
New Control Laboratory Using Parallel
Programming*

S. DORMIDO-CANTO, J. SAÂ NCHEZ and S. DORMIDO
Department of Computer Science and Automatic Control, UNED. C/ Juan del Rosal 16, 28040, Madrid,
Spain. E-mail:sebas@dia.uned.es

This paper discusses the viability of using parallel processing methods to solve control algorithms in
real time in the field of Control Engineering education. It is a well-known fact that some types of
control problems cannot be dealt with in just one practical session in the lab because of their huge
computational load. However, the use of low-cost clusters of workstations (COWs) and message-
passing software allows students to program their own control algorithms and visualize the results
in real time without having to wait a long time. In this paper we analyze the control of a pH-
neutralization process and the parallel performance of the algorithms proposed using an illustrative
example, paying special attention to the speedup factor. Thus, this heavy-computational-load
example gives a meaningful case study to demonstrate the suitability of using parallel computing
techniques to include new experiments in the control lab.

Keywords: parallel computing; distributed computing; dynamic programming; laboratory
optimal control; clusters of workstations; real time

MOTIVATION AND INTRODUCTION

SINCE MODERN CONTROL THEORY
EMERGED, optimization methods have been a
constant in the theoretical contents of Control
Engineering graduate courses. Of these methods,
the most relevant is dynamic programming (DP)
[1], as it is a classical and powerful technique to
solve several optimization problems under general
conditions. Its many applications are well known
[2, 3]: scheduling, automatic control, artificial
intelligence, economics, etc.

Although this technique is a common factor in
every theoretical course on optimal control, it is a
resource that has not been widely used in control
lab assignments because calculating the function
cost is a very time-consuming task. Although
dynamic programming can be applied analytically
in some cases, generally the solution has to be
found numerically and, now, unfortunately, the
problem of dimensionality plays a key role: CPU
time and memory storage requirements can
become so high that, in practice, conventional
dynamic programming cannot be used numerically
at all, except to work out simple problems. For this
reason, several techniques have been developed to
reduce the computational cost [2, 4±11]. These
techniques decrease the main disadvantage of
DP, i.e. its great computational cost, but they do
not solve it completely. The computational time is
still very high in most cases of practical interest
either in industrial or educational contexts, as for
example, in control laboratory assignments.

One of the solutions to take advantage of

dynamic programming in actual control problems,
in other words to compute the control algorithm in
one sampling interval, is a parallel machine. Since
there are a large number of arithmetic operations
that can evaluate parallely when the dynamic
programming recursive formula is calculated, the
use of parallel programming techniques will make
it possible to reduce the execution time in order to
solve large-scale dynamic programming problems.
The computational theory of dynamic program-
ming from the viewpoint of parallel computation
was examined by Larson and Tse [12], but the
resulting algorithms are only applicable to a highly
specific and expensive range of parallel computer
architectures.

However, the high price of parallel computers
means that university departments cannot
seriously consider this solution to introducing
dynamic programming in control lab assignments.
However, in recent years, the falling prices and
technological advances in personal computers have
made it possible to carry out parallel processing in
a simple and not-so-expensive fashion by building
clusters of workstations (COWs) [13±15]. Nowa-
days, COWs are considered a good low-cost alter-
native to parallel computers for many reasons
(flexibility, scalability, and adaptability) but, in
an educational context, it is the economic cost
that stands out, especially that of the hardware
and software. Just by hooking together a few Intel/
AMD boxes with a dedicated Fast-Ethernet switch
and installing any Linux distribution, a COW will
be ready to crunch numbers. Once the machine is
built, the last step is to choose the most convenient
parallel programming paradigm, which in clusters
is usually by passing messages among processing* Accepted 17 July 2008.

