Int. J. Engng Ed. Vol. 24, No. 4, pp. 671-680, 2008
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2008 TEMPUS Publications.

Teaching Agile versus Disciplined Processes™

PIERRE N. ROBILLARD and MIHAELA DULIPOVICI
Department of Computer and Software Engineering, Ecole Polytechnique de Montréal, 2500, Chemin de
Polytechnique, Montréal, Québec, H3T 1J4, Canada. E-mail: pierre-n.robillard @polymtl.ca

Project courses are an important component of some software engineering curricula. They are
capstone projects where teams of students experience the various practices for developing software.
Instructors play the roles of coaches in guiding the students during the various phases of their
project. Nowadays, software development processes fall into two major paradigms. The Disciplined
software process paradigm defines best practices and their relationships on the basis of roles,
activities and artifacts. The Agile process paradigm, which is based on values of simplicity,
communication, and feedback, uses simple practices to enable a team to tune the practices to their
unique situation. The two process paradigms have great value in general and one is likely to be more
efficient than the other in any specific development project. However, it could be interesting to find
out how each of these process paradigms performs in learning environments. To achieve this we
conducted an observational study in an academic environment. Six teams of four students developed
their own versions of a software product based on the same requirements. Three teams used a
Disciplined process and three teams used an Agile process. This study is based on four observations:
the quality of the implementation of the requirement, the total project effort, the process activity
effort and the product size. The data to support each of these observations are presented. In this
study, however, the Disciplined paradigm provides less project implementation with a better
realization of quality. This study indicates that the more efficient approach for capstone projects
for inexperienced students in software engineering would be a Disciplined process paradigm.

Keywords: software engineering; software process; disciplined process; agile process; capstone

project

INTRODUCTION

THE FUNDAMENTAL SOFTWARE DEVEL-
OPMENT PROCESS is made up of basic cognitive
activities that enable the successive information to
crystallize from requirements into source code,
which is the ultimate artifact. There are many
ways of reaching this goal and software processes
are a collection of practices that provide some
guidance that could be helpful in a collaborative
environment to help focus team work [1]. The
Disciplined process emphasises requirements,
design and various intermediate artifacts to capture
part of the information crystallization process and
to facilitate cognitive synchronization and sharing
of information. The Agile process paradigm puts
most emphasis on the source code that should be
built gradually and information is shared and
synchronized by direct verbal communication.

In a pragmatic sense, a software process is the
set of activities and artifacts that are required to
realize a software project. However, there is no
general acceptance of a set of unique process
principles. A software process can be viewed
from different perspectives. One of the early
perspectives was from a management point of
view, that a software development project could
be characterized as a waterfall, a spiral or an
incremental software process. Later the Disci-
plined software process was introduced. This
approach to software development promotes a

* Accepted 13 January 2008.

671

discipline-based engineering process involving an
effective definition of the activities to be
performed, artifacts to be produced and roles to
be played. This paradigm involves the production
of artifacts to support most practices, effective
communication and knowledge transfer [2].

In response to the work put into producing a
variety of artifacts, there has been a rapidly grow-
ing interest in Agile methodologies [3, 4]. The
Agile software development philosophy puts
verbal communication as one of its main values
and emphasizes a minimalist approach to written
documentation. The ‘Agile Software Develop-
ment’ breaks with a number of traditional software
engineering practices and prescribes some special
practices instead. Some of the key concepts shared
by the Agile approaches specifically downplay the
importance of written artefacts and emphasize
verbal communication. Extreme Programming
(XP) [5] is a prominent member of the family of
Agile development methodologies.

Previous studies have demonstrated the advan-
tages and the disadvantages encountered by using
either of the methodologies in an academic context
[6]. There is no common acceptance of the best way
for team-mates to communicate and share infor-
mation during software development. It is reason-
able to assume that, in some circumstances, it
might be better to adopt one process rather that
the other [7]. Even if it is recognized that choosing
the appropriate development process can improve
the product quality, there is little empirical
evidence of a direct link between the development

672 P. Robillard and M. Dulipovici

process and the quality of the software product
functionalities that are realized. There is also little
evidence about the learnability of a given software
process. This paper presents studies that evaluate
the types of impact of software processes in the
learning environment.

