Int. J. Engng Ed. Vol. 25, No. 2, pp. 221-227, 2009
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2009 TEMPUS Publications.

Simulator for a Multi-Programming
Environment for Computer Science
Learning and Teaching*

A. GARCIA-BELTRAN, S. TAPIA, R. MARTINEZ and J. A. JAEN
Dpto. de Automatica, Ingenieria Electronica e Informatica Industrial—Universidad Politécnica de Madrid
C/ José Gutiérrez Abascal 2, 28006-Madrid, Spain. E mail: agarcia@etsii.upm.es

The objective of this paper is to explore improvements in the learning process for Computer Science
using a new tool (an IDE simulator) and to demonstrate the pedagogic and cognitive aspects of the
tool. This work presents the design and implementation of a web-based self-assessment environment
with multi-language programming questions. The application has been implemented in a complete
e-learning system, known as AulaWeb, and is being used as a facility to encourage students on
computer science courses to practice programming techniques with different programming
languages, for example, Java and C/C++. Furthermore, this paper describes the pedagogical
methodology and some results drawn from the experience.

Keywords: IDE simulator; web-based systems; programming languages; learning-teaching

strategies; assessment

INTRODUCTION

PROGRAMMING is an essential topic for first
courses of an engineering curriculum. Basic
programming techniques may be required in later
courses and in the professional career to follow.
New technologies and tools can help and effec-
tively change the classical approach to learning/
teaching, taking lessons, assignments and manual
grading [1] with many educational benefits and at a
low cost [2]. In this way, web systems that support
the marking and grading of students’ answers for
programming assignments may be efficiently used
in the pedagogical process: students have spatial
and temporal flexibility to do the assignments and
also immediate feedback, and teachers can support
large groups of students, avoid grading discrepan-
cies [3] and focusing their activities on issues of
content and didactics [4-7].

Nowadays, there is a variety of web systems for
the assessment of programming assignments [8]:
some of them are commercial and have a ‘per-seat’
cost for students [9], other systems are not incor-
porated into a learning management system (LMS)
that facilitates e-learning functions such as the
management of the students and courses [10],
and most of them are oriented only to some
specific programming language [11-15].

In this work, we are going to present a web-
based simulator for a multi-programming IDE
(Integrated Development Environment). This
simulator has a unique set of characteristics: it is
non-commercial, LMS-embedded, multi-program-

* Accepted 2 November 2008.

221

ming language support and is easy to learn and use
and can be exploited as an assessment system to
generate, deliver and (automatically) grade
programming assignments. In fact, we have taken
advantage of it as a resource to assist engineering
students to learn and practice computer program-
ming techniques, and we will describe how it can
change and improve the learning process in the
following aspects.

1. Competence training. The simulator is focused
on running programs not on learning language
syntax or program rules. Of course the learning
of the language syntax and rules are a previous
step.

2. Student motivation. The proposed problems
can be sorted in order of increasing difficulty.

3. Continuous learning. The exercises can be
scheduled using deadlines, so the students
must work according to the subject design.

LMS SYSTEM AND TEACHING
APPROACH

The simulator is embedded, by means of a Java
applet, in a self-assessment module included in a
web-based LMS (Learning Management System)
known as AulaWeb [16]. Students need only a
computer connected to the Internet and a web
browser in order to take advantage of the simu-
lator. This LMS was developed by the Computer
Science Department of the Escuela Técnica Super-
ior de Ingenieros Industriales of the Universidad
Politécnica de Madrid (ETSII-UPM) and has been
used as an on-line support for courses by more

222

than ten thousand UPM students since 1999. This
LMS exploitation consists of four key activities in
more than seven hundred courses: theoretical and
practical content, open discussion forums, self-
assessment exercises and homework delivery.
Each tutor can make use of these activities depend-
ing on the course methodology and its character-
istics, i.e. self-assessment may be seen as a major
activity in programming courses with a massive
number of students. The main challenge for tutors
is in encouraging the students to engage actively in
learning programming fundamentals, and, in this
way, a regular assessment system is essential.