1170

Int. J. Engng Ed. Vol. 24, No. 6, pp. 1170±1179, 2008 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2008 TEMPUS Publications.

nodes. There are many proprietary and public
domain message-passing systems (CMMD,
Express, Fortran-M, Nx, PARMACS, etc.), but
the most important and popular packages are MPI
(Message-Passing Interface) [16] and PVM (Paral-
lel Virtual Machine) [17]. In brief, MPI is a
standard specification developed by the MPI
Forum, a consortium of parallel computer
vendors, and PVM is a self-contained system to
run parallel applications on a network of hetero-
geneous Linux/Windows computers.

Thus, it is clear that an infrastructure for paral-
lel processing aimed at solving optimal control
problems in real time is affordable at low cost
for many university departments. Accordingly, it
will be possible to include new, challenging control
projects in traditional laboratory assignments. Up
to now, the analysis, design, and construction of
complex real-time control systems using dynamic
programming algorithms in the lab has been a far-
fetched idea. These types of projects have been
prohibitive because of the time necessary to run the
experiments when a complex process was being
controlled. Now, low-cost parallel computers
allow departments to extend the range of processes
to be controlled in the lab, the time constraint
being just a matter of scalability and adaptability:
bringing down the sampling interval to evaluate
the control algorithm can be obtained with a
cluster re-size.

Currently, one of the pedagogical goals of our
Department is to show students how parallel
computating may be applied to solve many types
of engineering problems. For this reason, all the
UNED's computer science students [18] attend a
course on advanced computer architecture where
the principles of parallel computing are explained.
There are many works on the contents and sche-
duling of these courses [19±22] that highlight that
engineering undergraduates have to be conversant
with the tools that parallel processing offer to solve
certain problems. Thus, an understanding of paral-
lel programming is fundamental to understanding
the performance that can be obtained in the design
and analysis of a broad range of control systems.
In the quest for a more useful and pragmatic rather
than theoretical view of parallel computing, the
core of the course focuses on teaching how to
construct COWs and program them using the
message-passing paradigm. Therefore, once
students have passed the course, they should be
able to build and program a COW using low-cost
facilities, i.e., Linux as an operating system and
PVM as a message-passing library.

Other students and pedagogical scenarios for
which the control laboratory described in this
paper can be appropriate are chemical engineering
and environmental science students. In both
instances, although for different reasons, these
students must know about the pH-neutralization
process of liquids. Unfortunately, their knowledge
of parallel computing and programming techni-
ques is not as extensive as that of computer science

graduates, but their control knowledge can be
good enough in most cases to understand and
manage the pH-neutralization process of a liquid
stored in a tank. Accordingly, the application of
this lab for control courses for chemistry and
environmental students is possible, but such
issues as the speedup factor and parallel perfor-
mance are omitted. This means that students
would use the lab from a pure point of view, i.e.,
just taking into consideration the tuning of predic-
tive controllers in order to obtain a system
response that fulfills some design specifications.
Nevertheless, the application of these parallel-
computing techniques should not be totally ruled
out for doctoral courses since they will provide
chemical engineers with a good background to do
research on new control strategies to be applied to
different chemical industry processes.

This paper demonstrates how pH process
modeling and regulator design can be integrated
into a cluster of PCs, producing a new category of
control experiments to be developed in labs. It is
further demonstrated that the experiments can be
implemented in real time.

The paper is organized as follows: the next
section briefly introduces classical dynamic
programming algorithms. This is followed by
sections describing: the parallel implementations
of these algorithms in COWs using the message-
passing paradigm; the main features of the cluster
and software used to program the previous algo-
rithms; the control of a pH-neutralization process
via a cluster as a new control lab assignment; and
the scalability of the previous control problem and
the viability of implementing it in real time in the
lab using a cluster and an improved parallel
version of a classical dynamic programming algo-
rithm. Finally, the contributions of this work are
summarized.

CLASSICAL DYNAMIC PROGRAMMING
ALGORITHMS

Dynamic programming (DP) is based on Bell-
man's Principle of Optimality [1]. Basically, it
states that every portion of an optimal trajectory
is an optimal trajectory for a particular subpro-
blem as depicted in Fig. 1.

