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Simplified Formulation of Solution for
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The paper discusses material for a course in Structural Mechanics addressed to second-year Civil
Engineering students. The response of beams on a Winkler foundation characterized by disconti-
nuities in both the displacements (deflections andlor slopes) and forces (internal forces andlor
loads) is studied. In particular, a simplified formulation for the solution of the discontinuous
differential equation governing this problem is given. In some cases, the formulation is able to give
the exact solution in a closed form. This is made possible through the use of the generalized
functions, such as the well-known Unit Step Function and the Dirac delta function. The cases of
discontinuities due to both loads and constraints are treated. The method of presentation of this
material is by lecture. The time required to cover the arguments is 2 to 3 hours with 1 to 2 hours of
revision. The lecture must be given after the classical beam theory has been covered. The new
formulation presented in this paper will demonstrate that some particular aspects of mathematician
analysis may be used to advantage to simplify an important problem in structural mechanics.
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NOMENCLATURE constraints and concentrated external loads,
respectively.
EI  beam bending stiftness

F;  concentrated external force
Lle] Laplace transform of the e function SIGN CONVENTION
M; concentrated external moment

M,V bending moment and shear internal forces

R,(x — x9) n-th order ramp functions. l

Ro(x — XO), Ry (x - XO), RQ(X - X()), 0-th order
ramp (unit step), 1-st order ramp (unit _
linear ramp), and 2-nd order ramp (parabolic

_ ramp) ”

Ro(x, x;,a;) window function

u(x) beam deflection v

x,s axis abscissa and its Laplace transform. M @u-” @’”

plx)

ui(x)

¢;  integration constant X
p(x) distributed vertical load :
¢i(x) distributed vertical load acting on a portion

of the beam b )
up(x), up(x) homogeneous and particular solu- Fig. 1. Sign convention for: (a) applied transverse distributed
tion for beam deflection loads; (b) internal forces; (c) displacements.
Ag  relative slope
Au relative deflection
«  relative soil/beam stiffness parameter INTRODUCTION
6(x — x0) unit impulse function
©(x) beam slope ELASTIC BEAMS under bending actions rest-
Pi s ka unknown discontinuity in beam differen- ing on an elastic foundation and loaded by forces,
~ tial equation due to along axis beam bending moments and distributed loads are of
great importance in applied mechanics mainly
because of their practical applications in civil
* Accepted 27 July 2008. engineering. Many structural elements related to

75



76 P. Colajanni et al.

soil-structure interaction can be modeled through
this scheme, such as railroad tracks, highway
pavements, continuously supported pipelines and
strip foundations. Various types of foundation
models (such as those due to Winkler, Pasternak,
Vlasov, Filonenko-Borodich, etc.) have been used
in the analysis of structures on elastic foundations
[1]. Among these, the Winkler model, in which the
terrain is taken into account as a system composed
of infinitely close linear springs [2], is the simplest
and a frequently adopted one. It assumes that the
foundation applies only a reaction normal to the
beam axis that is proportional to the beam deflec-
tion. Thanks to its simplicity, the Winkler model
has been extensively used to solve soil-founda-
tion—structure interaction problems with satisfac-
tory results for many practical problems. Among
the many solutions of beams on elastic Winkler
type foundation, Hetenyi [3] provided the classical
solution of a fourth order governing differential
equation for a beam of uniform section. This
solution is particularly simple to determine when
all the displacements (deflections and slopes) and
forces (internal forces and loads) involved in the
problem are continuous along the whole beam
axis. Otherwise, the only way to apply this
method is to divide the beam axis into a number
of portions such that in each portion these quant-
ities are continuous. Hence, the evaluation of the
exact response can be achieved only by finding the
solution of a system of n fourth order differential
equations, requiring 4n boundary conditions
(essential and/or natural).

Alternatively, some approximate methods have
been considered for the problem of the beam on
elastic foundations, such as: the finite element
approach [4], the finite difference method [5], the
so-called differential quadrature method, intro-
duced by Chen [6], the approach based on the
use of Green’s function formulation [7].

