Int. J. Engng Ed. Vol. 25, No. 2, pp. 228-238, 2009

Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2009 TEMPUS Publications.

Easy CPU: Simulation-based Learning of
Computer Architecture at the Introductory

Level™®

CECILE YEHEZKEL', MATZI ELIAHU? AND MIKY RONEN?

! Davison Institute of Science Education, Weizmann Institute of Science, Rehovot 76100, Israel.

E-mail: cecile.yehezkel@weizmann.ac.il

2 Instructional Systems Technologies Dept., Holon Institute of Technology, Holon Institute of Technology,
Holon 58102, Israel. E-mail: matzie@hit.ac.il ronen@hit.ac.il

The interdisciplinary nature of the computer architecture domain and the complexity of both
hardware and software make it difficult for instructors to teach students the underlying mechanism
of program execution at the introductory level. We present an environment that helps introductory
students to understand how the instructions activate the hardware, and how to master basic
programming skills in machine language. This environment includes a simulation of a low-level
computer machine and a comprehensive set simulation-based activities aimed at scaffolding the
learning process. The environment, EasyCPU, displays a schematic model of the computer
components and the dynamic processes as well as the flow of information involved in executing
the program at the machine level. The environment can control external hardware, in addition to
the on-screen 11O simulation. This enables students to develop small but real hardware projects, and
thus to experience the interdisciplinary nature of working with hardware and software. The
extensive use of EasyCPU (by 7000 students) provided an opportunity to assess its contribution
and to a better understanding of the interactions between the computer units and the details of
program execution and the data flow within the computer, as well as to the development of

programming skills.

Keywords: Simulation-based learning, assembly language, computer architecture.

INTRODUCTION

WHEN TEACHING COMPUTER ARCHITEC-
TURE, instructors encounter difficulties in
conveying its main concepts and in illustrating
the computer’s low-level machine mechanisms
underlying program execution. This paper
describes a simulation and the associated simula-
tion-based activities designed to improve the learn-
ing of computer architecture topics taught in
Computer Science and Engineering, Software,
and Electrical Engineering (CS, SE, SE and EE)
courses. We describe in detail the simulation and
the associated simulation-based activities (further
referred to as the EasyCPU environment). This
educational simulator is aimed at facilitating the
teaching of Computer architecture at the introduc-
tory level.

Teachingllearning Computer Architecture

The fundamentals of computer architecture are
an integral part of the curricula of three engineer-
ing domains: Computer Engineering, Software
Engineering and Electrical Engineering. According
to the computer science periodic curriculum
report, issued by a joint task force headed by the

* Accepted 5 December 2008.

228

ACM and IEEE-CS, Computer Architecture and
Organization is defined as one of the core bodies of
knowledge in the Computer Science and Software
Engineering curriculum, and in the Computer
Engineering curriculum [1, 2, 3]. Hughes claims
that ‘exposure to the physical machine and the
software that controls it can assist information
technology professionals gain a better understand-
ing of who does what and why it does it . . .
perhaps most importantly it can remove the
“magic”’ that is often used to explain seemingly
inexplicable problems encountered in using
computers’ [4, p. 85]. The interdisciplinary nature
of the domain, involving both hardware and soft-
ware, makes it difficult for curriculum designers to
cover topics that are at the boundaries of the CS,
CE and EE curricula. Cassel et al. (2001) [5] have
found that many faculty members who teach this
subject teach it outside their areas of specialization
and thus are not entirely comfortable with this
task. To improve the learning of computer archi-
tecture, instructors have searched for better peda-
gogical methods [6]. This was also our motivation
in developing a simulation environment and its
associated learning activities.

Tools for teaching computer architecture
In order to understand how a low-level machine
functions, the student must learn the basics of its

Simulation-based learning of introductory computer architecture 229

language, the machine language, which is a set of
binary-coded instructions. That is why assembly
language is used for learning; it is the first practical
programming language above machine language, a
set of mnemonics. It is selected for professional
programming only in extreme cases, for instance,
with high real-time constraints. Professional
assembly language programming tools, for ex-
ample, compiler, simulators and debuggers such
as Turbo Assembler tools (further referred to as
TASM) or Macro Assembler tools are used in the
development of programs (textual GUI). Most of
them did not evolve, in terms of user-friendly
interfaces, such as GUIs of more practical
languages. They usually are too sophisticated and
complex for introductory-level students. This
situation has motivated individual instructors to
develop simulators. The field is predestined for
simulation [7]. A description of some of these
tools can be found in the special issue on specia-
lized computer architecture simulators that see the
present and may hold the future [8] as well as a
representative brief review of eight simulators in a
distributed expertise for teaching computer organ-
ization and architecture [5]. Although these tools
share many features, since they were designed by
individual instructors, they tend to be targeted to
specific populations, thus illustrating a conceptual
model appropriate to the requirements of specific
curricula.