Up to 2001, there were several ordinary types of
questions (single-choice, multiple-choice, short
answer, true—false, etc.) implemented on the Aula-
Web platform. However, in a programming
course, tests should be driven preferentially to
questions with code answers. From the 2001/02
academic year onwards, the environment had
specifically been made suitable for self-assessing
computer programming skills in TurboPascal
language [17]. In this case the system asks the
student a question with a TurboPascal code-type
answer in order to carry out a specific task and
subsequently correct his/her answer automatically
and immediately. Tutors can create the database of
questions, with a friendly and easy-to-use interface
for adding and updating questions. They can also
configure exercises indicating the quantity, level of
difficulty, type and syllabus chapters of the ques-
tions. When the exercise is finished, the results are
stored in the database, and the system allows the

< Windows Internet Explorer

A. Garcia-Beltran et al.

student to check the exercise, comparing his/her
answers to the correct solutions. Evaluation of the
exercise 1s, therefore, automatic, and the student
and his/her teacher can access the results of the
self-assessment activities. The system allows the
teacher to track the student’s progress during the
course and also provides some statistical tools for
comparing the theoretical and experimental level
of difficulty of the questions, revising the initial
questions. The feedback from this use has resulted
in improved systems and methodologies incorpor-
ating great experience and best practices. The
success of this system has encouraged the system
developers since 2005 to take into account other
(any) programming languages such as C/C++ or
Java for the exercise questions.

IDE SIMULATOR DESCRIPTION

The multi-programming IDE simulator inter-
face integrates a Borland-type text editor, a set of
on-line compilers and an automatic test generator
for logical checking and debugging (Fig. 1).

The development of each programming code
question by the teachers involves the following
components: a wording, a set of code files with
gaps to be completed by the students and a set of
code files used to check the students answers. The
wording determines the assignment that the code
must carry out. For example: Complete the follow-
ing Java application in order to work with the
Rectangle class in the RectangleTest program . . .

Fig. 1.

€3~ Whttp://aulaweb.etsii.upm.es
Student area
E Datab p Ithes
3 Self-assessment (od. 5347842) Md: PP 00:06:43
Personal
575
i Wording: Complete, complie and run the following Java code files
Infermution ANSWEr: Compile fum Aboill
o f e ¥ e gTei
Resources
.\.'{ﬁ .
Activities public class Rectangle {
private double height, width:
(1 public Rectangle(double x, double ¥)(
B helghtex:
Coms. wideheys
-]
s public double area() |
AL £6 Usercode W
Library raturn (hsight*width);
AR Usercode B %
]
public boolean bigger (Rectangle B (
Qult A/ Usercode B
£ Usercods B =
Ling: 1 Position: 0
Cancel OK
OEGEREE [send)
1018 Academic year: 2006/07 Name: ALoMno DE PrueBa Identifier: 99999

Simulator for Multi-Programming Environment for Computer Science 223

Questions may incorporate several code files (one
of them must implement the main method of the
application) with none, one or more uncompleted
gaps to be filled in by the students. In the simplest
question, there is only one code file with the main
method and one or more gaps. The gap positions
are marked in the code file with a pair of specific
code comments: ‘//##User code##’.

Once the student has filled them in and clicked
over the Compile option, the answers are sent to
the server and the complete code files are
compiled. Subsequently, the server gives back the
result of the compilation. Finally, the code files for
the correction are not provided to the students, but
they are used by the server to collect the student
answers and check them. These code files have to
include the corresponding gaps for the answers
and some routines to verify that the answers will
carry out the wording task properly using any
technique for software testing, for example, a
black-box method [18]. Once the student has
filled them in and clicked over the Run option,
the answers are sent and these checking code files
(completed with the corresponding student’s
codes) are compiled and executed in the server.
Later, the server returns the result of the execution.
The system can deal with multi-programming
language, since the compiling and running process
for testing the answers is fully configurable by
means of a makefile. The interface is the same,
but the question design changes. In doing so, the
answers should be compiled and their functionality
checked with the appropriate commands. As any
command can be used in the makefile, the teacher
can choose from a wide variety of tools or even
design his or her own tools. So far, questions for
Java and C/C++ programming languages have
been designed and implemented.