Bellman's Principle of Optimality: if I + II + III
is the trajectory from state xA to state xB, accord-
ing to a given cost (performance) function, then II
is the optimal trajectory for the subproblem xC±xD.

Fig. 1. Bellman's Principle of Optimality.

New control laboratory using parallel programming 1171

In this problem, x is the state variable, X is the
set of allowable states, u is the decision variable, U
is the set of admissible decisions, k is the stage, and
J is the cost or objective function; L represents the
cost of a single stage.

If the minimum cost function from stage k to the
end of the decision problem is defined as:

I�x; k� � min
u�k�; u�k�1�; ...; u�N�

XN

j�k

L�x�j�; u� j�; j�
()

it is possible to prove using Bellman's Principle of
Optimality that

I�x; k� � min
u
fL�x�k�; u�k�; k�

� I �g�x�k�; u�k�; k�; k � 1�g �1�
with

I�x; k� � min
u�N�
fL�x�N�; u�N�; N� g

for the final stage N.
In order to solve (1) numerically, the sets X and

U are assumed to be finite for computational

purposes; in those instances where they are infinite,
the set of admissible states X and the set of
admissible decisions U are quantized at each
stage and a computational grid defined:

X�k� � fx1�k�; x2�k�; :::::; xMX
�k��k�g

U�x�k�; k� � fu1�x�k�; k�; u2�x�k�; k�; :::::;
uMU �x�k�; k��x�k�; k�g

where MX(k) is the number of quantized states at
stage k and MU(x(k), k) is the number of quantized
decisions at stage k and state x(k).

The computational method usually proceeds
backwardly (backward dynamic programming with
interpolation), as shown in Figs 2 and 3 (Madrid et
al. 1996). u* (xi(k),k) stands for the optimal deci-
sion at state xi at stage k. The optimal decision
policy is obtained for a complete family of opti-
mization problems, i.e., for every state at all stages,
and it always determines an absolute minimum
within the accuracy of the computational grid as
shown in Fig. 4.

It must be taken into account that if
g �x i�k�; u j�x i�k�; k�; k� is not a quantized state,
then I�g �x i�k�; u j�x i�k�; k�; k�; k � 1� has to be
interpolated.

It has been proven, under reasonable assump-
tions, that interpolation errors tend to increase
almost linearly with �N ÿ k�. The only way to be
more accurate is to use more quantized states and
decisions, with a higher computational load.

However if the inverse function gÿ1 exists,

g x�k�; gÿ1 x�k � 1�; x�k�� � ; k
ÿ � � x�k � 1�

an alternative sequential backward dynamic
programming computational procedure without
interpolation can be used (Fig. 5) [9]. As there
are no errors due to interpolation, it is clear that
the only way to obtain a more accurate solution is
to use a dense computational grid.

Fig. 2. Basic backward dynamic programming computational
procedure at a given state xi(k).

Fig. 3. Sequential backward dynamic programming algorithm with interpolation.

S. Dormido-Canto et al.1172

The solution to (1) is by far the most time-
consuming part of the dynamic programming
computations. The approximate computation
time � , assuming there are no constraints, is:

� �
Xn

k�1

MX �k� �MU�x�k�; k� ���

where �� is the time to solve (1) once, i.e. at one
state using one decision choice. If there were
constraints, (1) would have to be solved fewer
times and the actual value of � would be smaller.

Yet any increase in the number of states and
decisions produces a fast growth of the computing
time. Consequently, in order to solve many opti-
mization problems with DP it will be necessary to
resort to parallel processing. The parallel compu-
tation schemes will be discussed in the following
section.

PARALLEL DYNAMIC PROGRAMMING
ALGORITHMS

To parallelize the dynamic programming algo-
rithms effectively, we need to know which stages
are computation intensive and can be subdivided
to parallelize them. First, it must be noted that the
evaluation of the optimal return function, equa-
tion (1), for all stages generally involves three
nested iterative loops. The internal loop varies
depending on algorithms with or without interpo-

lation, as described in Figs 3 and 5. Several
approaches to parallelize the dynamic program-
ming algorithms are possible [23].