When developing a simulator for educational
purposes, we must select an appropriate concep-
tual model to illustrate the low-level machine [8].
The conceptual model conveys principles of
computer architectures such as CISC and RISC.
Knuth [9], in his keynote on bottom-up education,
claims that ‘he has put considerable effort into the
design of a RISC machine called MMIX, as an aid
to computer science educators. MMIX is intended
to be simple and clean yet realistic’. To provide
both motivational and kinesthetic learning experi-
ences, instructors have experienced the use of soft-
ware simulation to activate a robot [10, 11], and
Bruce-Lockart et al. [10] found that the TM
simulator’s ability to handle both physical and
abstract models has made it successful for helping
students understand the abstract machine defined
by the programming language. Some conceptual
models are hypothetical, such as the LMC simu-
lator [12, 13], which conveys the general principles
of computer architecture but not of an actual
computer, whereas others, tend to simulate an
actual computer with high fidelity, and still
others are simplified models of an actual computer
[14, 15]. The environment, EasyCPU, displays a
schematic model of the computer components and
the dynamic processes as well as the flow of
information involved in executing the program at
the machine level [8, 16]. The environment and
learning activities were the subject of a multi-
component research aimed at assessing the
contribution of the environment to improving
learning [16-8].

EXPERIENCE IN DESIGN AND USE OF
SIMULATORS

Challenges in design and assessment of
instructional simulators

The development and use of simulators in
education are evolving, together with increased
computing power and multimedia technology.
The technology evolution enables implementation
of more sophisticated features in the simulators,
such as history recording [19], 3D imaging and
‘liveness’ (dynamic immediate visual feedback)
[20]. Simulators are sometimes referred to as
visualizations, to emphasize the aim of illustrating
conceptual models and underlying processes that
cannot be seen. For areas such as quantum compu-
tation where the desired system is not implemented
yet, the simulation becomes crucial [21]. In engin-
eering education, professional tools for simulation
(MATLAB/SIMULINK, LabVIEW, etc.) are
frequently employed by instructors to perform
laboratory exercises and to introduce undergradu-
ates to professional tools. Sometimes educators
opt to develop their own simulator to fulfill their
needs, dictated by the needs of the curriculum and
the student population.

The design of new educational simulators should
be learner-centred and accompanied by formative
evaluation. Moreover, it requires developing meth-
odologies to evaluate their effectiveness [22, 23].
Effectively evaluating simulator utilization in
education is essential for further improvements.
Campbell and Bourne (2002) describe a quant-
itative survey of the effectiveness of simulators in
the laboratory [25]. They used stand-alone simula-
tions as substitutes for practising physical labora-
tory exercises. The effectiveness of these
simulations is then assessed by comparing the
performance in a written exam by students who
used simulation and those who used traditional
laboratories. Their findings showed that students
who used the simulation scored higher. Chaturvedi
et al. (2006) share the view that simulation and
visualization have great potential for enhancing
student learning and the quality of engineering
education. They believe that the desired objective
is for students to achieve a deeper understanding
of basic principles and define the features essential
for effectiveness as: interactivity (between the
student and the environment), interconnectivity
(between subject materials), and hierarchy
(gradual learning with succeeding modules) [24].

In CS and CE, most evaluations have focused on
algorithm visualization (AV). Unfortunately, the
results are not always positive; Hundhausen,
Douglas and Stasko (2002) conducted a meta-
study on AV evaluation research and concluded
that ‘how’ students use AV technology has a
greater impact on its effectiveness than ‘what’
AV technology is used [26]. They suggest that
ethnographic field techniques and observational
studies can help us better understand both how
and why AV technology might be effective in a

230 C. Yehezkel et al.

realistic situation. Kehoe, Stasko, and Taylor
(2001) integrated quantitative and qualitative
approaches. The latter was used to observe
students’ behaviour in a realistic situation, whereas
the former assessed the influence of AV on
students’ understanding [27]. In the research
described in [18], quantitative methods were used
to assess the effectiveness of the environment,
whereas qualitative methods were used to improve
our understanding of ‘how’ and ‘why’ visualization
contributes to learning.

Simulation-based teaching and learning

The simulator cannot generate learning by itself.
Simulation-based activities are used to generate a
fruitful interaction between the learner and the
simulator. Swaak and de Jong [28] emphasize the
importance of both model progression and gradu-
ally increasing the complexity of assignments to
guarantee the effectiveness of simulation-based
learning. A well-designed educational environment
based on a simulator should support each compo-
nent of this approach. Simulation-based learning
must be supported to help the learner acquire skills
and meta-skills and to deepen his understanding of
the underlying processes illustrated by the simula-
tor. According to Feisel, and Rosa [29], the early
criticisms on simulations focused on the rigidity of
simulations, the lack of realism in models, or
simulated results that did not adequately represent
real-world systems and behaviour, therefore caus-
ing the designer to tend to emphasize the realistic
aspects of simulation-based learning activities.
Recently, Ma and Nickerson [23] have made a
comparative review of the literature related to
hands-on, simulated and remote laboratories in
education. They have observed that the boundaries
among the three types of environments are blurred
in the sense that most laboratories are mediated by
computers. They suggest that with the proper mix
of technologies we can find solutions that meet the
economic constraints of laboratories by using
simulations and remote labs to reinforce concep-
tual understanding, while at the same time provid-
ing enough open-ended interaction to teach design.

One of the principal skills CS and SE students
need to acquire in programming is debugging. Ko
and Myers (2004), describe debugging as an
exploratory activity aimed at investigating a
program’s behaviour, involving several distinct
and interleaving activities: Hypothesizing, obser-
ving, restructuring data into different representa-
tions, exploring, diagnosing and repairing [30].
Interleaving activities are essential for effective
simulation-based learning in any domain. They
are essential for acquiring skills and meta-skills
and for deepening students’ understanding of the
topics learned.

