�s� is evaluated at
s � j!, as shown in the diagram of Fig. 1, where !
is the value of the excitation frequency.

Application of such a procedure to circuits
containing a single excitation source is extremely
easy, as will be shown later. Nevertheless, for
circuits containing several sinusoidal sources
(assuming different amplitudes and phases but
equal frequencies), some caution is required.4 In
such circuits the steady-state transformed function
in (7) might be replaced by,

Yss�s� �
X

m

Ams� Bm

s2 � !2
�
X

m

R1m

sÿ j!
� R2m

s� j!

� �
and every single term in the sum is inversely
transformed to render a sinusoidal waveform
once the corresponding coefficients Am and Bm

are determined.

STEP LT.6ÐFrequency response function. Follow-
ing the above procedure, it is evident that the
frequency response function H� j!� is obtained
from the transfer function H�s� under replacement
s � j!, where ! is a real variable. From here,
extracting magnitude response H� j!�j j and phase
response �H� j!� and sketching the corresponding
Bode plots is a straightforward task.

No further interest will be shown in this last
step, since the concepts of transfer function and
frequency response are always connected to
Laplace transform in all classical circuit text
books. It should be remembered that our final
aim is to show the way to use this tool, the Laplace
transform, to extract complete responses in the
time-domain (instead of solving differential equa-
tions) and sinusoidal steady-state performance
(avoiding complex exponentials and phasors).

THE USUAL APPROACH TO TIME
ANALYSIS. DRAWBACKS

The systematic procedure to analyse in the time
domain, by writing and solving differential equa-
tions, the performance of circuits that contain
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energy-storage components can be found in any of
the text books in references, and it is assumed they
will be well known to the reader. At the same time
it is assumed that solving differential equations
requires some extra mathematical skills and know-
ledge and that this method intrinsically renders the
distinction between natural and forced responses
(homogeneous and particular solutions for the
differential equation).

In what follows, such a procedure is applied,
step by step, to analyse the simple second-order
circuit in Fig. 2. Second-order has been selected for
the example because of being fairly representative:
identical methodology could be applied to solve
any reactive circuit of higher-order. Method suit-
ability regarding to higher-order will be discussed
later, when referring to this technique disadvan-
tages.

In the example circuit the output variable vo�t� is
defined as a voltage drop across a resistance and,
therefore, it is not a magnitude physically
subjected to continuity. A sudden change is intro-
duced at time t � to, where to � 0 s is chosen for
the sake of simplicity, since the switch on the left is
opened at the same time the other one closes. The
final aim is to proceed step by step in order to
obtain an expression for the output response in the
time domain, so that the main drawbacks of this
mathematical method can be pointed out and a
comparison with our alternative proposal carried
out.

STEP DE.1ÐInitial conditions. As the circuit
before the change is excited by a DC voltage
source, assuming the steady-state is reached, both
reactive components are fully charged, i.e. the
capacitor behaves as an open-circuit (no current
through it) meanwhile the inductor performs as a
short-circuit (no voltage drop across it). The
equivalent circuit topology, shown in Fig. 3, exhi-
bits an easy analysis to extract both initial condi-
tions.

STEP DE.2ÐDifferential equation. For any
output magnitude, it is always preferable and
easier to derive the differential equation for
t > to in a variable subjected to continuity. In
this case the selected variable is the capacitor
voltage vC�t�, since the circuit topology is clearly
suitable for a mesh analysis. Taking into account
that all the components are connected in series
and the equations in Fig. 4 relating voltage and
current, application of Kirchhoff's Voltage Law is
immediate,

KVL�t > 0� : vi�t� � vC�t� � vR�t� � vL�t�
� vC�t� � R iC�t� � vL�t� �

� vC�t� � RC
dvC�t�

dt
� L

diL�t�
dt

� vC�t� � RC
dvC�t�

dt
� LC

d2vC�t�
dt2

Fig. 1. Conceptual scheme of the LT method applied to ac steady-state.