The study reported here is unique in that it uses,
in parallel, in the same project-based course, the
two processes that provide Disciplined and Agile
paradigms to software development. The purpose
is to evaluate the benefits of each process paradigm
and eventually determine if one process paradigm
is better than the other in a learning environment
based on capstone projects.

The next section presents the studio environ-
ment. It defines the student profiles involved in this
observational study. It describes the project to be
implemented and the two process paradigms,
Disciplined and Agile, each used by three teams
of students. Then we present the data and the four
observations resulting from this empirical study,
which are: the quality of the implementation of the
requirements, the total project effort, the process
activity effort and the product size. The concluding
discussion stresses the importance of the Disci-
plined process in the learning environment and
the role of the Agile process for mature students.

STUDIO ENVIRONMENT

By using the results of previous research as a
foundation [8], a studio-based teaching and learn-
ing approach was adopted for the observational
study. The Software Engineering Studio at the
Ecole Polytechnique de Montréal is an optional
capstone, project-oriented course offered during
the last term to seniors (fourth-year students) in
software engineering. Teams of students must
develop an operational software product based
on software requirement specifications provided
by the instructors. They must also follow one of
the two prescribed software engineering processes:
Disciplined or Agile. Participants thus acquire
experience in building an operational software
product through the disciplines of analysis,
design, implementation, testing and management
according to a process perspective. The goal of this
project course is to teach students the realities of
teamwork, milestones, deadlines and the use of
process activities.

Student profile

According to Gagné, for a better learning, two
conditions have to be satisfied: the external condi-
tions (the particular teaching environmental tech-
niques for facilitating learning) and the internal
conditions (the prerequisite knowledge or capabil-
ities that a student must possess) [9].

With regard to the internal conditions, all
students have almost the same background. They
are full-time students, who have completed a four-
year curriculum in software engineering, and some

of them have also completed a four-month intern-
ship in industry. They are mature students that will
be junior professional engineers at the end of the
semester. The course enrolment is limited to 24
participants who form six teams. Participants are
selected on the basis of their cumulative records.
These students are from the first quarter percentile.

With regard to the external conditions, this
project course counts as two regular courses.
Each student has to allow 270 hours during the
15-week semester for this course. Dedicated lab
spaces are reserved for six-hours a week of manda-
tory team work, where instructors meet the teams.
Students can (and in fact they do) meet more often
in the same lab space, which they can reserve. The
artifacts produced throughout the project were
deposited in the project repository and validated.
All student teams are in competition on the same
project, developing their own versions of the
system based on the given specifications. Evalua-
tion is on a team basis [10].

A portfolio—a collection of students’ collabora-
tive work generated during the Studio—exhibits
the students’ effort and progress. It contains the
entire set of artifacts specific to the development
process, as well as the time slips of the team
members. The ‘effort” was measured from the
students’ records of their time spent on each
activity or artifact produced.

Ethical considerations were an important issue.
Our research protocol was approved by an inde-
pendent committee at Ecole Polytechnique de
Montréal, which is mandated for supervising
research with human subjects, and they provided
an Ethic Certification for this research. All subjects
involved in this study were duly informed of the
recording as well as of the nature of the study and
they all signed the letter of agreement required by
the ethic certification. Ethical issues were handled
according to the Canadian policies for research
involving humans (NSERC 2005) [11].

Project description

The project goal was to develop a Web-based
meeting management system aimed at organizers
of meetings where the numbers and geographic
dispersion of participants make scheduling diffi-
cult. The software product to be developed, named
REPLAN, is a planning system for physical, phone
or virtual meetings, using the Web as commun-
ication support. It allows meeting coordinators to
send availability requests to a set of individuals so
that each one can specify their personal availability
periods. The set of availability periods would then
be graphically represented using a special calendar
tool that would allow a coordinator to visualize
the relevant information at a glance, making the
scheduling decision easier to take. REPLAN
would allow groups of people to plan meetings
by using a common database containing the avail-
able information from each of these them.

In terms of technology, the Java/Servlet/JSP
family of technologies had to be used as the

Teaching Agile versus Disciplined Processes 673

foundation for all products. Two computer servers
were allocated: the first—for hosting both a file
system and a Tomcat Application Server, and the
second—for hosting a commercial database server
to be accessed by the students’ applications. In the
dedicated laboratory, a Java environment, a data-
base client and all necessary software were
installed on each PC station.