Students can use the windows of the text editor to
input and edit the answer code and the menu bar
options to compile and execute the code. The
Compile option compiles the code in the edit
window. Different on-line compilers have been
installed on the server in order to support this
automatic checking of the code answers for the
corresponding languages. When compiling is
complete, a status window appears. As in a real
programming environment, this window indicates
an error message if a compile-time or syntax error
occurs. If the student answers have no compilation
errors, then the event window indicates a message of
Successful Compilation. The Run option executes
the input code, together with a checking code in
order to detect run-time or logical errors. In both
cases, the corresponding error windows are shown.
For self-assessment in logical errors, student code
outputs are compared to some model outputs
(sometimes randomly generated). Each specific
error may require the display of a customized
message previously written by the author of the
question. If the student answers do not generate
any logical or run-time errors, then the window
indicates a message of Successful Execution.

LEARNING-TEACHING ASPECTS

The multi-programming IDE simulator can be
used for the learning—teaching of programming
languages in several situations. The following
scenarios belong to some programming courses
taught in the ETSII-UPM.

Traditional teaching with on-line self-assessments

The system provides a support tool for students’
homework in face-to-face courses. It improves the
motivation, encourages continuous homework and
checks the student’s comprehension of the subject
with immediate feedback.

Practical teaching with on-line self-assessment in
the computer laboratory

The application provides a method to keep the
students’ attention during a practical lecture. The
tutor should design some questions for a practical
session, then explain the problem in the lecture and
clarify the doubts that the students may have. The
tool will check the progress of the students and
keep them working; therefore the teacher can focus
on individual explanations. Even more, while the
correcting program will provide some clues about
the students’ work, the tutor can explain the
doubts more efficiently. There is no need for a
huge question database because it is not likely that
the students are going to cheat, just a few long
questions will work.

On-line teaching with self-assessment

Tutors of online courses use the self-assessment
system to track the students’ progress during the
academic term, since there are no face-to-face
lectures.

EMPLOYMENT AND EXPERIENCES

The educational staff of the ETSII-UPM
Computer Science Department has taken advan-
tage of the simulator in the following courses for
several degree programs (each credit corresponds
approximately to ten hours of traditional face-to-
face lectures) in the three different pedagogic case
studies since 2005.

Case study (1) 3808—Object Oriented Program-
ming course, 6 credits (traditional lectures, online
self-assessment and about 15 students per course).
The tutor schedules several exercises as the course
progresses through the syllabus. Questions are
selected randomly from a database of about 200
questions. It has allowed the teachers to assess the
students without correcting hundreds of answers.
In any case, to motivate the student and encourage
the use of the simulator, the results of the corres-
ponding programming test set up by the teachers
are saved in the system database and make an
extra contribution to the course grading, so these
marks are meant more to motivate than to assess.

224 A. Garcia-Beltran et al.

This, also, reduces the anxiety of a final examina-
tion since each exercise is less important in deter-
mining the final grade of the student. On the other
hand, frequent exercises also provide a more valid
basis for a grade since one bad day has much less
of an effect. Students can use the simulator as
many times as they want to improve their score.
In addition to this, the system records allow the
teacher to track the students’ progress during the
course. Table 1 summarizes the exercises set up by
the tutor, the number of questions that make up an
exercise, the number of the students who did each
exercise, the total number of exercises done by the
students and the corresponding average score in
the academic year 2007-08.

Case study (2) 9006—C/C++ Programming
course, 3 credits (lectures at the computer labora-
tory and about 30 students per course). The
simulator is used in this course about C program-
ming in the computer laboratory with one PC per
student and face to face teaching. A set of C/C++
code questions has been developed for this course
and self-assessment exercises are done during the
class. The pedagogical target of the code questions
is oriented not only to C/C++ syntax but also to
algorithms development. Table 2 shows the results
of this activity in 2007-08.

Case study (3) 9122—Java Programming course,
4.5 credits (online, about 30 students per course).
In this case, the system is used in a Java program-
ming course with students from different Eur-
opean countries. There are no face-to-face

lectures and self-assessment appears as a key
activity to encourage the students to connect
actively in Java basics by ‘doing’. In this way, the
Java code questions are absolutely necessary.
More than 150 questions have been generated
and stored in the course’s database. The tutor set
up a new self-assessment test after the online lesson
and, in order to encourage the students, the
exercise results contribute (30%) to the course
grading, so these marks are meant not only to
motivate but also to assess. Students have only one
attempt per exercise, so they cannot improve their
score by repeating the exercise. They can use any
book, bibliographic material or reference to solve
the questions. Table 3 presents the results of this
activity in 2007-08.