Fig. 2. Second-order circuit chosen as example.

Fig. 3. Simplified equivalent circuit for initial conditions calculation.
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Hence, the second-order non-homogeneous
differential equation that describes the circuit
behaviour in the time domain when t > 0 is,

d2vC�t�
dt2

� R

L

dvC�t�
dt
� 1

LC
vC�t� � 1

LC
vi�t� �12�

Introducing the values for the passive components
(given in Fig. 2),

d2vC�t�
dt2

� 6
dvC�t�

dt
� 8vC�t� � 8vi�t�

STEP DE.3ÐNatural component. For the homo-
geneous solution to be achieved, the characteristic
equation is derived from the homogeneous differ-
ential equation, so that the natural frequencies can
be extracted,

s2 � 6s� 8 � 0 ) s1;2 � ÿ6� ����������������
36ÿ 32
p

2

� ÿ6� 2

2
) s1 � ÿ4

s2 � ÿ2

�
�13�

Due to the minus sign in both natural frequencies
the system stability is ensured and the homoge-
neous solution (that corresponds to an over-
damped behaviour) can be expressed as,

Natural component � vC�t�jnatural � K1 es1t � K2 es2t

� K1 eÿ4t � K2 eÿ2t �14�

Determination of constants K1 and K2 to match
initial conditions must be put off to step DE.5

STEP DE.4ÐForced component. In order to
obtain the particular solution, at this point it is
compulsory to know the excitation mathematical
function. Assuming, for example, vi�t� � eÿ3t the
second-order differential equation becomes

d2vC�t�
dt2

� 6
dvC�t�

dt
� 8vC�t� � 8vi�t� � 8 eÿ3t

where the particular solution for trial is

vC�t�jforced� Keÿ3t ) dvC�t�
dt

� ÿ3Keÿ3t

and

d2vC�t�
dt2

� 9Keÿ3t

which results into 9K ÿ 18K � 8K � ÿK � 8
) K � ÿ8

Forced component � vC�t�jforced� ÿ8eÿ3t �15�

STEP DE.5ÐComplete solution. Adding natural
component in (14) and forced component in (15)
the complete solution for vC�t � 0� is obtained,

vC�t� � vC�t�jforced�vC�t�jnatural

� ÿ8eÿ3t � K1eÿ4t � K2eÿ2t �16�

from where

iL�t� � C
dvC�t�

dt
� 1

4
24eÿ3t ÿ 4K1eÿ4t ÿ 2K2eÿ2t
� �

� 1

2
12eÿ3t ÿ 2K1eÿ4t ÿ K2eÿ2t
� � �17�

Both initial conditions calculated at step DE.1 and
given in (10) and (11) are to be used to determine
the unknown constants K1 and K2.

vC�t�j t�0� � ÿ8� K1 � K2 � vC�t � 0ÿ� � 0 V

iL�t�j t�0� � iC�t�j t�0�� C
dvC�t�

dt

���� t�0�

� 1

2
12ÿ 2K1 ÿ K2� � � iL�t � 0ÿ� � 3

2
A

Which results in the equations system,

K1 � K2 � 8

2K1 � K2 � 9

�
) K1 � 1

K2 � 7

�
With these values introduced in (16) the final result
for the capacitor voltage is,

Complete solution � vC�t � 0�

� ÿ8eÿ3t|���{z���}
forced

� eÿ4t � 7eÿ2t|��������{z��������}
natural

�18�

Fig. 4. Circuit in the time domain when t > 0 and its current-voltage relations.
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STEP DE.6ÐOutput response. As the magnitude
defined as output variable is not the voltage drop
across the capacitor obtained in (18) but across the
resistance of 3
, further development is still neces-
sary. Taking into account that iL�t > 0� �
iC�t > 0� is the same current that flows across
this resistance and Eq. (17), the circuit output
response vo�t > 0�, still separated into natural
and forced components, is