These numerical methods can be very effective in
the practice. Nevertheless, the presence of an
analytical solution of a problem is very important
both from a theoretical point of view and from a
practical point of view when one wants to verify
the accuracy of the results obtained by the numer-
ical approaches.

For this reason, in this paper the problem of a
beam on a Winkler-type foundation, in which one
or more displacements and/or forces are discontin-
uous, will be treated by an analytical formulation
based on the solution of only one fourth order
differential equation, requiring an extremely
reduced number of boundary conditions. It will
be pursued by extending an approach used by
some authors [8-10] for solving the classical
beam-bending differential equations, characterized
by discontinuities, through the use of the so-called
generalized functions [11]. For example, one of the
most used generalized functions in any field of
sciences is the Dirac delta function [12] and all
the other generalized function used in this frame-
work are its derivatives or integrals, to be consid-

ered in the generalized sense [11]. In [10] Falsone
showed that, when the deflection function of an
elastic Bernoulli beam have to be evaluated for any
kind of discontinuity, it is always possible to write
only one fourth order beam bending differential
equation: a considerable advantage from a compu-
tational point of view. Here, the same approach
will be extended to the governing differential
equation of a beam with constant bending stiffness
and any kind of discontinuities resting on a Wink-
ler elastic foundation. Finally, it will be shown
that, in some simple cases, this approach is able to
give the exact closed form of the solution.

PRELIMINARY CONCEPTS

The differential equation governing the deflection,
u(x), of a homogeneous elastic bending beam with
constant bending stiffness resting on a Winkler
foundation and subjected to a transversal contin-
uous load p(x) can be written as [3]:

EI" (x) + ku(x) = p(x) (1)

where ET is the constant bending stiffness of the
beam and k is the elastic foundation modulus.
Equation (1) is a continuous differential equation
whose general solution u(x) is the sum of the
solution uy(x) of its homogeneous part and of a
particular solution u,(x). The solution uy(x) has
the following form:

up(x) =exp(ax)[er cos(ax) + ¢, sin(ax)]
+ exp(—awx)[c3 cos(ax) + ¢4 sin(ax)]  (2)

where o« = \/k/(4EI). The expression of the parti-
cular solution u,(x) depends on the load p(x) type.
For example, if the load is constant, then u, is
constant too, and given by u, = p/k. The general
solution u(x) is completely defined once that the
constants ¢; are evaluated by imposing the natural
and essential boundary conditions. Unfortunately,
in many cases, the beams on Winkler foundations
are characterized by the presence of discontinu-
ities, due to loads and/or constraints, making the
formulation for the solution more complicated. In
fact, in these cases, the procedure usually adopted
in the literature consists of dividing the beam into n
parts, in such a way that in each part of the
solution can be considered as continuous. This
implies the necessity of writing n solutions as in
Equation (2), and hence the necessity of evaluating
n x 4 integration constants by imposing n X 4
essential and natural boundary conditions.

The discontinuities can be on the external loads
and, as a consequence on the internal forces
(bending moment and/or shear), and/or on the
displacements (slopes and/or deflections). This
last circumstance happens when some internal
constraints are along the axis of the beam.

In this paper, it will be shown that the division of
the beam into n continuous parts can be avoided
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by using the so-called generalized functions,
already introduced in [10] for solving discontinu-
ous bending beam differential equations. They are
reported in [10].

BEAMS WITH DISCONTINUITIES

The discontinuities in the beam bending differ-
ential equations may be due to the external loads
when the continuous load is applied only in some
portions of the beam and/or when some concen-
trated forces and/or concentrated moments act on
it. Even the presence of along axis constraints (of
an essential and/or natural type) determines
discontinuities on the governing differential equa-
tion and/or in its integrals. In the following, the
way in which these discontinuities are taken into
account through the use of the generalized func-
tions will be explained.