Process paradigms

Two different software processes providing two
different approaches to software development were
used: a Disciplined process called UPEDU
(Unified Process for Education) [12, 13] and an
Agile process derived from XP (Extreme Program-
ming) [14]. There is no consensus as to what exactly
constitutes a Discipline and what constitutes an
Agile process. An Agile Manifesto was put forward
in 2001, but many variations exist with variable
conformity to some principles of the Agile Mani-
festo. UPEDU is a framework that defines a
Discipline process and a large variety of Discipline
processes can be defined based on different sets
of artifacts and activities. This study does not
compare a specific UPEDU process and an
Extreme programming process, but rather the
underlying philosophies.

The UPEDU is an adapted version of the
Rational Unified Process (RUP). The UPEDU
software process framework is well defined, and
all the activities and artifact templates, as well as a
case study, can be viewed on the UPEDU website.
Only the relevant activities and artefacts that are
useful for the studio project are retained to enable
students to focus on the essential components of
the Discipline software process. The UPEDU’s
students had been trained on the UPEDU in a
previous course and the Agile’s students were
trained on the Agile philosophy. Since we are not
comparing a specific UPEDU process with a
specific AGILE process here, we use the D-process
for the Disciplined process derived from the
UPEDU framework and the A-process for the
Agile process derived from the Agile philosophy.

Three teams (team-D) were assigned to the
UPEDU process and formed the D-process
group (D for Disciplined) and three teams (team-
A) were assigned to the process based on Agile
philosophy and formed the A-process group. All
students were enthusiastic about their team selec-
tion and their process group. Team selection was
proposed to the students and care was taken to
balance the team in terms of students’ marks and
student internship experience. The process alter-
natives were presented to the students as a course
option and not as the basis for an observational
study.

There is a systematic difference between the two
process paradigms for the requirements capture.
D-process is a use-case driven development
process. ‘Use-case’ describes the sequence of inter-
actions between actors and the system necessary to
deliver the service that satisfies the user’s goal. A

Table 1. Number of use-case and user-stories used by the
three Disciplined (D) and the three Agile (A) teams

Teams Dl D2 D3 Al A2 A3
Use-case 16 17 23
User-stories 22 15 10

scenario—in an example of a use-case—captures
the series of interactions between the user and the
system needed for the function to be achieved.
Scenarios may be depicted using UML diagrams.
A use-case model consists of all the actors in the
system and all the different use-cases through
which the actors interact with the system. The
model thereby describes the totality of the func-
tional behaviors of the system. Agile defines a
‘user-story’ as the smallest amount of information
required to allow the stakeholders to define a path
through the system. A user-story is a short descrip-
tion of some piece of desired functionality. It
contains just enough text to explain what is to be
done so that the stakeholders and the developers
can both understand it in the same way. However,
it is possible that developers and stakeholders
could each have a different understanding of a
user-story. Misunderstandings were resolved by
discussions. As the Agile manifesto states ‘the
most efficient and effective method of conveying
information to and within a development team is
face-to-face conversation.” Table 1 shows the
number of use-cases and user-stories developed
by each Disciplined and Agile team respectively.

The difference between the numbers of use-cases
is due to the degree of granularity in decomposing
the functionalities of the system. For example, for
the use-case ‘Create a meeting’ defined by the team
D1, team D3 proposes three use-cases, with more
detailed information. We found the same differ-
ence in the case of Agile teams. As no levels of
detail were imposed, team A3 chose to present
their user-histories at a more synthesized level
than the other two A teams.

Although each process paradigm provides
different tools to analyze the specifications, they
do not manage the level of abstraction.

OBSERVATIONS

To better understand the role of process para-
digms in student project development we based our
study on four observations: the quality of the
implementation of the requirements, the total
project effort, the effort in the process activity
and the product size. The data to support each of
these observations are presented and the impacts
of the process paradigms on these observations are
discussed.

Quality of implementation of requirements
The product REPLAN was specified with 109

674 P. Robillard and M. Dulipovici

Table 2. Extract from REPLAN requirements

Requirement

number Requirement statement

3.5.5.3. Information on the availability of the participants for the ranges defined by the initiator will be posted in the
window called ‘Availabilities’.