vo�t > 0� � RiL�t > 0� � 3

2
12eÿ3t ÿ 2eÿ4t ÿ 7eÿ2t
� �

� 18eÿ3t
h i
|�����{z�����}

forced

� ÿ3eÿ4t ÿ 21

2
eÿ2t

� �
|���������������{z���������������}

natural

�19�

Once this example analysis is accomplished, the
main disadvantages of the method can be high-
lighted immediately:

a) Too many variables involved in the analysis.
Whichever variable is defined as the circuit
output, the differential equation should be
defined in terms of an electrical magnitude
that follows the continuity condition. Besides,
in order to determine the values of the Kj

constants in the natural response to match all
the initial conditions, mathematical expressions
for all such magnitudes (as many as the circuit
order) are required. See (17) in step DE.5.

b) Limited suitability for higher-order circuits.
Unavoidably, the higher the order the greater
the number of initial conditions, unknown
constants and natural frequencies to be deter-
mined. But, apart from the just mentioned
increase in the involved variables whose expres-
sion must be derived, the method offers some
additional drawbacks: it becomes harder to
obtain the corresponding differential equation
and more laborious to extract the particular
solution, since many derivatives of the function
proposed as a solution must be acted on.

c) Limited versatility regarding to the excitation
function. Should the same circuit topology,
with the same components, the same initial
conditions but a different source of excitation
vi�t� be of interest, the performed analysis is
scarcely useful. Computations have to be
redone from step DE.4, because all the follow-
ing steps, results and values depend on this
excitation function, even the natural response.

d) Non-supported derivation of the characteristic
equation. From the homogeneous differential
equation, the student is normally taught to
proceed by replacing the n-th time derivative
operator by sn, s being a complex variable, in
order to obtain the system characteristic equa-
tion. It almost looks like a rule of thumb, since
there is no better reason for it than the fact that a
solution in the form K est seems to work in first-
order circuits and the self-similarity exhibited by

an exponential function and its successive deri-
vatives. And the worst of it is that, to have such
weak reasons available when facing second-
order circuits, text book authors must solve
first-order circuits in a different way, so that
neither characteristic polynomial and equation
nor the complex s variable can be introduced at
that moment. In the students' mind, this incon-
sistent treatment raises doubts about the gener-
ality of the method regarding to circuit order.

e) Too many exceptional cases. Apart from the
different treatment devoted to first-order cir-
cuits, at least two other special cases that drift
away from the usual procedure must be taught
to the students.

The first one appears when the characteristic
polynomial real roots are equal; in our example
circuit, when s1 � s2. Then it is stated that an
expression for the natural component in the
form [K1 + tK2]es1t instead of that used in (14)
must be attempted.

The second exception arises when the exter-
nal source frequency (so�R) equals a natural
frequency in the circuit, i.e. when vi�t� � Aesot

with either so � s1 or so � s2. Then an alter-
native expression for the forced response in the
form tKe sot instead of Kesot has to be proposed
and substituted in the non-homogeneous differ-
ential equation to determine the value for
parameter K and derive the particular solution.
Both special cases can take place at the same
time, whether so � s1 � s2 . If such happens,
�K1 � tK2�esot is the form for the natural
response and t2Kesot that to be tested as
forced response.

f) Too hard alternative decomposition. It is some-
times of great interest to separate the complete
response into zero-input and zero-state terms. If
such is the case, a lot of extra mathematical
effort is required indeed.