Discontinuities due to external loads

A continuous load ¢;(x) acting on a portion of
the beam, between the abscissas x = x; and
x = x; +a;, can be considered as a continuous
load along the overall beam axis through the use
of the unit step functions, that is:

P(x) = qi(x)[Ro(x — x;) — Ro(x — x; — a;)]
= ¢i(x)Ro(x, x;, a;) (3)

where Ry (x, x;, a;) is the so-called window function,
that is the generalized function defined as follows

Ro(x,x;,a;) = Ro(x — x;) — Ro(x — x; — a;)
0 forx < x;
=1 forx;<x<x;+a 4)
0 for x > x; + a;

Even a concentrated force F; acting at the abscissa
x = x; can be considered as a load p(x) if the Dirac
delta function is introduced, that is:

p(x) = Fé(x—x) = FR 4 (x—x)  (5)

At last, a suitable representation of a concentrated
moment M; at x = x; can be given as:

p(x) = M (x — x;) = MiR »(x —x;) (6)

In this way any type of external loads can be
represented as a load p(x) acting along the overall
beam axis. As consequence, the drawback of
considering more partitions of the axis is avoided.

Discontinuities due to along axis constraints

As shown in [10], the generalized functions can
be usefully considered when any kind of constraint
is present at the abscissa x = x; of the beam axis.
For example, if the beam is supported bya roller at
Xx = x;, indicating by F; the corresponding reac-
tion, then in the beam external loads the following
term must be added:

F,-(S(x — Xi) = Fl‘Rfl(X — X,‘) (7)
The evaluation of the unknown reaction F; will

require the application of the additional essential

boundary condition at x = x;, that is u(x;) = 0.

If at x = x; a constraint on the rotation, that is a
double-bearing support, is present then in the
beam external loads the following term must be
considered:

aié’(x — X,‘) = ﬂ,‘R,Q(X — Xl‘) (8)

the moment M; being the unknown reaction of the
support. In this case, the corresponding essential
boundary condition is ¢(x;) = —/(x;) = 0.

The presence of hinges or bearing joints along
the beam axis implies corresponding discontinu-
ities in the deflections or in the slopes. For ex-
ample, if a hinge is placed at x = x;, there the slope
function must exhibit a discontinuity that is repre-
sented by A H(x — x;) = Ao Ry(x — x;), where
Ay is the unknown relative slope. The corres-
ponding boundary condition is essential:

M(x;)=0=u"(x;))=0 9)

Taking into account that the bending differential
equation is of the fourth order in u(x) (Equation
(1)),  then it must contain the term
—Npd'(x —x;) = —ApR_3(x — x;).

In the case of a bearing join placed at x = x;,
the discontinuity is in the deflection function
and it can be represented by AuH(x—x) =
AU Ry(x — x;), Au being the unknown relative
deflection. The corresponding essential boundary
condition is related to the shear:

V(x)=0= u"(x;) =0 (10)

This implies that the fourth order differential
equation must contain the term A U (x — x;) =
AU R_4(x — x;7).

Most general case

It is important to note that for any type of
discontinuity due to along axis constraints, it is
always possible to write the governing fourth order
differential equation as follows:

+Zp,, );

j:71772373774 (11)

E"" (x) + ku(x

where N, is the number of along axis beam
constraints and p,, are the unknown quantities
related to the constraints as follows:

p;_1 = F roller support

pi_o = M; double — bearing support

Pi 3= —EIA@i hinge

Pi 4= EIA'u'; bearing joint.
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Finally, in the most general case when any kind of
discontinuity is in the beam, the governing differ-
ential equation can be written in the following form:

Ny

= Z qi(x)Ro(x, xi, a;)

i=1

+Zf Ri(x — x;) —|—Zpu (x — x;);

k:_17_27 ]:_ 7_27_37_4

EI" (x) + ku(x)

(12)

where N, is the number of continuous loads acting
on a portion of the beams of length a;, N; is the
number of external concentrated loads acting on
the beam and f;, are the load characteristics
defined as follows:

Jfi1 = F; Jia=M; (13)

Equation (12) represents the bending differential
equation governing the deflection of a beam on
Winkler foundation characterized by any kind of
external loads and any kind of constraint.