3.5.5.3.1. The component ‘Availabilities’ will take the form of a calendar.

3.5.5.3.2. The availabilities mentioned by the participants but located outside the ranges defined by the initiator will be
excluded from the posting.

3.5.5.3.3. The user participant will be able to browse within the component in order to visualize or modify the state of a
definite period of time

3.5.5.3.4. The window will include a component of text in which the user could insert information for the initiator. Only

the participant will be able to modify the contents of the text field.

requirements statements. Table 2 shows a sample
of typical REPLAN requirements.

One way of evaluating the quality of a software
product is to compare its implemented functional-
ities with those of the requirements specification
statements. The basic assumption of the proposed
measurement method is that software experts can
make a coherent judgment on the achievement
levels related to each specification statement. We
used a three level scale to quantify the experts’
judgments, as shown in Table 3.

According to this scale, a team that has success-
fully implemented all the requirement statements
will have a total score of 218 points, which is two
points for each of the 109 requirement statements.

No team actually succeeds in completely
implementing all the requirement statements of
REPLAN. Each product had a different number
of implemented requirements and a different qual-
ity scale level. As an example, Fig. 1 shows the
level of each requirement for products D1 and Al.
The requirements are numbered on the x-axis
from fl to fl09 and their evaluated level of
implementation is presented on the y-axis by the
levels 0, 1 or 2. It can be seen that some require-
ments have been successfully implemented by the
two teams (e.g. requirements f6 to f16), while
others have not been implemented by any of the
teams (f61 to f66); finally, some requirements are
implemented differently by different teams.

A given requirement may have been implemen-
ted at various levels even within the same process
group. In order to measure the implementation
level for a given process group we recorded the
level for each requirement in a three-dimension
vector, representing the three teams within a
process group. For example, a vector level
Dx(2,1,0) means that the three teams D1, D2 and

Table 3. Level scale for quantifying the experts’ judgments on
requirement implementation

Level Definition

2 This requirement is successfully implemented
1 This requirement is partially implemented

0 This requirement is not implemented

D3 had levels 2,1 and 0 respectively for the
requirement statement x.

The requirements vector can be expressed by its
magnitude definition. For example, the level
vectors Dy[2-1-1] and Ay[1-2-1] of the two process
groups D and A have equal magnitude from the
point of view of our analysis goal, since the order
of the vector components is arbitrary. The higher
the level of magnitude, the better the implementa-
tion for the process group. A vector magnitude of
3.46 (square root of 12) means that this require-
ment was successfully implemented by the three
teams of this group. It should be noted that using
the magnitude as the distance measure biases the
results in favour of full implementation, e.g.
distance (0-0-2) = 2 while distance (1-1-1) = 1.73.

Figure 2 shows the difference in magnitude
value between D and A process groups for each
requirement (|D|-|A|). Each requirement statement
is numbered on the x-axis from 1 to 109. Require-
ment statements with a zero value (1 to 4, 6 to 17,
etc.) have the same vector magnitude for the D and
A process groups, which means that the two
process groups performed in the same way; there
is no information as to how successful the imple-
mentation was. A difference value in the positive
direction indicates a better implementation by the
D process group, while a difference value in the
negative direction indicates a better implementa-
tion by the A process group.

We observed that for one set of requirements the
D-process group seems more successful, while for
another set of requirements the A-process group
seems more appropriate. This observation indi-
cates the possibility of a link between the quality
of the requirements realization and the process
used. A thorough analysis on these two sets of
requirements was carried out.

The set of requirements from statements 86 to 93
and requirement statement 19 are systematically
better implemented by the D-process group. These
requirements are related to the management of the
calendar, which is dynamic. It is presented using
different colors (green: everyone is available,
yellow: some are available, red: only few are
available) the dates that are more suitable for
scheduling the meeting depend on participant
availability. The data statuses vary as the partici-

Teaching Agile versus Disciplined Processes 675

By}

Fig. 2. Difference in vector magnitude between D and A process groups for each requirement statement.

pants send in their availability, which could be at
four levels: confirmed presence, likely to be pres-
ent, likely to be absent and confirmed absence. D-
process teams used interaction diagrams to model
these requirements and design the algorithm to

manage the four level statuses and then color the
corresponding dates according to the decision
algorithm output. A-process teams did not see
the difficulties related to the dynamic aspects of
these requirements until they were ready to code it.