Selecting and illustrating an appropriate concep-
tual model for the simulator are essential for
ensuring a fruitful learning process. The simulator
must be encapsulated in a course covering the
comprehensive theoretical material on the concep-

tual model, illustrated by the simulator and activ-
ities that enable the student to practise and
assimilate the new concepts.

THE COURSE

The EasyCPU environment was originally
designed as a learning tool for a high-school
course on introductory computer organization
and assembly language programming. This
course is an elective unit in the software engineer-
ing and in computer science programs [31, 32]. The
textbook [33] covers the theoretical material that is
taught in classrooms; this is supplemented by
laboratory sessions. The syllabus is given in
Table 1 [31].

Although the course is an elective, targeted at a
relatively small population of students, since 1998,
EasyCPU has been used by more than 7,000
students. It was also used to teach second-year
undergraduates at a technological college. About
70 educational institutions in the country have
used the program, most of which are high schools,
colleges, the Open University and a commercial
society that features professional continuous
education courses.

Description of the environment

The EasyCPU environment is based on a simpli-
fied model of an 8-bit version of the Intel 80X86
microprocessor family. It models the main
concepts of the von Neumann architecture, which
is still the basis of computer design. The model
consists of the CPU, memory segments, input/
output components and the bus connections
among them. The model of the CPU includes the
general registers, instruction and stack pointer
registers, flags and a clock. The memory is parti-
tioned into three segments—data, stack and
code—each with 256 addressed bytes. Data can
be entered directly into the CPU registers and
memory cells. The I/O consists of eight simulated
LEDs for the output and eight simulated buttons
for the input. The data and address buses are
represented by eight lines in two different colours
to distinguish between them. Three more lines
simulate the control lines.

Table 1. Syllabus for the computer organization and assembly
language course

Class Lab
Topic (hours) (hours)
Number systems 5 2
Computer organization 4 1
Organization and execution of programs 8 -
Basic concepts of assembly language 7 25
Assembling, linking, and loading 8 -
The stack and subprograms 6 8
Interrupts 5 5
From high-level languages to assembly 2 4
language
(Total) 45 45

Simulation-based learning of introductory computer architecture 231

The Intel 8086 microprocessor is a CISC archi-
tecture whose assembly language has more than
3,000 different instructions. This is too many for
an introductory student to learn, and yet we want
them to achieve basic programming skills in addi-
tion to an understanding of how the instructions
activate the hardware. Therefore, EasyCPU simu-
lates a subset of these instructions, which was
selected to represent the various instruction cat-
egories, mnemonics, addressing modes and data
types. A special effort was made to keep the Easy-
CPU assembly language compatible with the Intel
X86 instruction set, to enable advanced students
make a smooth transition to using a professional
environment.

EasyCPU was designed to be operated in two
modes, Basic and Advanced, to enable a gradual
increase in the complexity of the tasks assigned [28,
34]. The basic-mode enables the novice student to
learn the syntax and semantics of individual
assembly language instructions. The advanced-
mode provides the students with a visual display
and development tools for creating their own
programs and simulates the program’s execution.
EasyCPU offers a comprehensive set of scaffolding

activities that enable the student to learn the basics
of computer architecture and assembly language.
The activities cover the main topics of the course
syllabus (Table 2).

The activities address different instructional
goals and are based on the activation of the Basic
and Advanced modes that we will now describe.

Basic mode

The Basic mode screen in Figure 1 shows the
visualization of the execution of instruction MOV
CL,[1]. To execute this instruction, the CPU reads
the contents of the memory addressed by 1 and
places this value into register CL.

The control, address, and data busses connect-
ing the different units are animated to illustrate the
read/write cycle type (memory or 1/O): arrows slide
on the address bus from the CPU to the memory,
the control line MemR lights up, then arrows slide
on the data bus from the data segment to the CPU.

In Basic mode activities, students are asked to
pay attention to transmission of the data from one
unit to another during the execution of a single
instruction; this way they can learn to identify
aspects of instruction execution involving a bus

Table 2: The activity-set

#*

Contents

1/0O access, bus transfers and bus cycle identification
The endless loop

Instruction syntax and memory access: registers operations within the CPU, memory read/write access.
How to run a program. Editing, compiling and executing.

Addressing modes: registers, immediate, direct and indirect.

Testing a program: syntax and run-time error detection and correction.

Arithmetic instructions and their effect on the zero, carry and sign flags.
Jump instructions: control loop, testing and boundary conditions.

Logic Instructions: NOT, AND, OR, shift and rotate instructions.

10 Constants and variables: identifying an arithmetic progression.

11 Programming the control unit of an elevator.

12 Activating real hardware: using the timer in the computer to play music.

Nelie N e R N S

EasyCpu - <Basic-Mode> {Student Mode} Registration by Yehezkel C

File Command Options |nit Format
CPU

AH Dmi0mi | AL oicitoo || ! ion Heg
——— | [Mov Ll |
i BH (00017100 | BL || —————
= —_— — 1 1100 |
CH 0111101 | CL [01101000 1P [77] sefina]

Port 11 Port 2| DH 1111101 | DL 00001000 |

Flags [=
cosoz0 2
D7

Lats bus

SE1EEEEEE

DPLENONALDN =D

00101010
01010010
0010

U = o

01101000
00100011
ooooooti
oooo10i0
oi111000
o0111100
ORRRRL]
oiiiooii
olioooio
ooioii
00110100 =

Fig. 1. Basic mode during the execution of MOV CL [1].