SIMPLIFIED FORMULATION OF
SOLUTION

In this section the approach to carry out a simpli-
fied form of the solution of the discontinuous
differential equation governing the beams on a
Winkler foundation will be shown. In particular,
the most general form of this equation, as given in
Equation (12), will be taken into account.

The first step consists in rewriting Equation (12)
as follows:

////( +4a u qu

+kaRk X — X +Zpu 1

k=—1,-2;j= —1,—2,—3,—4)

o(x, X;,a;)

(14)

where o* = k/4EI, §;(x) = q:(x)/EL, fix = fix/EI
and p;; = p;;/EI. The solution of the last equation
can be obtained through the Laplace transform,
LJe], that, when applied to both sides of Equation
(14), gives:

— 23: U,'(O)S37

i=0

(s* +4a*) U(s

o(x, X, a;)]

_Zqu

+ Zf,ks texp(—xis)

N,

+ Z pijs ™ exp(—xis)
=1

(15)

where U;(0) = [d'U(s)/ds'] _, and where it has
been considered that the Laplace transform of the
generalized function R;(x —x¢) can be easily
obtained as:

L[Ri(x — x0)] = /000 R;(x — xo) exp(—xs)dx

i

= s Texp(—xos) (16)

It is important to note that the Laplace transform
L[g:(x)R©(x,x;,a;)] into Equation (15) can be
easily obtained once that the law of the load
¢i(x) has been specified. For example, in the very
common case in which it is constant, the following
relationship holds:

L[gi(x )Ro(x xi,a;)] = qiL[Ro(x, x;, a;)]
= s~ exp(—xis)[1 — exp(—a;s)] (17)

The solution of Equation (15) can be written as

5 GO+ 5 LRl )
U(s) ==
(s4 —|— 404)

N N .
> fiaes ™ exp(—xis) + X piys ! exp(—xis)
i=1 i=1

+ (s* +4a*)

(18)
Then, the inverse Laplace transform is applied,
obtaining:

N - —
~ 1 [LGi(xX) Ro (o, x4, ai)]
-1
+ Z { s+ 404 (19)
N —k—1
o S exp(—x;s)
+;f " [—s4 |t

N, —j—1
- [s7 exp(—xis)
* Z . il {W}
=

Now, let us take into account that:

L [s“ j-_:lo/‘} B dif_ll
{4;4 [1 — cos(ax) cosh (ax)}} (20)

4o (x)
BT
j: —37_27_1707+17+2
Hence, we can write, for example:

4 X
g-4(x) = dj—fﬁ)
3 X

g-3(x) = d jig )

= % [sin(cx) cosh(awx) + cos(ax) sinh(ax))

= cos(ax) cosh(ax)




Formulation of Solution for Beams on Winkler Foundation 79

2
g =4 jigx) - ﬁ [sin(ax) sinh(ax)]  (21)
g 1) = 00

=i [sin(cx) cosh(ax) — cos(ax) sinh(x)]

go(x) = 4L [1 — cos(ax) cosh (ax)]
/ l
4
{x ~ 5 [sin(ax) cosh (ax) + cos(ax) sinh (ax)]}

and, due to the translation properties of the
Laplace transform, it can be obtained that:

1[5 exp(—sx;
L [ﬁ} = g,>1(x = X;)Ro(x — x;)

:gj_](x_xi); j:..._37_27_1707...
(22)
The term
Qi(x) = L™ [L[Gi(x) Ro(x, xi )] /(s* + 4a*)]

can be easily determined when the form of the load
¢i(x) is given. For example, if it is constant, then it
is not difficult to show that:

L[gi(x)Ro(x, xi, ai)q
54+ 4ot

Oi(x) =L [
-

—g(x — x; — a;)] (23)

Instead, when the load g;(x) is linear (with initial
value ¢; and slope Ag;), it can be shown that:

= §ilgo(x — x;)

s Lexp(—x;s)

st + 4ot

s~ exp(—s(x; + a;))
st + 4ot

0 =13

— (i + Aqi) +

s4 + 44
(9 + AGi)go(x — x; — a;)

—alx—x—a) (24)

s + 4a4
= 4igo(x — x;) —
Aq,

a;

(g (x —xi)

Finally, the general solution of the differential
equation is given in the following form:

3 Nq
(x) =D Ui(0)gs—i(x) + Y Qi(x)
i=0 i=1

N; 5 N.
+ Y frk(x = x) + Y pisgy(x — xi) (25)
i=1 i=1

In this equation the four values U;(0) and the N,
values p;; can be obtained by considering the

N AG; <52 exp(—xis) s % exp(—s(xi + ai)))}

natural and/or essential conditions at the initial
and final abscissas and at the points along the
beam axis where constraints act. The number of
these unknowns is always equal to 4 + N.. On the
other hand, if the classical approach is applied, that
is partitioning the beam into parts where the solu-
tion is continuous, the number of unknowns is equal
to 4(Ny+2+ N;+ 1+ N+ 1). The comparisons
between these expressions make evident the advan-
tages of applying the proposed procedure.

Evaluating the solution in terms of slopes, bend-
ing moments or internal shear, through the conse-
cutive derivatives of the expression of u(x) given in
Equation (25), is trivial.

THE CLOSED FORM SOLUTION FOR A
SIMPLE CASE

The case of a foundation beam of an n+ 1 bay
frame, with distributed vertical loads, concentrated
vertical forces and concentrated moments (Fig. 2)
can easily be solved in a closed form through the
relationships reported in the previous section.

According to Equations (19) and (22) the solu-
tion can be written in the following form:

3 n
=) Ul0)gs-i(x) + > _fi1g1(x = x)
i=0 P
+ ij;i,—2g—2(x - Xi) (26)
i=1

+ ié;(go(x - Xj) — Zo(x — x; — 7))

In order to evaluate the integration constants, the
four boundary condition at the ends of the beam
are imposed, these are the values of the bending
moments M(0) =—-Elu"(0)=0, M(L)=—-EI
U"(L)=0, and of the shear forces
V(0)=—EIu"(0)=0, V(L)=—-Elu"(L)=0.
The conditions at x = 0 give two vanishing inte-
gration constants U,(0) = Us(0) = 0. The others
two conditions at x = L give two simple linear
equations providing the following values of the
remaining unknowns:

g1 (L)p1 — g-2(L)p>

Uo(0) = k

ga(Dga (L) = =)
U (0) =k g-3(L)pa —g2(L)p
g-3(L)-g1(L) - [g(L)

EX
[

"

e
[ ]

Fig. 2. Beam on elastic foundation scheme.
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where
= gﬁ,lgﬂ )+ iﬁ,zgl (L-x)
" Z;fR (L— %)+ Zoj o2t -x)
Cgs(L—x - aj))
pr= lz";f,»,lm —x) lz";f,»,zgm ~x)
+ Zn: qi(82(L —x) —ga(L—x;—a)) (28)

J=0

By simple substitutions, the following expression is
obtained for the response deflection:
1 (L)p1 —g_a(L
u(x) = k—2 1(L)p1 — g-2(L)pa
g-3(L)g-1(L) — [g-2(L)]
3(L)py —ga(L
g-3(L)pr —g2(L)p . a0+
g-3(L) - g-1(L) — [g-2(L)]

+ zn:fi,—lg—l (x —x;) + Xn:/}i,—zg—z(x - Xx;)
=1 i=1

2 g*4(x)

(29)

+) " g(3o(x — x;) — go(x — x; — a))
=0

The corresponding slope, bending moment and
shear force can be obtained by the simple deriva-
tions of Equation (29), according to the rules given
in Equations (21).