676 P. Robillard and M. Dulipovici

By then it was too late to deal with this level of
difficulty and they did not implement these calen-
dar features.

We find that process paradigms, in a student
environment, may have a measurable impact on
the quality of implementation of certain types of
requirements. Requirements that specify dynamic
functions were more successfully implemented by a
disciplined approach requiring formal design arti-
facts. The difficulties inherent to these require-
ments are seen early in the process and can be
thoroughly analyzed. Detailed scenarios, use-case,
sequence, collaboration and state diagrams seem
more appropriate for representing the details of
each function. The diagrammatic representation
seems to make it easier to carry out this kind of
requirement. All D-process teams implemented
these requirements, while none of the A-process
teams succeeded. The A-process group did not
have enough experience to foresee the difficulties
related to these kinds of requirements.

The A-process group obtained a slightly higher
score for the quality of implementation of the
requirement statements specifying static functions.
It seems that for this kind of requirement, succinct
user-stories are suitable since most of the details
are provided by direct communication between the
client (a role played by the instructor) and the
development team members. All screen outputs
implemented by the A-process group were better
looking.

Total project effort

All data used for this observational study were
collected through on-line effort slips that were
filled in by the participants. The data collection
scheme included the following data elements for
each effort slip:

Participant ID

Date

Activity performed (one short sentence in free
format)

® Output artifacts

e Effort expended (with a half-hour granularity)

Participants had been trained to fill out the effort
slips correctly. Effort slips were checked regularly
by the instructors in order to ensure their validity.
Slip correction requests were issued to participants
upon detection of anomalies. A customized soft-
ware tool was used to record the data from each
participant.

This analysis takes into account only the effort
that is relevant to the software process activities.
The effort that was not taken into consideration is,
for example, effort spend on training, on setting up
the development environment and on preparing
the project presentations for mid-term and final
deliveries. Figure 3 shows the effort measured in
hours spent by each team on their project. The
total effort ranges from fewer than 400 hours to
more than 700 hours. Teams are listed in decreas-
ing order of total effort.

The three disciplined process teams, D-process
group, spent similar effort on the project while
Agile process teams, A-process group, experienced
a large spread. Disciplined processes were easier
to manage since iterations and milestones were
defined beforehand. Projects based on Agile
processes required globally more effort. The
instructors speculate that some of the extra effort
spent by the A-process teams may come from
taking greater care in the implementation of the
user interface, which were visually better than for
the D-process teams.

The process paradigms in this course project
environment have a measurable impact on the

800

Total Effort in Hrs

700

600
500
Hrs400 |
300
200
100
0 . T T T T
A1 A2 A3 D1 D2 D

Teams

3

Fig. 3. Total effort in hours spent on the project for each of the A and D process teams.

Teaching Agile versus Disciplined Processes 677

350

EFFORT IN CORE PRACTICES

300

250

HOURS
200

B D-Process
B A-Process

150

100
50
04

Planning Designing

Testing
CORE PRACTICES

Coding

Fig. 4. Effort spent in each of the four core practices for each of the process groups.

effort required to implement the product. A-
process groups spend much more effort that D-
process groups. The next step is to find out in
which type of activities this extra effort is spend.

Process activity effort

This section analyses the distribution of effort
within the process activities. Both process para-
digms are based on successive iterations. The
Discipline D-process is based on activities played
out by the roles in order to deliver appropriate
artifacts according to defined schedules. Conver-
sely, the Agile A-process stresses the embracing of
change, collaboration, and early product delivery.
A working code is considered the most important
artifact of the development process—not the docu-
mentation, which exists only to support the devel-
opment of the working software. The Agile process
requires relatively few detailed artifacts. In order
to study in more detail the effort spent in the D-
process and A-process groups, we categorized the
activities into four core practices areas that were
required by any team developing software, regard-
less of the process paradigm. These core practices
covered planning (P), designing (D), testing (T),
and coding (C). Most of these practices are fairly
well-known and self-explanatory with further
details widely available in the literature [15].