In the following paragraphs, dynamic program-
ming parallel procedures implemented on clusters
using message passing are proposed to solve opti-
mal control problems. The master/slave paradigm
has been used as a programming paradigm to
develop the parallel algorithms. The master is
responsible for dividing the problem into small
tasks, distributing these tasks between a farm of
slave processors and gathering the partial results to
produce the overall result. The slave processors
execute a very simple code: receive a message with
data, process the information, and send the result
to the master. The work is done in stages: each
stage must finish before the work for the next stage
can be generated. Thus, the master synchronizes
the slaves at the end of each stage. In the following
sections the classical dynamic programming algo-
rithms Ðwith and without interpolationÐ are
parallelized.

Table 1 summarizes the notations and conven-
tions used throughout the rest of the text.

Parallel algorithms without interpolation

Fig. 4. A global minimum can be lost when a function is
evaluated in too coarse a computational grid.

Fig. 5. Sequential backward dynamic programming algorithm
without interpolation.

Table 1. Notation and conventions

Notation Meaning

k index of stage

m index of processor

M number of slave processors

N number of stages

�x partition size in the space of states

�u partition size in the space of decisions

���* optimal value of ���
���i i-th component of vector ���
���i i-th quantized value of ���
����i�m i-th quantized value of ���

computed by the processor m

���� �m quantized values of ���
computed by the processor m

���� �mstart initial value in the processor m of the
quantized values of ���

���� �mend final value in the processor m of the
quantized values of ���

Fig. 6. Master procedure for backward dynamic programming
algorithm without interpolation.

New control laboratory using parallel programming 1173

In sequential dynamic programming without inter-
polation (Fig. 5), the decision variables are not
quantized. However, when the decision variables
can take any value for any quantized state at the
current stage, the state at the next stage is also a
quantized state. For this reason, the computa-
tional grid is just defined in the set X. When this
algorithm is parallelized, the parallel processing
can only be carried out in the loop of the states at
stage k. The pseudocode corresponding to the
master and slave processors is shown in Figs 6
and 7, respectively.

Parallel algorithms with interpolation
In sequential dynamic programming with inter-

polation it is necessary to define a quantized
computational grid in the sets X and U (Fig. 3).
The parallel processing can be carried out either in
the loop of the states at stage k, or in the loop of the
decisions at stage k. In both instances, an inter-
polation procedure to compute Equation (1) has to
be used. Both parallel codes can be found in [24].

The parallel processing algorithm of the states
makes use of the parallel processing carried out in
the loop of the states at stage k. Each slave
processor initially receives a subset of quantized
states at stage k from the master. Every single
quantized decision permitted has to be checked
for every quantized state. Yet, in the parallel
processing of the decisions the optimization proce-
dure is carried out in two parts at each stage k. In
the first part, each slave processor receives just a
subset of the admissible decisions from the master
and subsequently performs the optimization over
all the quantized states at stage k using this subset
of decisions. Thus each slave processor obtains a
local optimum that is sent to the master. In the

second part of the algorithm, the master, once all
the local optima have been gathered, computes the
actual global optimum.

CLUSTER AND SOFTWARE
DESCRIPTION

The cluster used in this study consists of 16 AMD
K7 processors (nodes) running at 500 MHz, each
one with 384 MB of RAM and a 7 GB disk. The
nodes are connected to a Fast Ethernet network via
a 100 Mb/s switch, making up a COW with 1
master and 15 slave processors. The operating
system installed is Linux (Red-Hat 6.1). This
COW is isolated from any external network, and
is exclusively for solving the optimization problem.