232 C. Yehezkel et al.

read cycle from those involving a bus write cycle
(see an example in Appendix). In addition,
students can modify the processor’s clock, in
order to control the rate of data transfer between
components of the computer (CPU, memory, 1/O).
They can choose the format of the data display to
be binary, hex, decimal, or signed decimal.

The instructional goals addressed by the Basic
Mode activities are as follows:

a) To learn the structure and classification of the
instruction set and to identify their mnemonics;

b) To learn the syntax of the assembly language
and to understand addressing modes;

¢) To understand the mechanism of instruction
execution and of memory and I/O read/write
cycles.

In Basic mode activities, students can define vari-
ous types of instructions: data transfers, logical
operations, arithmetic operations, I/O, stack and
control. Instructions are defined by selections in
dialogue boxes specialized for each instruction.
The dialogue box functions as a wizard to enable
the student to choose instruction operands and
addressing modes according to the alternatives
allowed by the syntax. Once the instruction is
defined, its syntax is displayed and its execution
is animated. The basic mode is used in activities 1
and 3 where students learn new types of instruc-
tions and addressing modes. Part of the third
activity is presented in Appendix 1. Thereafter,
the use of the basic advanced mode is combined,
for instance, in activity 5 to introduce Input/Ouput
instructions and bus transfers, or in activity 7 to
show how arithmetic instructions affect flags or,
like in activity 8, to show the action of logic
instructions and to illustrate the differences
between rotate and shift instructions.

Advanced mode
The Advanced mode is designed for students
who have attained a basic knowledge of assembly

language instructions, enabling them to develop
programs. In effect, the Advanced mode functions
as an integrated development environment for
developing and simulating assembly language
programs (Figure 2).

The environment visualizes the processes taking
place within the computer by simultaneously
displaying the source code, the data and stack
segments, and an on-screen simulation of I/O
ports. After writing code in the program editor,
assembly and linking are simulated, followed by a
simulation of the execution of the program.
Students can step through a program, observing
the state of the computer after each step.

EasyCPU generates messages to help students
correct the syntax. To detect run-time errors in the
program, they may use the debugging tools to
change the data in the CPU and the memory,
and they can correct and rerun the program.
Figure 2 above shows a screenshot of a sample
program running in the Advanced mode. The
program adds the content of the first five
memory bytes, saves the results in the memory
byte at address five, and outputs the result to
output port 2.

Instructional goals addressed by the Advanced
Mode activities are as follows:

a) To acquire basic skills in the use of the move,
arithmetic, logic and control instructions;

b) To understand the structure of a program,;

¢) To understand the process of executing a pro-
gram;

d) To become familiar with the stack data struc-
ture and the actions executed on it;

e) To learn to build structured programs with
subroutines;

f) To introduce the interrupts and understand
their implementation.

In the activity-set (Table 2), the aim of the early
use of the advanced mode in activity 2 is to
illustrate the execution process of a small program

EasyCpu - <Advanced-Mode> {Student Mode} Registration by Yehezkel C.

AH | 76 AL[T
BH[O |BL[5
cH im—|EL[T‘

~oH 125 DL B
% DAOLD_CAEASYNEW!

.stack 100h
-data

-code

mov ax,@data

mov ds, ax

mov by, 0

mov al, 0

start: add al, [bx] ; sums bytes 0 to 4
add bl, 1 :increments pointer bl
cmp bl 5 checks end of loop
inz start ; next loop until 5

mov [5], al

out 2, al

mov ah 4ch

int 21h

Instuction Reg

out 2, al |

1P [8| spitoo

EF;;E:E zfl|

Dot Segmer IR

Code Segment

[LinelLabel [Mnemonic 4|
0 mov by, 0
mov al, 0
add al, [bx]
add bl 1
cmp bl. 5
inz start
mov [5], al
iz]
mov ah.4ch
int 21h

_|
=151 31 31315131 51

RIS

end =

(A ——|

Fig. 2: Advanced mode showing a program.

Simulation-based learning of introductory computer architecture 233

and to practice basic editing, compilation and
basic debugging tools. This activity introduces
the definition of syntax errors and run-time
errors and provides guidelines for minor debug-
ging to correct a short program. Activity 4 conso-
lidates testing skills. The students are progressively
asked to make significant modifications of
programs and, finally, to write their own
programs. To write meaningful programs, the
students have to understand the flags’ roles (activ-
ity 7) and the action of conditional jumps, and to
master control loops (activity 8). A part of the
eighth activity is presented in Appendix II. In
activity 9 students learn logic and shift instructions
and are asked to calculate successive exponents of
2, and to implement variations of running-lights
on the LED-array as a function of the user’s
switch-array inputs. Activity 10 introduces the
use of constants and variables—students are
asked to print the ABCs on a text-screen. In
activity 11, students are asked to program the
control unit of an elevator.

The EasyCPU environment can control external
hardware in addition to the on-screen I/O simula-
tion. This enables students to develop small but
actual hardware projects, and thus to experience
the interdisciplinary nature of working with hard-
ware and software. For example, they can write a
program that plays musical tones by using the
output instructions, the computer timer, and the
speaker of the PC platform, as required in activity
12 to generate musical tones. A unique feature
allows the development of independent software
modules that can be activated in EasyCPU
through input/output assembly instructions. Such
a module was developed for students to practice
interfacing basic peripherals on an educational lab-
kit. The GUI used in simulating the hardware lab-
kit connected to the PC allows students to inter-
actively test the activation of the peripherals by
“clicking” the devices on the GUI and then to
directly program peripherals (timer, parallel ports)
and toggle switches, LEDs, and Seven-segments.
Software communication between the lab-kit simu-
lator and the EasyCPU environment enables the
student to program the lab-kit hardware and
debug the program with both the simulated and
the hardware lab-kit. These features provide
simplified tools supplied in a professionally Inte-
grated Development Environment.