Figure 4 presents the effort spent on average by
the three teams from each of the two process
groups within the four core practices. Planning
includes all the effort required by the team-mates
to manage their activities. There are more planning
activities in the A-process group because they have
more iterations to plan and they have to reassign
their tasks more often as the project progresses.
There is a greater effort in designing activities from
the D-Process group because they have to produce
design artifacts according to defined templates.

There is a greater effort in testing activities from
the A-process group because the Agile philosophy
encourages a test driven approach. Finally there is
much more effort put into coding by the A-process
group.

The profile of the effort in the core practices for
the A and D process groups is as expected. There is
more effort put into Designing practices by the D-
process group while there is more effort put into
Testing and Coding practices by the A-process
group. However, does the extra effort from the
A-process group compensate for the extra effort in
Designing practices from the D-process group? To
better understand the meaning of the coding effort
we must look at the product sizes.

Product size

The set of artifacts specific to development is
related to code construction. It is by far the most
effort demanding set of artifacts in the A-process.
The Agile process strives for simple design and
uses a simplifying technique whereby the program-
mers examine whether the code reflects the design
they envisaged.

Surprisingly, the size of the developed product is
somehow related to the process used. Figure 5
shows the size of a line of code (LOC) on the
left-hand y-axis and the number of classes (NOC)
on the right-hand y-axis. Teams are ordered
according to Fig. 3. All D-process products have
a larger number of classes (line in the upper part of
the graphic) and are globally smaller than A-
process products in terms of lines of codes
(column high). There are many factors to explain
the product size. One factor is that all the teams in
the D-process group used design patterns, while
none of the teams of the A-process group used
them. Another factor is that none of the teams of
the A-process group used refactoring because of

678

P. Robillard and M. Dulipovici

Product Size = | e
8000 35— NOC
6000 2
25
L% 00 20"¢
15
2000 10
5
0 0
A1 A2 A3 D1 D2 D3
Teams

Fig. 5.

Project size for each team, A and D, in line of code (LOC) and number of classes (NOC).

D-process group
3000

2500

2000

@
D2
[muk}

1500

1600
1400
1200
1000

800

A-process group

oAl

n w3

1000

00

ol

0 gtepepboficfiofiaolf

oshhDULINI1]

13 5 7 94113451719 21 2325 27 29 3 33

B00
400
200

L oAZ
I

I
Il

13 5 7 9 11131517 19 21 23 25 27 29 31 33

Fig. 6. Number of line of code per class for the D-process and A-process products.

the lack time and experience to do it. There was a
large amount of duplicated coded in the A-process
products.

Figure 6 shows the number of line of code for
each of the classes of the D and A process group
products. The architecture of the products devel-
oped does not seem to be related to the process
groups. D3 and A1 products are both implemented
based on a large number of small classes while the
other D and A products have few very large
classes.

CONCLUSION

This observational study is one of a kind and the
conclusions are not based on extensive statistical
analysis. However, it is performed according to the
tradition of software engineering empirical
research [16]. Although the observations are
made within the student environment, some of
the conclusions may be applicable to the profes-
sional environment.

The degree of validity of this study has been
increased by relying on senior students enrolled in
their last semester. The line between these students
and novice professionals is becoming blurred [17].
From studies that have been conducted to evaluate
the difference between software engineering
students and the professional software developers
used as subjects in empirical studies, it has been

found that the differences are only minor. It has, in
fact, been concluded that software engineering
students may be used instead of professional soft-
ware developers under certain conditions. This
result does not, however, contradict the assump-
tion that final-year software engineering students
are qualified to be subjects in empirical software
engineering research [18].

The aim of this observational study is to better
understand the impact of process paradigms on
students’ ability to complete capstone projects.
Disciplined and Agile process paradigms both
have some positive features and some drawbacks.
The same set of requirements was given to six
teams of four senior students. For this elective
project course, students were selected based on
the quality of their academic records and the
uniformity of their background. They were all
full-time students enrolled in the same four-year
computer engineering program with a major in
software engineering. Half of the students, some
on each team, had some four month internship
work experience. Students were assigned, on a
voluntary basis, to a Discipline process team or
an Agile process team. Time slips filled out by the
participants on a daily basis were used to record
the effort spent on various activities. All the
artifacts produce by the team were also recorded.