To calculate the zero-input contribution, the
particular solution must be assumed nought
and step DE.5 (and following ones) repeated
under these conditions, neglecting the forced
component in (16) and (17), to get new values
for the natural component undetermined con-
stants,

vC�t�jzi� vC�t�jnatural� K 01 eÿ4t � K 02 eÿ2t

iL�t�jzi� 1
4
ÿ4K 01 eÿ4t ÿ 2K 02 eÿ2t
� �

9=;
Remembering the initial conditions,

vC�t � 0��j zi � K 01 � K 02

� vC�t � 0ÿ� � 0 V

iL�t � 0��j zi� 1
2
ÿ2K 01 ÿ K 02
� �

� iL�t � 0ÿ� � 3
2

A

9>>>>>>>=>>>>>>>;
)

K 01 � ÿ3

K 02 � 3

)
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In this way the zero-input contribution for the
output is,

vo�t > 0�jzi � 3iL�t > 0�

� 3

2
ÿ2K 01 eÿ4t ÿ K 02 eÿ2t
� �

� 9eÿ4t ÿ 9

2
eÿ2t

To obtain the zero-state contribution, it is
needed again to go back to step DE.5 and,
although (16) and (17) are still valid, zero initial
conditions for both reactive components must
be imposed.5 Once again, new values for the
constants have to be determined,

vC�t � 0��j zs � ÿ8� K 001 � K 002
� vC�t � 0ÿ� � 0 V

iL�t � 0��j zs� 1
2

12ÿ 2K 001 ÿ K 002
� �

� iL�t � 0ÿ� � 0 A

9>>>>=>>>>;)
K 001 � 4
K 002 � 4

�

So that the zero-state contribution is,

vo�t > 0�jzs �
3

2
12 eÿ3t ÿ 2K 001 eÿ4t ÿ K 002 eÿ2t
� �

� 18eÿ3t ÿ 12eÿ4t ÿ 6eÿ2t

APPLICATION OF THE LT FOR TIME
ANALYSIS. BENEFITS

To solve the identical circuit problem to that in
Fig. 2 above applying the Laplace transform
method, steps from LT.1 to LT.4 are progressed
as follows:

STEP LT.1ÐPreviously computed at step DE.1:
vC�t � 0ÿ� � 0 V; iL�t � 0ÿ� � 3=2 A

STEP LT.2ÐFor the transformed circuit in Fig. 5
an internal voltage source connected in series with
the inductor is added to incorporate its non-zero
initial condition, as stipulated by the rule derived
from the Laplace transform action over the deri-
vative voltage-current characteristic in an inductor,

vL�t� � L
diL�t�

dt
ÿ!LT

VL�s� � sL � IL�s� ÿ LiL�0ÿ�

STEP LT.3ÐThe analysis of the circuit in the
complex-frequency domain should provide the
transformed expression for the output magnitude

Vo�s� � LT vo�t�� �;
Series connection of voltage sources:

VT�s� � LiL�0ÿ� � Vi�s�
Series connection of impedances:

ZT�s� � R� sL� 1

sC
� s2LC � sRC � 1

sC

Total current:

Io�s� � VT�s�
ZT�s� �

sC

s2LC � sRC � 1
� LiL�0ÿ�

� sC

s2LC � sRC � 1
� Vi�s�

Output function is extracted and impedance values
indicated in Fig. 5 are introduced to finally yield,

Vo�s� � RIo�s� � sRC

s2LC � sRC � 1
� LiL�0ÿ�

� sRC

s2LC � sRC � 1
� Vi�s� �

� 6s

s2 � 6s� 8
� 3
4|����������{z����������}

zero-input

� 6s

s2 � 6s� 8
� Vi�s�|��������������{z��������������}

zero-state

�20�

STEP LT.4ÐFrom now on, all the analytical
expressions in time domain are assumed for
t > 0. As previously explained, this method pro-
vides the complete response naturally split into
zero-input and zero-state components,

vo�t� � vo�t�jzi�vo�t�jzs

with the advantage that the zero-input response
computation is completely independent of the
actual excitation source,

vo�t�jzi � LTÿ1 9s

2
� 1

s2 � 6s� 8

� �

� LTÿ1 9

s� 4
�ÿ9=2

s� 2

� �

� 9 eÿ4t ÿ 1

2
eÿ2t

� �
u�t� �21�

Fig. 5. Circuit transformation into the complex-frequency domain.
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For the zero-state component the function of
excitation must be considered,