Empirical evaluation and experience

We quantitatively assessed the environment’s
contribution to the development students’ under-
standing and assimilation of the course materials
as well as their acquirement of programming skills.
The study was divided into two parts. The first
part was a survey aimed at evaluating the contri-
bution of EasyCPU to understanding the course
materials, and the second part was a survey
targeted to assess the contribution of EasyCPU
to the acquisition of programming skills.

The study population

The study was performed with 271 high-school
students in eleven classes from eight different high
schools. All classes learned the same introductory
course of Computer Organization as part of the
Computer Science and Software Engineering curri-
cula. Uniform assessment tools were provided by
formal assessment of student performance in the
national matriculation examination. The data were
collected and statistically analyzed.

The population of the study was divided into
two groups:

1) the experimental group, composed of students
from nine classes which studied the course using
EasyCPU,

2) the control group, composed of 58 students
from two other classes which used TASM
tools in the same course.

To identify an experiment and a control group of
equivalent ability, we used a pretest administered
to the students at the end of the first trimester; it
covered the topics learned without support of any
computer tools. During the first trimester, the
course was based only on theoretical learning.
The pretest consisted of 20 closed-questions
mainly aimed at evaluating student understanding
of the theoretical topics learned (the list of the
topics is presented in Table 3).

The following statistical analysis was performed
on the results of the pretest and the posttest:

1) The test was used to test frequency differences
between groups;

2) Student z-test was employed to test differences
between the means of the two groups;

3) One-way ANOVA test, followed by the post-
hoc Duncan’s multiple range test, was used to
analyze differences among several groups.

Table 3. Topics covered in pretest and posttest

Topics covered in the pretest

Topics covered in the posttest

Data representation and binary arithmetic
Inside the CPU & memory organization.
Computer units and interconnections
Instruction components- symbolic writing
Basic translation process:

Instruction level

Instruction execution processes
Operations performed by instructions

Data representation/binary arithmetic-operations
Memory space

Stack mechanisms

Instructions structure and addressing modes
Detailed translation process:

Program level

Program execution processes

Control Instructions

234 C. Yehezkel et al.

Duncan’s multiple range test revealed that the
mean scores of four classes were similar (i.e. not
significantly different among themselves; N = 78).
The experimental group consisted of three classes
(Ey=71.5(SD=13.5),E;=69.2(SD=8.1), (Ez =
72.2 (SD = 15.5); N = 55) and one control class
(Cy =739 (SD = 11.2); N = 23)). All students
were in the eleventh grade and the classes were
taught by the teachers who had taught computer
science fundamentals the previous year. All
teachers had experience teaching the course on
Computer Organization and Assembly Language.

The two posttests, namely, the written examina-
tion and laboratory examination, were based on
the format of the matriculation examination.

Formal assessment

According to the instructions of the Israeli
Ministry of Education, the formal assessment
was performed with uniform assessment tools
used for the matriculation examination. Assess-
ment of student performances was based on a
combination of a traditional (i.e. written examina-
tion) and a laboratory examination. All examina-
tions were supervised by external examiners
appointed by the Ministry of Education.

The written examination included a set of 10
closed-questions. Its weight was 30% of the final
grade. The first part was targeted mainly at the
materials learned in the first trimester, such as the
instruction fetch process and machine codes, with
no use of computer. For practical reasons, the
examinations were not performed simultancously.
Therefore, questions were selected by examiners
from a standard bank of questions classified by
topics.

The laboratory examination was performed in a
computer laboratory where students were asked to
write a short program. Its weight was 70% of the
final grade. The grading was based on a set of
criteria listed in a standard grading form published
by the Ministry of Education (Table 4).

Evaluating understanding of low-level machine

The contribution of the EasyCPU environment
to the assimilation and understanding of basic
concepts of computer architecture was assessed
by a pretest—posttest analysis. The pretest, as

Table 4. Uniform criteria for grading laboratory examination

Examination criteria Points

Expertise in operating the environment 15
Expertise in the GUI

Expertise in information retrieval

Expertise in working modes

Programming and debugging skills 25

Addressing modes, flags, loop control, variables,
stacks, program structure

Understanding the theoretical aspects of the problems 10
Solution correctness 15
Program structure 5
Total points 70

described above, was used to identify the control
and the experimental group. The posttest consisted
of a set of 14 closed-questions administered by the
end of the second trimester as a preparation for the
matriculation examination, to evaluate the contri-
bution of computer tools (EasyCPU and TASM)
to students’ understanding. In the posttest, some
questions, aimed at evaluating the understanding
of topics that were covered in the pretest, were
inserted intentionally. The topics covered are
presented in Table 4.

The ANOVA test for the variable laboratory
examination resulted in Fj,3, = 1141, p =
0.0001. The mean scores of only two experimental
classes among the three were significantly higher
than the mean score of the control class (E; = 68.7
(SD = 17.5) and E; = 58.7 (SD = (18.5)), two
experimental classes versus a control class C; =
52.6 (SD = 16.5)) and the third experiment class’s
performance was similar to that of the control class
(E; = 50.5(SD = 14.6)).