Equation (29) represents the closed form solu-
tion for the case under consideration. It is impor-
tant to note that the application of the classical
approach does not allow one to find a solution of
this kind, requiring the solution of a system of
4(n+ 1) equations.

APPLICATIONS

In this section two illustrative numerical examples
are developed in order to show the versatility and
the simplicity of the formulation proposed in the
previous sections. The following two structures are
analyzed: (1) a clamped-clamped beam with an
internal hinge and a bearing support, loaded by
two forces, a moment, uniformly distributed, and
linear distributed loads acting along the axis; (2) a
realistic foundation beam.

The scheme of the first educational example is
shown in Fig. 3. An elastic foundation modulus &
= 200 MN/m?, a normal concrete Young modulus
for beam E = 30 GPa, and an inertial modulus for
the beam cross section 7 = 0.03333 m* have been
chosen. The numerical values of the loads acting
on the beam are reported in Table 1.

According to equations (19), (23) and (25) the
solution reads:

3
u(x) = Z Ui(0)g-a+i(x) + [§1 (8o (x — x0)

=0

— go(x — x0 — a1)) + q280(x — x3)+

— (7 + ARl — 33— @) + A,

(g1(x — x3) —g1(x —x3 — @) |+
+hiaga(x—x1) +haga(x—x)
328 2(x — x2) + p1_38-3(x — x1)

+ p2,18-1(x — x3) (30)

In order to evaluate the integration constant, in
addition to the four boundary condition at the
ends of the beam, two other conditions have to be
imposed, respectively at the internal hinge,
M(x))=—EIlu"(x;) =0, and at the bearing
support, u(x3) = 0. The conditions at the left end
simply give: Uy(0) = U;(0) = 0; while the remain-
ing four conditions define a linear four equation
system and provides the following four unknowns:

U'(0) =5.231-10° m™!,

U"(0) =8.327-107° m 2,

P\ = EING | = —907.462 kN - m?,
oSV = F\ = 177561 kN.

It is important to remark that, if the classical
approach is applied, the solution of a linear sixteen

Fi

G+ Ags
L
EZFF 3=
4.00 3.00 4.00 5.00
xp Xy Xz X3 x4 =L
L=16.00
L o L]

Fig. 3. Example 1: educational example scheme.

Table 1. Load values for example 1

x; =4.00 m
X = 7.00 m
X()ngxl;al :XI*X():4.00IT1

x3 < x < X400 =x4—x3=500m

F= "= 500 kN

Fy = £79=300 kN; M, =f{?= 500 kN m
¢1 = 20 kN/m,

¢> = 20 kN/m, Ag, = 15 kN/m
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x(em) xicm)
002 30000
200 400 600 800 1000 1200 1400 100
0,00 L A 4 _ k e = 200,00 4
0.02 4 100,00 o
200 A0 800 170 2000 1400 160
— 004 E 0.00 M M " M h M
£ Z ~=
= 006 4 E 100,000
s - 200,00 -
0.10 4 300,00
012 400,00
Fig. 4. Example 1: deflection diagram. Fig. 6. Example 1: bending moment diagram.
&.00E-04
5.00E-04 1 a0
10004 4
3.00E-04 5 Arlinng
200E-0H 4
p— 1.00E-04 4 —
; O OED) T A T T T T——— E 00
.00E04 4 200 )10 1200 1400 160 A
=200E-04 o 100,00 4
-300E-04 -
~00E-04 4 =200,00 4
-5 00EAM
x(em) 300,00
Fig. 5. Example 1: slope diagram. Fig. 7. Example 1: shear force diagram.
a)
[BLY 5.50 6.00 450 1.00
%o \T ‘<' N-_a- ‘u- x¢=L
- 18.00 _
040
b)
—
Fig. 8. Example 2: (a) beam scheme; (b) transversal section (lengths in meters).
Table 2. Load values for example 2
¥ = 1.00 m F=f""= 500 kN, M,=f{""= 110 kN m
X =6.50m Fo=f1""=1000 kN, My=f{"= 240 kN m
x3=12.50 m F=f{""=950 kN, M3=f{""'=200 kN m
x4 = 17.00 m Fy =f1"=400 kN, M,=f{ ?= 90 kN m
xo< x < xp; a1 = x1 —xp = 1.00 m ¢ = 15.5 kN/m
X< x < X2, a2 = X —x; = 5.50m > = 25.0 kN/m
x3< x < Xy a3 = X3 —x2 = 6.00m ¢z = 25.0 kN/m
x3< x < X5, ag= X4 — x3 =4.50 m ¢>» = 25.0 kN/m