For this work, a parallel processing toolbox
developed in Matlab was used [25]: PVMTB
(Parallel Virtual Machine ToolBox), based on the
standard PVM. With PVMTB, users of scientific
computing environments, like Matlab, in a COW
with a message-passing system, like PVM, can now
take advantage of the rapid prototyping nature of
the environment and the clustered computing
power in order to prototype High Performance
Computing (HPC) applications. The user main-
tains all the interactive, debugging and graphic
capabilities, and can now reduce execution time
by taking advantage of the processors available.
The interactive capability can be regarded as a
powerful, didactical and debugging tool.

Figure 8 shows a diagram of PVMTB. The
Toolbox makes use of the PVM low-level routines
and the Matlab-API (Application Program Inter-
face) functions allow the exchange of messages
between Matlab processes.

A CASE STUDY: THE CONTROL OF A
PH-NEUTRALIZATION PROCESS

The pH process is of great importance in the
chemical industry and in waste water treatment,
and it is difficult to control for a number of
reasons: (1) the process is highly nonlinear; (2) it
is very sensitive to disturbances near the point of
neutrality; (3) it is difficult to formulate and
identify a mathematical model of the process due
to small amounts of polluting elements, e.g. carbo-
nate or phosphate, which change the process
dynamics.

The experimental process
The experimental process consists, as Fig. 9

shows, of neutralizing a strong acid (HCl) with
strong base (NaOH) in a continuous stirred tank
reactor (cstr) with volume (V). The acid flow (q),
whose concentration is cA (mol/l), is adjusted
manually and the base flow (u), whose concentra-
tion is cB (mol/l), is controlled by a low-flow
pneumatic valve, which is regulated with a predic-

Fig. 7. Slave procedure for backward dynamic programming
algorithm without interpolation.

Fig. 8. Overview of PVMTB

S. Dormido-Canto et al.1174

tive controller implemented by a cluster of PCs.
This feedback signal is used to provide a flow
control loop at the cluster output so that this
output could be regarded as the adjusting base
flow, rather than the valve position. The pH level is
measured in the outlet stream of the tank and
sampled by the cluster.

Let xA and xB be the concentrations of acid and
base in the tank respectively. The system dynamics
is then given by

dxA

dt
� q

V
�cA ÿ xA�

dxB

dt
� u

V
cB ÿ q

V
xB

(
�2�

and the pH is given by

pH�x� � ÿ log

�����������������
x2

4
� Kw

r
ÿ x

2

 !
�3�

where x � xA ÿ xB and Kw � 10ÿ14 �mol=l�2 at
25oC. The experimental operating conditions
used in our case study are listed in Table 2.

The control system
The control purpose is to maintain the pH at a

set point of the outlet stream by manipulating the
base flow that reaches the tank at a rate deter-
mined by the position of a valve. Thus, the position
of this valve is the control input that determines
the neutralization in the tank, requiring continu-
ous adjustment under feedback control in order to
achieve satisfactory results. In this case study, the

aim of the cluster of PCs is to replace a conven-
tional PID controller.

So that students can work in parallel program-
ming to solve control problems in real time, we
developed a predictive controller based on
dynamic programming using a cluster of PCs.
The control parameters in our case study are
N1 � 1; N2 � 10; Nu � 1 and � � 0 (more details
about predictive controllers can be found in [26]).
Since predictive controllers make use of a process
model to obtain the control signal by minimizing a
given cost function, the controller is associated
with an optimization problem with constraints,
and it can thus be formulated as a dynamic
programming problem. Thus, considering (2), (3)
and sampling with Euler approximation where �t
is equal to T (sampling period), it is possible to
write the state equation in terms of pH:

pH�k � 1� � T log e

10 pH�k�ÿ14 � 10ÿpH�k� ��
ÿ q

V
� 10 pH�k�ÿ14 ÿ 10ÿpH�k�
� �

� cB

V
u�k� ÿ cA

V
q

�
� pH�k�

EXPERIMENTAL RESULTS AND
PERFORMANCE EVALUATION

To solve the problem in real time, students
develop an improved parallel version of a parallel
backward dynamic programming algorithm with-
out interpolation known as systematic reduction of
computational grid without interpolation [24] in the
lab. In this new approach, students have to intro-
duce a new external loop: the number of reductions.
Consequently, they have to solve the dynamic
programming problem as many times as the
number of reductions. Once a solution is obtained
for a reduction, a band of width 2�bi (i goes from
1 to the number of reductions) is calculated around

Fig. 9. pH neutralization of strong acid (concentration cA, flow
q) with strong base (concentration cB, flow u). Tank volume is

V.