vi�t� � eÿ3tu�t� ÿ!LT
Vi�s� � 1

s� 3

thus yielding,

vo�t�jzs � LTÿ1 1

s� 3
� 6s

s2 � 6s� 8

� �
� LTÿ1 18

s� 3
ÿ 12

s� 4
ÿ 6

s� 2

� �
�

� 6 3eÿ3t ÿ 2eÿ4t ÿ eÿ2t
� �

u�t� �22�
And of course, the addition of both components
given in (21) and (22) provides the complete
response,

vo�t� � vo�t�jzi�vo�t�jzs

� 18eÿ3t ÿ 3eÿ4t ÿ 21

2
eÿ2t

� �
u�t� �23�

Anybody can deny that, (19) and (23) being the
same result, it has been much faster to derive (23)
using the proposed method, and even simpler from
a mathematical point of view, since it is always
easier to solve linear equations than differential
equations.

These benefits are not due to the specific circuit
chosen as an example for comparison purposes. It
is the whole procedure that presents many advan-
tages over the method classically taught and imple-
mented.

a) Output magnitude expression is directly calcu-
lated. Once the circuit has been transformed
into the s-domain, its analysis can be aimed at
obtaining the transformed expression Y�s� of
the output magnitude, wherever it is defined.
Neither time nor effort are wasted in computing
expressions for the remaining variables under
continuity restraints, since the initial conditions
are included as internal sources from the very
beginning, when the circuit is transformed.

b) Method generality. The proposed method is
suitable for any source of excitation, provided
that its Laplace transform is known or can be
calculated. Besides, as this information only
affects one of the last steps in the analysis, it
can be changed quite easily without requiring
too much recalculation: only the zero-state
contribution would need to be modified.

It is also appropriate for any circuit order:
there is no need to apply a different approach for
first-order circuits, and application for higher-
order is not at the cost of much more work.

Moreover, all the exceptional cases reported
as drawbacks in the preceding section are
perfectly encompassed in the described metho-
dology at the sight of the Laplace transform
pair

f �t� � tnÿ1 � eÿat

�nÿ 1�! u�t� ÿ!LT
F�s�

� 1

�s� a�n ; n � 1; 2; 3::: �24�

Indeed, all of them are cases where the denomi-
nator polynomial d�s� in (1) exhibits poles with
multiplicity greater than one (either coming
from the characteristic polynomial or from the
excitation source transform), so that partial-
fractions with the form of the right term in
(24) arise when computing the inverse trans-
form.

c) Concept understanding. From the Laplace trans-
form perspective, there is no problem for the
students coming to terms with the complex
s-variable.

d) Easy alternative decomposition. When it is
desired to separate the complete response into
natural and forced components, the task is quite
easy and most of the work has been done before-
hand.

Rewriting (20) in the form

Vo�s� � 6s

s2 � 6s� 8
� Vi�s� � 3

4

� �
� 6s

�s� 2��s� 4� �
1

s� 3
� 3

4

� �
� A

s� 2
� B

s� 4
� C

s� 3

it becomes clear that s � ÿ2;ÿ4 are the system
poles (the roots of the characteristic polyno-
mial) and the inverse transform of the fractions
containing these poles will produce the natural
response. On its side, s � ÿ3 is a pole of Y �s�
introduced by the excitation source
X�s� � LT x�t�� �. The inverse transform of
partial-fractions containing such extra poles
coming from X �s� will produce the forced
response.