Two classes out of three (72% of the students in
the experimental group) significantly outper-
formed the control group in the posttest.

Evaluating the acquirement of programming skills

Evaluation of the effectiveness of the EasyCPU
in developing programming skills was based on the
laboratory part of the matriculation examination
as described above. The same statistical analysis
procedure as in the previous survey was performed
on the results. The ANOVA test for the variable
laboratory examination revealed a significant
Fio236 = 2.11, p = 0.0242. Duncan’s multiple
range test revealed that the mean scores of all
three experiment classes were significantly higher
than the mean score of the control class (E; = 94.6
(SD=17.6),E;,=91.9(SD =9.3),E;=90.8 (SD =
13.7), experimental classes versus the control class
C, = 82.2 (SD = 23.4)).

Students who used the EasyCPU environment
acquired better programming skills than those who
learned with the TASM environment. This study
provided us with a quantitative evaluation of the
environment’s effectiveness, whereas the research
deepened our understanding of both ‘how’ and
‘why’ the environment contributes to learning.

In the multi-component research, described in
[16, 17, 18], qualitative methods were used to
improve the understanding of both ‘how’ and
‘why’ the environment contributes to learning
topics in computer architecture. Here we summar-
ize the findings of this extensive research. Two
phases of the research were aimed at examining
the use of the environment during the performance
of two specific types of activities:

1) program development of a basic embedded
system,
2) testing the program.

The findings showed that:

1) concretization of the embedded system pre-

Simulation-based learning of introductory computer architecture 235

sented in the simulator helped students in con-
ceptualizing the system and in developing pro-
gramming skills,

2) the EasyCPU environment facilitated the stu-
dents’ investigations of the detailed behaviour
of the program.

In the final phase of the research, described in [17,
18], the contribution of the EasyCPU environment
to student understanding of a conceptual model of
a computer was evaluated. This was done by
investigating the mental models that students
construct in the two phases of the learning set-
up: before practising and after practising in the
environment. The findings support the view that
the environment was critical in enabling the
construction of a viable mental model, a process
that did not occur from textbook learning alone.

Summary of the results

Students who learned with the EasyCPU en-
vironment performed a comprehensive set of activ-
ities with gradually increased complexity. In the
Basic mode, before acquiring basic programming
skills, students were asked to follow up the simu-
lated execution of a single instruction and to
observe the interaction between the different
units. This learning phase facilitates a better under-
standing of the low-level machine mechanism. In
the Advanced mode, students practised basic
programming skills; they were asked to test inten-
tionally faulty programs and then to write small
programs of their own. The environment provides
the student with debugging tools accessible to the
novice. The research findings led us to conclude
that:

1) the environment renders the displayed informa-
tion and the program’s execution comprehen-
sible;

2) the students’ improved control of the tools
provided by the environment and the feedback
they gain from the visual display encourages
them to refine the testing procedure and dee-
pens their comprehension of the program’s
execution.

The qualitative study conducted on small groups
of students provided in-depth insight of students’
operations in the environment when developing
and testing a program. The qualitative results
support and explain the quantitative findings of
the survey on the laboratory examination.

Anecdotes of the experience

In order to standardize the examinations’ modes
of the elective units of the curriculum, the Israeli
Ministry of Education decided to replace the
traditional matriculation exam in the CS and SE
programs with individual mini-projects. The Easy-
CPU environment, which was originally intended
to support novice student learning with a closed set

of activities, offers limited tools (a reduced instruc-
tion set and I\O controls) and was not adapted for
the development of mini-projects. Amazingly,
students found several ideas for the development
of small embedded mini-projects. They used the
simulator to develop something original, imple-
menting a basic embedded system-like panel
control of a microwave, a fitness treadmill, alarm
and air conditioning systems. For several years we
had some ideas in mind, specifically to further
develop a more robust environment and to provide
the student with more realistic Input/Output
modules for developing small embedded systems.
We would like to update the design of its GUI,
improve the syntax and debugging tools, enhance
visual tracing of a program’s execution and insert
new features such as rewind tools. The environ-
ment is still used to teach the unit in spite of the
availability of competing up-to-date environments,
even though there has been no development and
support for several years. In fact, it has exceeded
our expectations in terms of lifetime (more than 10
years), as well as in its diversity and widespread use
(students’ original implementations).

CONCLUSIONS

The most critical decision in designing the
simulator was the choice of conceptual model.
We opted for a simplified model of a real compu-
ter; our goal was to facilitate the entrance of
novices into the domain of computer architecture,
enabling them to grasp the fundamentals of
program execution and to acquire basic assembly
language programming skills. Although simplified,
the model is compatible with an actual computer in
order to ease the novice’s transition from Easy-
CPU to a professional environment. The findings
showed that use of the environment can improve
students’ understanding of basic concepts of
computer architecture and programming skills.
The long-term, extensive use of the environment
has demonstrated that it has successfully satisfied
the educational needs of novice students in compu-
ter architecture. This achievement can be attribu-
ted to the simplicity of the design of the simulator
(in spite of its severe limitations) and the activity-
set, which were tailored to the course’s objectives
and content. This experience provided insight and
perspectives on simulation-based learning. The key
features for fruitful simulation-based learning are
the adequacy between course content, learning
materials, activities, and the conceptual model
illustrated in the simulator and its suitability to
targeted populations. These key features can be
achieved by learner-centred design accompanied
by formative evaluation.