ASSESSMENT OF THE SIMULATOR

To check the effectiveness of the simulator,
students completed questionnaires at the end of
the academic period, providing anonymous and
very interesting information and feedback about
the simulator. First, they were asked to answer a
set of questions. The responses were given a five-
position scale graded from 1 (Strongly disagree) to
5 (Strongly agree). Results are shown in Table 4
(Object Oriented Programming), Table 5 (C/C++
Programming) and Table 6 (Java Programming).

The results of the questionnaire for the students
of all the different courses were conclusive: the use
of the IDE simulator was very positive in all the
case studies. The best results can be found in the

Table 1. Summary of exercise results in OOP course (2007-08).

Number of Students Total Av. Score
Unit From: To (deadline): questions who did it done (out of 10)
1 Introduction 12/10/2007 25/10/2007 5 10 27 7.41
2 Java Basics 25/10/2007 07/11/2007 5 10 23 7.83
3 Objects and classes 08/11/2007 20/11/2007 5 11 23 6.96
4 Inheritance 22/11/2007 10/12/2007 4 9 12 7.29
5 Interface and packages 05/12/2007 14/12/2007 4 6 13 7.5
6 Streams 15/12/2008 10/01/2008 4 12 36 7.99
7 Threads 17/01/2008 24/01/2008 4 9 21 8.69
8 GUIs 20/01/2008 29/01/2008 4 9 16 8.44
Table 2. Summary of exercises results in C/C++ programming course (2007-08).
Number of Students Total Av. Score
Unit From: To: questions who did it done (out of 10)
1 Introduction 18/02/2008 03/03/2008 1 27 27 10
2 Variables and types 07/03/2008 14/03/2008 2 25 25 9.2
3 Pointers 1 22/03/2008 29/03/2008 1 22 22 9.58
4 Pointers 2 27/03/2008 04/04/2008 5 23 23 9.92
5 Arrays | 04/04/2008 11/04/2008 1 23 24 10
6 Arrays 2 11/04/2008 18/04/2008 3 22 22 10
7 Cash-machine simulator 18/04/2008 25/04/2008 1 22 25 8.8
8 Bubble algorithm 29/04/2008 06/05/2008 1 23 23 10
9 Find roots of second- 02/05/2008 09/05/2008 1 23 23 10
degree polynomial
10 Files. Reading XML 05/05/2008 12/05/2008 3 10 26 6.67
11 Libraries 09/05/2008 16/05/2008 1 8 8 10

Simulator for Multi-Programming Environment for Computer Science 225

Table 3. Summary of exercise results in Java Programming course (2007-08).

Number of Students Total Av. Score
Unit From: To (deadline): questions who did it done (out of 10)
1 Introduction 03/03/2008 10/03/2008 5 21 21 9.05
2 Program structure and 07/03/2008 14/03/2008 5 19 19 9.05
data types
3 Operators 22/03/2008 29/03/2008 5 24 24 9.17
4 Control statements 27/03/2008 04/04/2008 4 24 24 9.25
5 The return statement 04/04/2008 11/04/2008 4 25 25 9
6 Objects and classes 11/04/2008 18/04/2008 4 26 26 8.46
7 Class members 18/04/2008 25/04/2008 4 25 25 8.6
8 Inheritance 29/04/2008 06/05/2008 5 27 27 9.26
9 Interfaces 02/05/2008 09/05/2008 4 27 27 9.07
10 Packages and exceptions 09/05/2008 16/05/2008 4 24 24 9.06

Table 4. Summary of the assessment of the simulator in an Object Oriented Programming course (2007-08).

Question Students Answers 1 2 3 4 5 Av
1 I enjoyed using web assisted assessment. 10 9 o 0 0 2 7 478
2 The simulator enabled me to practice and develop programming skills. 10 10 0 0 0 6 4 44
3 I worked harder than I would have done without it. 10 8 o 0 0 2 6 475
4 It encouraged me to work consistently throughout the term. 10 10 o 0 0 1 9 49
5 1 would like the end of semester examination to be taken using the simulator. 10 8 o 0 0 1 7 488
6 The results have been a fair reflection of my ability. 10 8 0O 0 0 3 5 462

Table 5. Summary of the assessment of the simulator in a C/C++ programming course (2007-08).