Table 2. Experimental operating conditions

Acid flow, q 0.5 l min±1

Base flow, u 0±0.1 l min±1

Acid normality, cA � 10±4 mol l±1

Base normality, cB � 0.5 � 10±3 mol l±1

Tank volume, V 10 l

Fig. 10. Systematic reduction of computational grid without
interpolation procedure with dimension 2.

New control laboratory using parallel programming 1175

it. Then a new computational grid with a lower �xi

is computed for the next reduction. Accordingly, a
better solution with a much lower computational
complexity is obtained. Figure 10 depicts the
procedure.

Numerous simulations are afforded in the lab
using different sizes to define the initial quantized
computational grids in the set X. Table 3 shows the
partition size (�x) and the width of the band (�b)
in the space of states when three reductions are
considered.

Figure 11 shows some results for different set
points in the pH control with �x = 0.5 and �x = 1
as initial partitions and an initial value of pH equal
to 4.

Table 4 shows the average times for each
sampling time with different sizes of the initial
partition in a single processor system.

A measure of the relative performance of a
multicomputer system is the speedup factor, S
(M) = ts / tp, where ts is the execution time using
one processor and tp is the execution time using a
computer with M processors. Yet, also, in a
message-passing system, the time to send messages
must be included in the total execution time of a
problem. Thus, the parallel execution time (tp) is
obtained by adding two elements: the computation
time (tcomp), and the communication time (tcomm):
tp = tcomp + tcomm.

As the COW is for resolving the optimization
problem and isolated from any external network,
the standard deviation of tp is very small and can
be ignored. Only mean times will be considered.

Figure 12 shows the average time (in seconds)
for each sample time and the speedup obtained as
the number of processors is increased. In accor-
dance with the results obtained, the following
general observations can be highlighted: (1) for
coarse initial partitions in the space of states (�x =
0.5), the speedup with less than five slave proces-
sors is very low. In Fig. 12(a) it can be observed
how Amdahl's limit (maximum number of proces-
sors for solving a problem in the minimum time) is
reached for M = 4. Therefore, the result with M =
10 is worse than the time obtained by a single
processor. (2) For fine initial partitions in the space

Table 3. �x and �b for three reductions

Reductions �x �b

Initial partition 0.5 8
1st reduction 0.25 1
2nd reduction 0.125 0.5
3rd reduction 0.0625 0.25
Initial partition 0.1 8
1st reduction 0.05 0.2
2nd reduction 0.025 0.1
3rd reduction 0.0125 0.05
Initial partition 0.01 8
1st reduction 0.005 0.02
2nd reduction 0.0025 0.01
3rd reduction 0.00125 0.005

Fig. 11. Simulation results.

S. Dormido-Canto et al.1176

of states (�x = 0.1), the computational load has
been increased and the speedup reaches a satura-
tion point from M = 13 as depicted in Fig. 12(b).
(3) Finally, for very fine initial partitions in the
space of states (�x = 0.01), the speedup is quite

better, almost linear (Fig. 12(c)). In this instance,
since the computational load has been consider-
ably increased, the computation part (tcomp) predo-
minates over the communication part (tcomm) in
the parallel execution time (tp), as can be appre-
ciated in Fig. 13.