Therefore, both terms can be distinguished in
the final result (23) with no need for a new
partial-fraction expansion and inverse trans-
form.6

vo�t� � 18eÿ3t ÿ 3eÿ4t ÿ 21

2
eÿ2t

� �
u�t�

� 18eÿ3t
h i

u�t�|���������{z���������}
forced

� ÿ3eÿ4t ÿ 21

2
eÿ2t

� �
u�t�|�������������������{z�������������������}

natural

THE USUAL APPROACH FOR AC STEADY-
STATE ANALYSIS. DRAWBACKS

Sinusoidal steady-state analysis is a task where
there are many few degrees of freedom. As only the
forced response is pursued, initial conditions,
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natural responses, zero-input responses and tran-
sients can be completely neglected. Moreover,
since the excitation is forced to be a sinusoidal
function and the circuits are assumed to be linear,
all the electrical waveforms involved in the analysis
will also be sinusoidal functions, all of them with
the same frequency: the excitation frequency.

From this perspective, ac steady-state analysis
should be a really simple subject to cope with.

However, once again, the usual approach for
teaching/learning how to analyse circuits under ac
steady-state conditions (the so-called phasor
method) introduces new techniques, new concepts
and new mathematical tools that could be avoided
to students. It does not even make use of
previously acquired skills: for a sinusoidal input
signal x�t� � K cos�!t� �� a forced response as
y�t�jforced� KA cos!t� KB sin!t with its successive
time derivatives could be introduced in the differ-
ential equation (step DE.4) to determine constants
KA and KB. From here, the output steady-state
waveform could be extracted.

Figure 6 illustrates the underlying idea that is
the basis of the phasor method. Independent of
how many sinusoidal sources (assumed of the same
frequency) the circuit contains and which is the
magnitude defined as output, all the electrical
signals in the circuit will share the same frequency
but exhibit different values for amplitude and
phase. These parameters subjected to change,
amplitude and phase, are used to construct the
corresponding phasors.

To illustrate the phasor method, the same
second-order network in Fig. 4 above, with the
same component values, but now considering
sinusoidal excitation with amplitude K , frequency
! � 1 rad/s and zero phase,

vi�t� � K cos�!t� �� � K cos t V �25�
is considered. Assuming steady-state reached, the

circuit is analysed, step by step, with the classical
approach.

Through this circuit example they are shown
both the way to derive a certain magnitude defined
as output variable and the method to obtain the
circuit frequency response function. Method exten-
sion to circuits of higher-order and/or containing
more sinusoidal excitation sources (always with the
same frequency) is direct.

STEP PM.1ÐEquivalent phasor representation. To
analyse the sinusoidal steady-state using the
phasor method, signals and components must be
first transformed. The former are represented by
the corresponding phasor, and the later are
replaced by their respective complex impedances,
calculated depending on their passive values and
the sinusoidal signal frequency.

STEP PM.2ÐCircuit analysis with the phasor
method. In this simple example the analysis
involves a series connection of impedances plus a
voltage divider,

Zt� j!� � ZC � j!� � ZR� j!� � ZL� j!�

� 1

j!C
� R� j!L

Vo� j!� � Vi� j!� � ZR� j!�
Zt� j!�

� Vi� j!� � R

1

j!C
� R� j!L

� Vi� j!� � R
R� j !Lÿ 1

!C

� � �28�

Fig. 6. Conceptual scheme of the phasor method basis.

Fig. 7. Equivalent phasor representation for ac steady-state.
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STEP PM.3Ð Output variable steady-state deriva-
tion. In the output phasor Vo� j!� expression (28)
the input phasor derived in (26) and the values for
the components and excitation frequency have to
be introduced, thus yielding,

Vo � K 0��0 � 3K� 0�

3� j
1

2
ÿ 4

� � � 3K

3ÿ 7

2
j

� 6K

6ÿ 7j
� 6K�����

85
p � 49; 4�

what has still to be converted back to the time
domain, recovering a sinusoidal function with the
corresponding frequency ! � 1 rad/s. Taking into
account the trigonometric relation

cos�a� b� � cos a � cos b� sin a � sin b

the steady-state for the output variable is finally

vo�t� � K 0 cos�!t� �0� � 6K�����
85
p cos�t� 49; 4��

� K

85
�36 cos tÿ 42 sin t�V �29�

STEP PM.4ÐFrequency response. Going back to
the output phasor Vo� j!� expression (28) the
corresponding network function (a voltage trans-
fer function in the example), defined as the ratio of
the output phasor to the input phasor, both in
terms of the real frequency variable !, can be
obtained

H� j!� � Vo� j!�
Vi� j!� �

R

R� j !Lÿ 1

!C

� �
� j!RC

�1ÿ !2LC� � j!RC
� j6!