Question Students Answers 1 2 3 4 5 Av
1 1 enjoyed using web assisted assessment. 22 22 0o 0 4 9 9 423
2 The simulator enabled me to practice and develop programming skills. 22 22 0 5 6 8 3 341
3 I worked harder than I would have done without it. 22 22 0o 0 o6 Il 5 395
4 Tt encouraged me to work consistently throughout the term. 22 22 o 1 3 9 9 418
5 1 would like the end of semester examination to be taken using the simulator. 22 22 0 5 4 7 6 364
6 The results have been a fair reflection of my ability. 22 22 0 0 4 12 6 4.09

Table 6. Summary of the assessment of the simulator in a Java Programming course (2007-08).

Question Students Answers 1 2 3 4 5 Aw
1 I enjoyed using web assisted assessment. 23 21 2 1 35 10 395
2 The simulator enabled me to practice and develop programming skills. 23 20 0o 1 4 5 10 42
3 I worked harder than I would have done without it. 23 21 2 1 4 5 9 386
4 It encouraged me to work consistently throughout the term. 23 21 1 2 4 6 8 386
5 1 would like the end of semester examination to be taken using the simulator. 23 19 2 1 3 3 10 395
6 The results have been a fair reflection of my ability. 23 21 0o 1 4 7 9 414

traditional course (Object Oriented Programming
course), but the results in the others were also very
satisfactory.

Moreover, on this questionnaire students also
had the chance to put forward written comments
in order to explain or develop their scored
responses. The written comments are closely corre-
lated with previous responses. Flexibility, ease of
use and instant feedback were seen as some of the
major benefits. On the other hand, many students
had problems with their Internet connection, parti-
cularly using certain Internet providers due to their
proxy systems. In any case, overall comments were
very positive: teachers do not have to correct
programming exercises, and students do not have

to install programming environments locally in
their home computers and to be in contact with
their teachers for training and practice purposes.

CONCLUSIONS

The use of this kind of web-based IDE simula-
tors is viewed positively by students and tutors.
Students do not have to install a programming
environment locally on their home computers for
training and practice purposes. Academic staff
acceptance is also overwhelmingly positive, show-
ing that the system not only is very easy to manage
but also has a very intuitive interface and gives

226

very useful feedback to students. Furthermore,
teachers do not have to correct programming
exercises, and the system makes it easy to motivate,
track, assess and grade students. Depending on the
course characteristics, tutors can choose a different
methodology approach. Moreover, this kind of
web-based application may help to reduce distance
barriers not only for local or national students but
also for other students from international institu-
tions.

For all these reasons, it is worth developing this
kind of simulator for at least one year, including

A. Garcia-Beltran et al.

content development and validation phases.
Although in this type of project, tutors and soft-
ware developers must keep on working indefinitely
to support online content and activities and to
update technologies.

Acknowledgements—This work is partially funded by the Divi-
sion de Informatica Industrial of the Universidad Politécnica de
Madrid. The authors would like to acknowledge the implemen-
tation support of A. Alonso, J. M. Arranz, P. Avendafio, M.
Aza, J. A. Criado, F. de Ory, C. Engels, M. Fernandez, P.
Garcia, M. Gonzalez, J. Granado, T. Hernandez, 1. Iglesias, A.
R. Lopez, D. Lopez, J. A. Martin, M. Martin, F. Mascato, D.
Molina, C. Moreno, L. M. Pabodn, J. C. Pérez, A. Rodelgo, A.

application design,

10.
1.
12.
13.
14.
15.
16.

17.

18

software implementation, Valero, E. Villalar and C. Zoido.

REFERENCES

. P. C. Wankat and F. S. Oreovicz, Teaching Engineering, Purdue University, (1990).

. P. Ball and H. Thornbury, A student learning environment without the overhead? Reviewing cost
and benefits of CAL within a manufacturing course, International Journal of Engineering
Education, 20(5), 2004, pp. 713-725.

. J. M. Montoro, R. San-Segundo, J. Macias-Guarasa, R. de Cérdoba and J. Ferreiros, Methodol-
ogy for the analysis of instructors’ grading discrepancies in a laboratory course, International
Journal of Engineering Education, 22(5), 2006, pp. 1053-1062.