The time slips’ data recording is the weak link in
this observational study. Five approaches were
used to improve the reliability of the time slip

Teaching Agile versus Disciplined Processes 679

data. First, students were trained in filling them in
and they did a data analysis based on time slips
from a previous year’s projects during the prere-
quisite process course. This time slips analysis
made them aware of the usefulness of the informa-
tion recorded. Second, time slips were validated on
a weekly basis and any anomalies were reported to
the students and corrective actions were suggested.
Third, time slips recording was presented to the
students as a means of making them aware of the
activities they were taking part in while developing
a software product and it was part of the learning
experience of this course project. Fourth, 25% of
the team marks were allowed for the quality of the
time slips. Quality is defined as the meaningful
description of the activities and accurate activity
duration. Fifth, students were informed that time
slips content and its analysis would not be used for
team evaluation purposes, but they could even-
tually be used for research purposes at the end of
the semester. This was formally stated in a signed
document that also authorized us to use their data
for research purposes according to the ethic proto-
col for research with human subjects at Ecole
Polytechnique.

The observed facts based on this single course
project of comparing Agile and Discipline processes
is that the Agile paradigm required more effort,
produced more code, implemented fewer function-
alities but realized a nicer interface. The process
paradigms seem to have little impact on the require-
ments analysis and the product architecture.

This severe conclusion must be interpreted
cautiously. The following is a personal interpreta-
tion of the results.

The Agile software development paradigm has
verbal communication as one of its main values
and relaxes the importance of written documenta-
tion. Cockburn contends: ‘the most effective com-
munication is face-to-face, particularly when
enhanced by a shared modeling medium’ [19].
Using an Agile process, students apply ‘hot com-
munication media’ to communicate necessary
information when working together. Even
though, as J. Smith mentions [20]: ¢ . . . in the
books about the XP approach, the terms ‘artifact’
do not appear in the index. . . . it’s not difficult to
read through the text and pick out references that
are artifacts’. A fundamental message is that
artifacts should be produced only when they add
the best possible value to the project.

We believe that the Agile process paradigm
required experienced developers. Experienced
developers might foresee difficulties in the imple-

mentation of some requirement and do a proper
analysis before the coding phase. They are also
likely to have enough experience with pattern
designs to use them efficiently. They would do
the required refactoring to improve the module
implementations. Finally, experienced team work-
ers are likely to reduce the time needed for plan-
ning activities.

The Disciplined process provides a recipe for
inexperienced developers. Life cycle phases are
well defined and milestones clearly identified.
Templates for the various artifacts required for
the analyses and design activities are provided.
Team-mates are aware at the start of the project
of all the steps and artifacts required to complete
the project. Iterations are easier to manage.

Developing a software product is an opportu-
nistic thinking endeavor [21]. The Discipline
process provides the necessary guidelines for
supporting the various steps of problem solution
leading to coding. With a disciplined process
students learn how to crystallize the information
at various abstraction levels, which enables them
to share this information in an organized way.
They are more aware of the roles they are playing
in the collaborative project. Once they learn and
understand how software development works they
are more likely to work by themselves without the
guides provided by the disciplined process.

The last consideration is the nature of the
knowledge [22] involved in each of the process
paradigms. The Disciplined process is based on
declarative knowledge that is acquired by studying
concepts and theory, such as roles, artifacts
(UML), and activities, while the Agile process is
based on procedural knowledge that is acquired
from experience, such as verbal communication to
exchange information.

In conclusion, students should first be taught the
Disciplined process to enable them to understand
the making of software through the crystallization
of guided information and information sharing.
We believe that the Agile process project should be
designed for Senior students with some industrial
experience (through internships), who have had
previous experience with a Disciplined process
oriented project.

Acknowledgments—We are grateful to Eric Germain who was
the instructor for this project and participated in the prepara-
tion of the Studio. This project would not have been possible
without the participation of the students enrolled in the ‘Soft-
ware Engineering Studio’ course at Ecole Polytechnique de
Montréal. This work was supported in part by NSERC grant
A-0141.