�8ÿ !2� � j6!
�30�

From where magnitude and phase responses of the
network can be extracted,
Magnitude response:

jH� j!�j � !RC������������������������������������������������
�1ÿ !2LC�2 � �!RC�2

q
� 6!������������������������������������

�8ÿ !2�2 � �6!�2
q �31�

Phase response:

�H� j!� � 90� ÿ arctan
!RC

1ÿ !2LC

� �
� 90� ÿ arctan

6!

8ÿ !2

� �
�32�

As clearly shown in step PM.3 the phasor method
only provides the particular solution of the zero-

state response. Taking this into account the main
disadvantages of the method are all related to the
very restricted conditions of applicability.

a) Restriction on the frequency. Should the circuit
contain several excitation sources, in order to
perform the phasor analysis just once, all the
sources must share the same frequency value.
Otherwise superposition principle has to be
applied in the time domain and several trans-
formations and analyses (as many as different
frequencies), from step PM.1 to step PM.3,
need to be carried out.

b) Restriction on excitation function. A sinusoidal
function is imposed as circuit excitation by the
phasor method. Note that such a condition is in
the analysis from the very beginning to derive
the input phasor and the circuit impedances
(step PM.1). Should the same circuit be excited
by a source departing from the sinusoidal
function, the analysis is completely useless.

c) Restriction to steady-state. As the method only
provides the forced response, it does not allow
any information to be gathered related to nat-
ural frequencies, transient response and/or
damping pattern.

d) No information about stability. As the method
does not extract the circuit natural frequencies,
poles location and stability are never taken into
account. It does not seem to make much sense
to waste time and effort in analysing an
unstable system.

APPLICATION OF THE LT FOR AC
STEADY-STATE ANALYSIS. BENEFITS

The result (20) previously obtained is now
recovered to perform the same ac steady-state
analysis, but now from the LT perspective.
Remembering what was explained above in step
LT.5, there is no need either to recognize the part-
fraction related to steady-state or to compute the
inverse LT transform.

STEP LT.5ÐAssuming steady-state under sinu-
soidal excitation in (20) and hence neglecting the
zero-input contribution yields the transfer func-
tion.

Vo�s�jzs �
sRC

s2LC � sRC � 1
�

Vi�s� � 6s

s2 � 6s� 8
� Vi�s�

) H�s� � Vo�s�
Vi�s� �

sRC

s2LC � sRC � 1

� 6s

s2 � 6s� 8
�33�

Under replacement s � j! � j (remember that

S. Porta et al.602



! � 1 rad/s in our example), magnitude and phase
responses are extracted,

H� j!� � H�s�js�j! �
j6!

8ÿ !2 � j6!
� 6j

7� 6j

) jH� j!�j � 6=
�����
85
p

�H� j!� � 90� ÿ arctan�6=7� � 49; 4�

(
(34 and 35)

Steady-state output response is straightforwardly
derived following instructions in Fig. 1,

vo�t�jss � K 0 cos�!t� �0�
� K jH� j!�j cos�!t� �� �H�j��

� 6K�����
85
p cos�t� 49; 4��V �36�

Once again, results in (29) and (36) are exactly
equal, but obtaining (36) has been faster and has
not required any extra knowledge.

