Int. J. Engng Ed. Vol. 25, No. 3, pp. 534-546, 2009 0949-149X/91 $3.00+0.00
Printed in Great Britain. © 2009 TEMPUS Publications.

Making the Computing Professional
Domain More Attractive: an Outreach
Program for Prospective Students™

BRURIA HABERMAN'"? CECILE YEHEZKEL', HANANIA SALZER?

! Davidson Institute of Science Education, The Weizmann Institute of Science, P.O.B 26 Rehovot 76100, Israel.
E-mail: bruria. haberman@weizmann.ac.il cecile. yehezkel@weizmann.ac.il

2 Computer Science Department, Holon Institute of Technology, Holon 58102, Israel.

3 The Science and Technology Education Center, School of Education, Tel-Aviv University, Tel Aviv, Israel.
E-mail: salzerha@post.tau.ac.il

The recent rapid development of the field of computing has posed challenges in educating
newcomers, in particular, in attempting to bridge the gap between school and the contemporary
world of computing. To meet this challenge, we developed a novel outreach program for prospective
high-school students aimed at exposing them ‘‘directly by leading experts” to state-of-the-art
computing research and development. The program includes enrichment meetings and software
development projects under the supervision of experts. Six hundred students participated the last
four years in enrichment activities; 86 of these students developed high-level software projects. A
long-term formative evaluation of the outreach program has been conducted. So far, the study’s
findings have indicated that the program contributes to developing a culture of learning befitting the
dynamic world of industrial computing, thus providing the students with an entry point into the
computing community of practice.

Keywords: Software engineering; project development; mentoring; self-learning; software design
skills; scaffolding activities

INTRODUCTION: we suggest that in addition to learning funda-
THE “COMPUTER SCIENCE, ACADEMIA mentals, students should also become
& INDUSTRY” PROGRAM acquainted with enrichment through advanced
topics.

THE RAPIDLY DEVELOPING WORLD of ® The traditional style of teaching and learning in
computing-based technology will need a continu- school is usually designed so that students can
ous, heavy flow of talented students to be educated acquire explicit knowledge based on a thorough
and trained as engineers in order to carry out the understanding of the topic learned. However,
achievements needed to maintain our students in this approach alone might fail to educate stu-
the forefront of our profession and to keep abreast dents to become self-learners who are capable of
of technological innovations of the 21st century. navigating in the rapidly growing world of
Since the number of students opting for computing knowledge [1, 2]. Hence, students should also
and specifically software engineering education has experience a ‘‘taste-based” breadth-oriented

seemingly not been as large as before, it is impor- learning approach.
tant to plan outreach activities for prospective ® School projects enable students to experience
students aimed at making the field more attractive. software design and development; however,
This is particularly challenging due to the existing they do not resemble actual software engineering
gap between school education and the “real industrial processes, and the products are rarely
world” of computing that is mainly related to applicable to real-world situations. Hence, stu-
content, learning culture, and professional norms: dents should be encouraged (1) to participate in
small-scale activities that simulate “‘real-world”
® The basic fundamentals and core technologies situations, and (2) to develop comprehensive
that are introduced in school constitute the basis projects under the guidance of professionals
for students’ understanding of computing; how- who are representative of the computing com-

ever, they rarely include state-of-the-art comput- munity of practice.

ing research and development as well as new,

rapidly evolving directions in the field. Hence, Based on the above considerations, we developed

the “Computer Science, academia, and industry”
extracurricular program, designed especially for
* Accepted 3 March 2009. talented high-school students who major in

534

Making the computing professional domain more attractive 535

computer science (CS) or software engineering
(SE). The main goal of the program was to
bridge the gap between school and the “real
world” of computing by “opening a window” to
the academic and practical challenges that char-
acterize the CS/SE community of practice. Speci-
fically, the program aims at exposing students
“directly by leading experts” to state-of-the-art
research, advanced technologies, software engin-
eering methodologies, and professional norms. In
addition, the program explores the synergy
between theory and practice so that students will
gain a broad sense of contemporary research and
development in the field. The program is planned
so that students will experience a style of learning
that will prepare them to navigate in the ever-
changing, dynamic world of digital and other
rapidly increasing knowledge.

The two-year program blends formal and infor-
mal learning and includes enrichment meetings,
field trips, and software development projects
under the supervision of experts. Through these
activities, the program aims at bridging computing
and software engineering education to the funda-
mental studies of computer science at the high-
school level. A detailed description of the program
(related to its setting and contents) is presented
in [3].

The first stage of the program (Stage-A) is
designed for 11th grade students and consists of
a seven-month enrichment workshop. Each
monthly (after school) meeting consists of two
lectures by leading representatives of the commu-
nity of practice and related group activities.
Contemporary topics are introduced, the indus-
try’s professional norms are discussed, and
advanced technologies and methodologies are
demonstrated. The program’s activities are
supported by a web site that provides an opportu-
nity for experts to communicate with students
between meetings.