Acknowledgments—We would like to thank the teachers and
students who participated in this research.

236

w

~N

10.

11.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

C. Yehezkel et al.

REFERENCES

. ACM/IEEE Joint Task Force on Computing Curricula, Computing Curricula 2001 Computer

Science Final December, (2000). http://acm.org/education/curric_vols/cc2001.pdf

. ACM/IEEE Joint Task Force on Computer Engineering Curricula, December, (2004). http://

www.eng.auburn.edu/ece/ CCCE

. ACM/IEEE Joint Task Force on Computing Curricula, Software Engineering 2004 Curriculum

Guidelines for Undergraduate Degree Programs in Software Engineering, A Volume of the
Computing Curricula Series, August, (2004). http://sites.computer.org/ccse/SE2004Volume.pdf

. L. Hughes, CSE Special Issue on Teaching Hardware-software, 17(2), 2007, pp. 85-86.
. L. Cassel, D. Kumar, K. Bolding, J. Davies, M. Holliday, J. Impagliazzo, M. Pearson, G. Wolffe,

and W. Yurcik, Distributed expertise for teaching computer organization and architecture (ITiICSE
2000 Working Group Report), ACM SIGCSE Bulletin, 33(2), 2001, pp. 111-126.

. IEEE Micro, Special Issue on Computer Architecture Education, 20(30), 2000.
. H. T. Salzer and I. Levin, Spreadsheet-based Logic Controller for Teaching Fundamentals of

Requirements Engineering. Int. J. Eng. Educ. 20(6), 2004, pp. 939-948.

. JERIC, Special issue on specialized computer architecture simulators that see the present and may

hold the future, J. Educ. Resources in Computing 1(4), 2001.

. D. Knuth, Bottom-up education, keynote in Proceedings of 8th annual conference on Innovation and

technology in computer science education ITICSE03, Thessaloniki, Greece, ACM Press, (2003).
M. Bruce-Lockhart, T. S. Norvell and Y. Cotronis, Program and Algorithm Visualization in
Engineering and Physics. Electronic Notes Theoretical Computer Science, 178, 2007, pp. 111-119.
S. L. Gordon and J. Wolfer, A Python-Based Assembler for a Custom, Robot-Centric, Instruction
Set, Proceedings of the International Conference on Engineering and Computer Education, 2007, pp.
24-28.

. L. Pedrosa, A.J. Mendes and M. Zenha Rela, edu.LMC and Other LMC Simulation Approaches:

Contributions to Computer Architecture Education Using the LMC Paradigm. Education for the
21st Century 2006, (2006) pp. 393-397.

. G. Wolffe, W. Yurcik, H. Osborne, and M. A. Holliday, Teaching computer organization/

architecture with limited resources using simulators, 33th SIGCSE Technical Symposium on
Computer Science Education, Covington, KY, (2002) pp. 176-181.

WWW Computer Architecture Page—Simulators, http://www.cs.wisc.edu/~arch/www/tools.html
[online], last modified: 29 Feb 2008, (Accessed 31 March 2008).

W. Yurcik and Osborne, H., A crowd of little man computers: visual computer simulator teaching
tools. Proceedings of the 33nd Conference on Winter Simulation, (2001), pp. 1632-1639.

C. Yehezkel, C., M. Ben-Ari, and T. Dreyfus, The contribution of visualization to learning
computer architecture, CSE on Special Issue on Teaching Hardware-software, 2(17), 2007, pp. 117—
127.

C. Yehezkel, A Visualization Environment for Computer Architecture, Ph.D. Dissertation,
Weizmann Institute of Science, (2004).

C. Yehezkel, M. Ben-Ari and T. Dreyfus, Computer architecture and mental models. 36th SIGCSE
Technical Symposium on Computer Science Education. St Louis, MO, (2005) pp. 101-105.

. L. Davidovitch, A. Parush and A. Shtub, Simulation-based Learning in Engineering Education:

Performance and Transfer in Learning Project, J. Eng. Amer. Soc. Eng. Educ. Oct., 2006, pp. 289—
300. http://findarticles.com/p/articles/mi_qa3886/is_200610/ai_n16810355/pg_1

C. D. Hundhausen and J. L. Brown, What you see is what you code: a radically dynamic algorithm
visualization development model for novice learners, Proceedings of the 2005 IEEE Symposium on
Visual Languages and Human-Centric Computing (VLIHCC'05), (2005), pp. 163-170.

Barbosa, Lula, B. and Lima, A. F., Symbolic and numeric quantum circuit simulation, proceedings
of the First International Conference on Quantum, Nano, and Micro Technologies (ICOQNM’07),
(2007) pp. 6-10.

G. Donzellini and D. Ponta, A Simulation Environment for e-Learning in Digital Design, IEEE
Transactions on Industrial Electronics, 54(6), 2007, pp. 3078-3085.

J. Ma and J.V. Nickerson, Hands-on, simulated, and remote laboratories: A comparative literature
review, ACM Computer Survey, 38(3), 2006, pp. 1-24.

S. K. Chaturvedi and O. Akan, Simulation and Visualization Enhanced Engineering Education,
International Mechanical Engineering Education Conference, Beijing, China (2006). www.asme.
org/Education/College/2006_Proceedings.cfm

J. O. Campbell, R. J. Bourne, P. J. Mosterman and J. A. Brodersen, The Effectiveness of learning
simulators in electronic laboratories, J. Eng. Educ. 91(1), 2002 pp. 81-87.