One of the most important points to guarantee
the viability of implementing the pH control in real
time is the controller response time. It is clear that
this time must be less than the sampling time. In
this case study, the controller response time is 60
seconds [27] and the sampling time in a single

Table 4. Average time (in seconds) for each sample time in a
single processor system

t (�x = 0.5) t (�x = 0.1) t (�x = 0.01)

0.75 10 94

Fig. 12. Average times (in seconds) in each sample time and speedup factor.

New control laboratory using parallel programming 1177

processor is shown in Table 4. For �x = 0.5 and
�x = 0.1 as sizes of the initial partition, the control
of the pH could be solved in real time with just a
single processor. However, with �x = 0.01 it is
necessary to use a cluster of PCs. In the experiment
considered, with M = 15 the sampling time is 70
seconds (Fig. 12(c)), this means that by adding two
or three processors to the cluster it is possible to
control pH neutralization in real time.

CONCLUSIONS

This paper has shown the feasibility of using
parallel processing methods to solve control

algorithms in real time in the field of Control
Engineering education. Decreasing prices and
technological advances in personal computers
have made it possible to carry out parallel process-
ing in a simple and not-so-expensive fashion by
building clusters of workstations (COWs). Now,
low-cost parallel computers allow university
departments to widen the range of processes to
be controlled in the lab. Thus, new, challenging
control projects can be included in traditional
laboratory assignments.

In the experimental work presented here, it is
demonstrated how pH process modeling and regu-
lator design can be integrated into a cluster of PCs
for a new control experiment in labs. It is further
demonstrated that the experiments can be imple-
mented in real time.

Currently, the lab is used just by a group of
computer science students as a complementary
activity. These students' comments, on the whole,
have been very good since this practical experience
gives them the opportunity of applying the theore-
tical concepts and algorithms that they have
studied. The authors have observed that students
are more responsive to algorithm implementation
than theoretical details. Compared with students
who do not use the control lab, those who do
perform better in exams.

AcknowledgmentsÐThis work has been supported by the Span-
ish CICYT under grant DPI2007-61068.

REFERENCES

1. R. E. Bellman, Dynamic Programming, Princeton University Press, New Jersey, (1957).
2. R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming, Princeton University Press, New

Jersey, (1962).
3. A. Grama, A. Gupta, G. Karypis and V Kumar, Introduction to Parallel Computing, Design and

Analysis of Algorithms, 2nd edn, Addison Wesley, (2003).
4. L. Cooper and M. W. Cooper, Introduction to Dynamic Programming, Pergamon Press, (1981).
5. A. J. Korsak and R. E. Larson, A dynamic programming successive approximations technique

with convergence proofs, Part II, Automatica, 6, 1970, pp. 253±260.
6. R. E. Larson, J. L. Casti, Principles of Dynamic Programming, Part II: Advanced Theory and

Applications, Marcel Dekker, New York, (1982).
7. R. E. Larson and A. J. Korsak, A dynamic programming succesive approximations technique with

convergence proofs, Part I, Automatica, 6, 1970, pp. 245±252.
8. A. P. Madrid, S. Dormido and F. Morilla, Reduction of the dimensionality of dynamic

programming: a case study, American Control Conference ± ACC99, San Diego, USA, (1999).
9. A. P. Madrid, S. Dormido, F Morilla and L. Grau, Dynamic programming predictive control,

IFAC, 13th Triennial World Congress, 2c-02, San Francisco, USA, (1996), pp. 279±284.
10. L. Moreno, L. Acosta and J. L. SaÂnchez, Design of algorithms for spatial±time reduction

complexity of dynamic programming, IEE Proc.-D, 2, 1992, pp. 172±180,
11. M. Sniedovich, Dynamic Programming, Marcel Dekker, New York, (1992).
12. R. E. Larson and E. Tse, Parallel processing algorithms for the optimal control of nonlinear

dynamic systems, IEEE Transactions on Computers, C-22, 8, 1973, pp. 777±786.
13. R. Buyya, High Performance Cluster Computing, Prentice Hall, vol. 1 (Architectures and Systems),

New Jersey, (1999a).
14. R. Buyya, High Performance Cluster Computing, Prentice Hall, vol. 2 (Programmings and

Applications), New Jersey, (1999b).
15. G. F. Pfister, In Search of Clusters, Prentice Hall, New Jersey, (1998).
16. M. Snir and W. Gropp, MPI: The Complete Reference, The MIT Press, Cambridge, Massachu-

setts, (2001).
17. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancher and V. Sunderam, PVM: Parallel

Virtual Machine. A Users' Guide and Tutorial for Networked Parallel Computing, The MIT Press,
Cambridge, Massachusetts, (1994).