xs5< x < Xg; as= X5 — x4 =1.00 m ¢q3 = 15.5 kN/m
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180Gk

x{cm)
0 200 400 600 800 1000 1200 1400 1600
0.00 M z A L L L L 1
0.02 4
0.04 -
0,06 -
0.08
010 4
0.12 9
0.14 o
0.16 1
0.18
Fig. 9. Example 2: deflection diagram.

2.00E-(4

1.50E-04 4

1.00E-04 4

SO0E-05 4

O.00E+H0 T T T T T T T T

50005 200 400 A B00 f 1000 12X 1400 14 14

-1LO0EAM 4

-1.50E-04 4

=2 00E-04 4

=250E4

xicm)
Fig. 10. Example 2: slope diagram.
X(cm)

400,00
-300,00 o
=200.00 4
-100.00 4 200 400\ 600 o 100\ 1200 lﬂh 150

000 A L A L L L
100,00 o Y
200,00
300,00 4
0000 -
500,00
GO0,00 -
TOO00

Fig. 11. Example 2: bending moment diagram.

G000
A00 00
20000 A

Q.00 T T T T T T T T

) 400 60 go0/ 1000 1200 14 1600 A4

=200.00 4
400,00
00,00

Fig. 12. Example 2: shear force diagram.
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equation system had to be found. The deflection,
slope, bending moment and shear force diagrams
are plotted respectively in Figs 4-7.

In the second example a foundation beam of a
three bay frame with dead self-load, axial forces
and bending moments transmitted by the columns,
is analyzed (Fig. 8). In this case, a value of elastic
foundation modulus £ = 150 MN/m?, a normal
concrete Young modulus for beam E = 30 GPa
and a inertial modulus for beam cross section / =
0.06615 m* are adopted.

The numerical values of the loads acting on the
beam are reported in Table 2.

By applying the proper substitutions, Equations
(27) give the following values of the constants:

g-1(L)p1 — g—2(L)p>
g3(L)g1(L) - [g—z(L)]z
=1.562-10 m

g-3(L)p2 — g-2(L)p1
g-3(L) g 1(L) — [go(L)]
=-2072-10"*

Uo(0) = k

Uy (0) = k

The diagrams of deflection, slope, bending
moment and shear force, obtained by derivation
of Equation (29) through the derivation rules given
in Equations (38), are shown respectively in Figs
9-12. In this case, if a classic approach were used, a
twenty linear equation system would have to be
solved.

CONCLUSIONS

A new simplified formulation for the solution of
beams on Winkler foundations with discontinuities
due to loads and constraints has been presented. It
is based on the use of the generalized functions and
leads to reducing the number of boundary condi-
tions to be imposed for finding the solution with
respect to those necessary when the classical
approach is used. In the simple case when disconti-
nuities depend only on external loads, the
proposed approach is able to give the exact
closed form solution, in terms of deflection,
slope, bending moment and shear force. The
expressions of these solutions can be used directly,
without solving any system of linear equations, as
required by the application of the -classical
approach.

In any case, even when the closed form expres-
sion of the solution is not directly obtained, the
proposed approach allows one to reduce drasti-
cally the number of boundary conditions to be
imposed and, hence, the computational effort
related to the problem solution.

Two illustrative examples highlighted the feasi-
bility of the approach that can be easily applied in
many fields of civil engineering where the solution
to these problems is required, as, for example, in
the case of the foundation analysis.
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