REFERENCES

1. D. Socha and S. Walker, Is Designing Software Different from Designing Other things?, Int. J.

Eng. Ed., 22(3), 2006, pp. 540-550.

2. P. Kruchten, Unified Process: An Introduction, Addison Wesley, Reading, Mass, USA, (2000).
3. A. Cockburn, Agile Software Development, Addison Wesley, Boston, Mass, USA, (2002).
4. Agile Alliance website: http://www.agilealliance.org.

680

P. Robillard and M. Dulipovici

5. K. Beck, Extreme Programming Explained, 2nd edn, Addison Wesley, Boston, Mass, USA, (2007).

6. E. Germain and P.N. Robillard, Engineering-based process and agile methodologies for software
development: a comparative case study, Journal of Systems & Software, 75, 2005, pp. 17-27.

7. K. Beck and B. Boehm, Agility through discipline: a debate, IEEE Computer, 6, 2003, pp. 44-46.

8. E. Germain, P.N. Robillard and M. Dulipovici, Process activities in a project based course in
software engineering, Proceedings of the IEEE 32nd Frontiers in Education Conference (FIE'2002),
S3G-17, (2002).

9. R. M. Gagné, The Conditions of Learning and Theory of Instruction, Holt, Rinehart & Winston,
New York, (1985).

10. G. G. Mitchell and J. D. Delaney, An assessment strategy to determine learning outcomes in a
software engineering problem-based learning course, Int. J. Eng. Educ., 20(3), 2004, pp. 494-502.

11. NSERC, Natural Sciences and Engineering Research Council of Canada. Tri-Council Policy
Statement: Ethical Conduct for Research Involving Humans. In. Interagency Advisory Panel on
Research Ethics (2005): http://www.pre.ethics.gc.ca/english/policystatement/policystatement.cfm.

12. P. N. Robillard, P. Kruchten and P. d’Astous, Software Engineering Process with the UPEDU,
Addison Wesley, Boston, Mass, USA, (2003).

13. Ecole Polytechnique de Montréal , UPEDU website: http://www.upedu.org.

14. Manifesto for Agile Software Development, Agile Alliance website: http://www.agilealliance.org

15. R. Martin, Agile Software Development: Principles, Patterns, and Practices, Prentice-Hall, Engle-
wood Cliffs, NJ, (2002).

16. W. F. Tichy, Hints for reviewing empirical work in software engineering, Empirical Software
Engineering, 5, 2000, pp. 309-312.

17. J. Carver, , L. Jaccheri and S. Morasca, Issues in using students in empirical studies in software
engineering education, Proceedings of the Ninth International Software Metrics Sympososium
(METRICS’03), pp. 239-249, (2003).

18. M. Host, B. Regnell and C. Wohlin, Using students as subjects—a comparative study of students
and professionals in lead-time impact assessment, Empirical Software Engineering, S, 2000, pp. 201-
214.

19. A. Cockburn, Agile Software Development, Addison Wesley, Boston, Mass, USA, (2002).

20. J. Smith, A Comparison of RUP and XP, Rational Edge, (2001).

21. P. N. Robillard, Opportunistic problem solving in software engineering, IEEE Software, (Nov/
Dec), 2005, pp. 60-67.

22. P. N. Robillard, The role of knowledge in software, Communications of the ACM, 42(1), 1999,
pp. 87-92.

Pierre N. Robillard is a professor in the department of Computer and Software Engineering
at the Ecole Polytechnique de Montréal. He is the author of several textbooks on software
engineering. He holds a Bachelor’s degree in Physics from Université de Montréal, a
M.A.Sc. from University of Toronto and a Ph.D. from Université Laval. His research
interests include the software engineering process, the modeling of cognitive activities and
software workplace learning. Dr. Robillard is a professional engineer and is member of the
IEEE and the IEEE Computer Society, the Association of Computing Machinery, and the
European Association of Cognitive Ergonomics.

Mihaela Dulipovici is a lecturer in software process and software engineering at the Ecole
Polytechnique and the Ecole des Hautes Etudes Commerciales, both in Montréal. She holds
an M.A.Sc. degree in software engineering from Ecole Polytechnique and is actually
enrolled in a Ph.D. program. Her research interests include the user-centered software
engineering process and the HCI. She is member of the IEEE.