18. URL: http://www.uned.es, (2006).
19. F. C. Berry, An undergraduate parallel processing laboratory, IEEE Trans. Educ., 38, 1995, pp.

306±311.

Fig. 13. Chronogram of pH control with an initial partition size
�x = 0.01.

S. Dormido-Canto et al.1178

20. T. Hintz, Introducing undergraduates to parallel processing, IEEE Trans. Educ., 36, 1993, pp. 210±
213.

21. B. Wilkinson and M. Allen, A state-wide senior parallel programming course, IEEE Trans. Educ.,
42, 1999, pp. 167±173.

22. J. A. Youssefi and K. Zemoudeh, A course in parallel processing, IEEE Trans. Educ., 40, 1997, pp.
36±40.

23. R. E. Larson, J. L. Casti, Principles of Dynamic Programming. Part I: Basic Analytic and
Computational Methods, Marcel Dekker, New York, (1978).

24. S. Dormido-Canto, A. P. Madrid and S. Dormido, Parallel dynamic programming on clusters of
workstations, IEEE Trans. on Parallel and Distributed Systems, 16(9), 2005, pp. 785±798.

25. J. FernaÂndez, A. CanÄas, A. F. DõÂaz, J. GonzaÂlez, J. Ortega and A. Prieto, Performance of Message-
Passing Matlab Toolboxes, Vol. 2565, I Heidelberg, (2003) pp. 228±241.

26. J. M. Maciejowski, Predictive Control with Constraints, Prentice Hall, (2001).
27. S. D. Canto, ProgramacioÂn dinaÂmica paralela: aplicacioÂn a problemas de control, Ph.D. thesis,

Department of Computer Science and Automatic, (UNED), Madrid, (2002).

SebastiaÂn Dormido Canto received his MS degree in Electronic Engineering in 1994 from the
Universidad Pontificia de Comillas (ICAI), Spain, and his Ph.D. in physics from the
Universidad Nacional de EducacioÂn a Distancia (UNED), Spain, in 2001. He joined the
Department of Computer Science and Automatic Control of UNED in 1994 where he is
currently an associate professor of Control Engineering. His research and teaching
activities are related to: the analysis and design of control systems via intranet or internet,
high performance interconnection networks for cluster of workstations and optimal
control.

JoseÂ SaÂnchez Moreno received his computer sciences degree from Madrid Polytechnic
University in 1994 and his Ph.D. in sciences from UNED in 2001. Since 1993 he has been
assistant professor in the Department of Computer Science and Automatic Control in
UNED. His current research interests are: the design of new systems for control education,
web-based laboratories, and distributed networked control systems.

SebastiaÂn Dormido Bencomo holds a degree in physics from the Complutense University in
Madrid, Spain (1968) and a Ph.D. from the University of the Basque Country, Spain
(1971). In 1981 he was appointed professor of Control Engineering at the Universidad
Nacional de EducacioÂn a Distancia (UNED), Spain. His scientific activities include:
computer control of industrial processes, model-based predictive control, robust control,
model and simulation of continuous processes and control education with special emphasis
on remote, virtual labs and e-learning. He has authored and co-authored more than 200
technical papers in international journals and conferences. Since 2002 he has been President
of the Spanish Association of Automatic Control, CEA-IFAC, where he promotes
academic and industrial relations.

New control laboratory using parallel programming 1179