C. D. Hundhausen, S. A. Douglas and J. T. Stasko, A meta-study of algorithm visualization
effectiveness, J. Visual Languages and Computing, 13(3), 2002, pp. 259-290.

C. Kehoe, J. Stasko and A. Taylor, Rethinking the evaluation of algorithm animation as learning
aids: An observational study, Int. J. Hum. Computer Studies, 54(2), 2001, pp. 265-284.

J. Swaak and T. de Jong, Discovery simulations and the assessment of intuitive knowledge, J.
Comp. Assisted Learning, 17(3), 2001, 284-294.

L. D. Feisel, and A. J. Rosa, The role of the laboratory in undergraduate engineering education, J.
Eng. Educ. 94(1), 2005, pp. 121-130.

A. Ko and B. Myers, Designing the Whyline: a debugging interface for asking questions about
program failures, in: Proceedings of the ACM SIGCHI 2004, ACM Press, New York, 2004, pp.
151-158.

Simulation-based learning of introductory computer architecture 237

31. J. Gal-Ezer and D. Harel, Curriculum and course syllabi for high school CS program. Computer
Science Education, 9(2), 1999, pp. 114-147. http://www.openu.ac.il/Personal_sites/download/gale-
zer/curr_and_syll.pdf

32. B. Haberman and A. Cohen, A high-school program in software engineering, Int. J. Eng. Educ.
Special Issue: Trends in Pre-college Engineering and Technology Education, 23(1), 2007, pp. 15-23.

33. H. Zilberman, D. Kraus, D. Lupo, and 1. Zeratsky, Computer Organization and Assembly
Language. Tel Aviv, Open University, (1999).

34. T.deJong, W. R. van Joolingen, J. Swaak, K. Veermans, R. Limbach, S. King, and D. Guerghian,
Self-directed Learning in Simulation-based discovery environments, J. Comp. Assisted Learning,
14, 1998, pp. 235-246.

Cecile Yehezkel received her Ph.D. degree in Science Teaching from the Weizmann Institute
of Science. She is one of the heads of an educational programme at the Weizmann Institute
of Science, Davidson Institute, and she is teaching at the School of Engineering at Bar-Ilan
University. Her research interests focus on human-computer interaction, computer
architecture, modelling and simulation and engineering education.

Matzi Eliahu received his Ph.D. from the Technion—Israel Institute of Technology in Haifa
and his M.Sc. from Ben-Gurion University in Beer-Sheva. He is currently a lecturer at
HIT—Holon Institute of Technology and also at Ariel University Centre of Samaria. His
research interests are technology instruction issues at HIT and robotics navigation at Ariel.

Miky Ronen is the chair of the Instructional Systems Technologies Department at the
Holon Academic Institute of Technology and a fellow teaching professor at the Depart-
ment of Education at Haifa University. Her research focuses on the instructional design of
interactive learning environments and on the incorporation of technology in the teaching
and learning process.

APPENDIX I: A TASK IN BASIC MODE

Instructional goals:

® Identify addressing modes;
e [dentify memory access cycles.

Immediate addressing, where the operand is the data itself:

® Select the Copy Data command from the Command menu and build the command MOV CL,1. This is a
‘move register, data’ command, which inserts a data value into a register. Press OK for confirmation and
follow the execution of the command.

® Describe verbally the action performed by the command.

Direct addressing, where the operand is the address of the data:

® Select the Copy Data command from the Command menu and build the command MOV CL,[1].

® This is a ‘move register, memory’ command, which copies data from memory to a register. Use Direct
addressing for the source operand. Press OK for confirmation and follow the execution of the command.

® Describe verbally the action performed by the command. Follow the data transfer along the lines of the
addresses, data, and control. As shown in Figure 1, the control line MemR is activated (lights up) and the
data is output from the data segment in memory.

® Why do you think this action is called ‘reading from memory’?

Indirect addressing, where the operand indicates the name of the register containing the data address; in
indirect addressing, the 16-bit register BX functions as a pointer. It is a combination of the BL and BH
registers:

Select Copy Data from the Command menu and build the command MOV CL,[BX].
This is a ‘move register, memory’ command. Use Indirect addressing for the target operand. Press OK for
confirmation and follow the execution of the command. Follow the data transfer along the address, data,
and control lines.
Describe verbally the way the operation is executed.
Compare this instruction with the execution of the following instructions:

MOV CL,1

MOV CL,[1]

MOV CL,BX

238 C. Yehezkel et al.

APPENDIX II: A TASK IN ADVANCED MODE

Instructional goals:

® [earning to characterize syntax and run-time errors, and to debug them;
® Implementing addressing methods;

e Enhancing skills in writing loops;

® Practising how to run and debug a program.

In this activity you will be asked to correct the errors of a student who was asked to write a program that
adds the first 5 bytes of the data memory, writes the sum into the memory byte addressed 5, and outputs the
sum to an LED port. Here is the main part of the program:

mov al, 0

start: mov bx, 0
add [5], [bx]
add bl, 1
cmp bl, 5
jnz start

out 2, [5]

® Detect and correct the two syntax errors. Recompile until there are no more syntax errors.
® Detect and correct the run-time errors. Run the program and compare the results to the expected ones.
Reload the program run it step-by-step in order to detect run-time errors. Check and correct the program.