Some other benefits arising from this approach
stand out:

a) Analysis profitability. Should it be of interest,
natural response and transient performance
could be derived from the same analysis (reco-
vering terms that have been neglected on the
way), as well as the output corresponding to
any other excitation function. None of such
items can be achieved with the phasor
approach.

b) Global understanding. Deriving the frequency
response from the transfer function under
replacement s � j! allows an easy understand-
ing. From this approach perspective, ac steady-
state is viewed as a special case where the s
complex-frequency projects on the imaginary
axis j!, which provides a much better insight
into Bode plots, their meaning, utility and
connection to transfer functions.

c) Unnecessary recurrences. According to the pre-
vious paragraph, steady-state impedances
Z� j!� can be derived from Laplace trans-

formed impedances Z�s� as a particular case,
which means that a lot of repetitive work can be
avoided by students (and teachers). Results
such as series and parallel connection of impe-
dances, nodal and loop analysis techniques,
network theorems, TheÂvenin and Norton
equivalents, etc. do not require to be explained
so many times with different notation (now j!
and then s), but just once (in s).

d) Universal tool. Students could be taught to use a
single mathematical tool to analyse in any
domain (time or frequency) any circuit of any
order with any excitation, thereby avoiding the
nightmare of learning so many different
methods with so limited applicability range.

e) Time-frequency performance connection. Look-
ing back to expression (1) and checking the
common denominator in both zero-state and
zero-input, reveals a new outstanding concep-
tual advantage: there is an intrinsic connection
between the damping pattern in the natural
response (transient behaviour) and the fre-
quency response characteristics (filtering per-
formance), since both are direct consequences
of the circuit characteristic polynomial order
and roots. Such conceptual connection remains
irretrievably hidden when the differential equa-
tions method is used to obtain the former and
phasor method to derive the latter.

DISCUSSION AND CONCLUSIONS

A simple second-order circuit has illustrated
how to use the Laplace transform as a unique
universal tool when teaching basic circuit analysis.
This approach allows the extraction of complete
information about time domain behaviour and
frequency domain performance, but with the
advantage of avoiding unnecessary mathematical
skills such as solving differential equations and
working with phasors.

Some other conceptual advantages and teach-
ing/learning benefits have also been demonstrated
along the way.

END NOTES

1 A single external source x�t� has been considered in (1) for the sake of clarity, but the linearity of
the circuit ensures that, for the case of multiple external sources, the zero-state contribution can be
expressed as

Yzs�s� �
X

m

Nm�s�
Dm�s� � Xm�s�
� �

and will still be easily recognisable thanks to the Xm�s� factors.
2 However, both contributions can be joined and inversely transformed as a whole (thus demanding

less mathematical effort in obtaining the partial-fraction expansion) if such breaking down is not of
interest. It will be shown in section 4 that, in any case, it is quite easy from (2) to obtain the alternative
splitting into natural and forced components.

3 Such conjugate symmetry can be demonstrated, if needed, from the Laplace Transform definition,

F�s� � LT f �t�� � �
Z 1

0

f �t�eÿstdt; s 2 X ) F�s�� ��� F�s��

provided that f �t� is a real function
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4 From a didactic point of view, the best way to proceed in such a case would be to apply
superposition principle, i.e. as many partial analyses as different sources the circuit contains. Each
partial analysis would lead to an input definition (depending on the source being considered) and
therefore a transfer function definition Hm�s�, so that the corresponding partial contribution to the
steady-state response is calculated as in (9). Adding at the end all these partial contributions, the
complete steady-state response yss�t� is derived,

yss�t� �
X

m

K 0m cos�!t� �0m�

�
X

m

Km Hm�j!�j j cos !t� �m � �Hm�j!�� �

5 To tell the whole truth, if the previous result (19) for the complete response had been previously
calculated, only one of these contributions might be compulsory obtained. The other one could be
derived as a difference, since in any case the sum of zero-input and zero-state produces the complete
response. Nevertheless, even if one of these calculations can be avoided, the task required to obtain the
remaining one is still quite tedious.

6 Even if the circuit had poles with multiplicity m > 1, the forced response would still be recognisable
as the term arising from the inverse transform of that partial-fraction in the form of the right term in
Eq.(24) with maximum exponent, i.e. n � m.
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