. M. Amelung, P. Forbrig and D. Rosner, Towards generic and flexible web services for e-
assessment, Proc. ITICSE’08, Madrid, Spain, (2008) pp. 219-223.

. M. S. Perez, P. Herrero, F. M. Sanchez, V. Robles, Are web self-assessment tools useful for
training?, IEEE Transactions on Education, 48(4), 2005, pp. 457-463.

. S. Hussmann, G. Covic and N. Patel, Effective teaching and learning in engineering education
using a novel web-based tutorial and assessment tool for advanced electronics, International
Journal of Engineering Education, 20(2), 2004, pp. 161-169.

. M. J. Gallego and V. Gamiz, La plataforma AulaWeb en la enseflanza practica de los estudiantes
de Educacion, eUniversaLearning: Congreso Internacional de Tecnologia, Formacion y Comunica-
cion (eUniversaLearning 07), Salamanca, Spain, (2007).

. P. Brusilovsky and C. Higgins, Preface to the special issue on automated assessment of
programming assignments, Journal of Educational Resources in Computing, 5(3), 2005.

. O. Gotel, C. Scharff and A. Wildenberg, Extending and Contributing to an Open-source Web-based

assessment system for the automated assessment of programming problems, Proc. ACM Conference

on Principles and Practices of Programming in Java, Lisbon, Portugal, (2007).

S. H. Edwards, Improving student performance by evaluating how well student test their own

programs, J. Educational Resources in Computing, 3(3), 2003, pp. 1-24.

S. P. Foubister, G. J. Michaelson and N. Tomes, Automatic assessment of elementary Standards

ML programs using Ceilidh, Journal of Computer Assisted Learning, 13, 1997, pp. 99-108.

A. C. Croft, M. Danson, B. R. Dawson and J. P. Ward, Experiences of using computer assisted

assessment in engineering mathematics, Computers & Education, 37, 2001, pp. 53-66.

N. Catenacci and L. Sommaruga, The evaluation of the Hyper Apuntes interactive learning

environment, Computers & Education 32, 1999, pp. 35-49.

N. Serbedzija, A. Kaiser and 1. Hawryszkiewycz, E-Quest: a simple solution for e-questionnaires,

Proc. of the IADIS International Conference e-Society 2004, Avila, Spain, 4, (2004) pp. 25-432.

M. Thelwall, Computer-based assessment: a versatile educational tool, Computers and Education,

34, 2000, pp. 37-49.

A. Garcia-Beltran, R. Martinez, AulaWeb: un sistema para la gestion, evaluacion y seguimiento de

asignaturas, Industria XXI, 2, (2001) 11-16.

A. Garcia-Beltran, R. Martinez. Web assisted assessment in computer programming learning using

AulaWeb, International Journal of Engineering Education, 22(5), 2006, pp. 1063-1069.

. R. S. Pressman, Software Engineer. A Practitioner’s Approach. McGraw-Hill, (2002).

Web Address. More information is available via the Internet at URL: http://www.dii.etsii.
upm.es/aulaweb

Angel Garcia-Beltran is an Assistant Professor in the Dpto. de Automética, Ingenieria
Electronica e Informatica Industrial of the Universidad Politécnica de Madrid. He teaches
several Java Programming and Object Oriented Programming courses and is also active in
innovative engineering education methods using the web.

Santiago Tapia is an Assistant Professor in the Dpto. de Automatica, Ingenieria Electronica

€

Informatica Industrial of the Universidad Politécnica de Madrid. He teaches C/C++

Programming courses and is active in engineering education using the Internet.

Simulator for Multi-Programming Environment for Computer Science

Raquel Martinez is an Assistant Professor in the Dpto. de Automatica, Ingenieria
Electronica e Informatica Industrial of the Universidad Politécnica de Madrid. She has
been teaching since 1979 in a variety of Computer Science topics and is actively involved in
web-based educational projects.

José-Alberto Jaén is a Full Professor in the Dpto. de Automatica, Ingenieria Electronica e
Informatica Industrial of the Universidad Politécnica de Madrid. For the past 30 years he
has been teaching Mathematics and Computer Science courses.

227