The second stage of the program (Stage-B) is
designed for a small group of graduates from the
first stage. During the 12th grade, the students
develop comprehensive software projects in a vari-
ety of scientific and industrial fields under the
apprenticeship-based supervision of professional
mentors (e.g. scientists and engineers from acade-
mia and the hi-tech industry). The project devel-
opment process lasts 9-10 months. Examiners
chosen by the Ministry of Education evaluate the
students’ final products; the students’ grades are
considered as part of their high-school Matricula-
tion Diploma.

The program has been conducted for the last
four years and serves as an example of a successful
partnership among academia, industry, the Minis-
try of Education, and K-12 educators. Six hundred
students around the country participated in enrich-
ment activities; 86 of these students developed
high-level software projects.

A long-term formative evaluation of the
program has been conducted regarding:

1) students’ attitudes towards the “different-from-
school” style of learning that characterizes the
program,

2) their performance in developing projects.

So far, the study’s findings have indicated that the
program contributes to developing a culture of
learning befitting the dynamic world of industrial
computing, thus providing the students with an
entry point into the computing community of
practice. For example, we found that project
development experience under the supervision of
professional experts may motivate students to
acquire more in-depth knowledge in computing,
as well as to promote creativity, enhance self-
learning and inquiry ability, and contribute to
establishing professional norms [3, 4].

In order to analyze project development
processes and their outcomes, we collected data
on the timing of mentor-students’ face-to-face
meetings, email, phone conversations, and
students’ post-project reflection and attitudes. In
addition, we characterized profiles of project
developers and identified the difficulties that
students encountered during the different phases
of project development.

PROJECT DEVELOPMENT ACTIVITY

Background and motivation

The basis for encouraging prospective students
to enroll in academic software engineering studies
should be initiated in the early stages of their
education and should focus on two main phases:

1) portraying the essence of the field to newco-
mers,

2) developing desirable habits, skills, and atti-
tudes.

Hence, it is important to bridging computing and
software engineering education to the fundamental
studies of computer science at the high-school
level. Indeed, educators have long noted the
importance of teaching software designing skills
to high-school computer science students (e.g. [5,
6, 7).

The 2004 Software Engineering curriculum
states that incorporating real-world elements into
the undergraduate curriculum is necessary to
enable effective learning of software engineering
skills and concepts (Software Engineering 2004
Curriculum Guidelines) [8]. According to the Situ-
ating Constructionism learning theory (suggested
by Papert & Harel, 1991) [9], meaningful learning-
by-making occurs “in a context where the learner
is consciously engaged in constructing a public
entity.” Since a large disparity was found between
the thinking habits and attitudes toward the
system development process of beginning students
and those of expert software developers [10], it is
important that novices should “acquire correct
programming habits, suitable for the development

536 B. Haberman et al.

of large complex programs. . . . [so that they will be
able to] cope with developing large software
systems in the future” [6].

Project-based learning and software develop-
ment assignments, performed by students in mean-
ingful contexts while applying innovative thinking,
may facilitate meaningful learning as well as
contribute to making computing and software
engineering more appealing. Project development
enables students to enhance cognitive and reflec-
tive skills, and to encounter real life experience as
project developers [8, 11, 12]. Moreover, it
encourages students to become creative, innovative
[13], and independent learners.

The academic CS community believes that the
role of projects in the undergraduate curriculum is
of great importance, since beyond being a means
for effective learning, it also demonstrates the
student’s mastery of skills appropriate for profes-
sional practice [12, 14]. The open question is, to
what extent do high-school projects prepare
students to gain “‘real world” software engineering
experience?

Traditional high-school projects enable students
to experience software design and development
processes, and to acquire a system-based percep-
tion. However, the high-school setting has several
shortcomings:

1) the teachers are not members of the SE com-
munity of practice, and they usually lack prac-
tical industrial experience;

2) the school labs are unable to provide infra-
structure characteristics of high-tech industry;

3) the students develop individual projects (team-
projects are not approved for formal assessment
by the Israeli Ministry of Education);

4) usually, the specifications of the product are not
provided by a real external client (but by the
teacher or the student), and the products
usually are not developed rigorously according
to the specifications;

5) it is common that the projects of students that
belong to the same class resemble too much the
projects of their classmates. This phenomenon
is direct evidence of strictly adhering to patterns
in a negative sense.

Scherz and Pollack (1999) found that high-school
instruction in project development is done intui-
tively by teachers and focuses only on principles of
programming and problem solving. “The under-
lying assumption is that students who know how
to ‘write a program’ will naturally be able to build
a computer system. However, it turns out that
teachers and students have reported difficulties in
project development—mainly in the non-program-
ming stages such as choosing a subject, planning,
analysis and evaluation” [15, p. 88]. Moreover, the
reality in school environments has shown that
teachers have neither the methodology nor the
tools to guide projects continuously throughout
the year. “The teacher’s role in project develop-
ment is actually to solve the immediate problems

and to help the student out of impasses, rather
than coaching, advising and supervising through
various project stages” [15, p. 89].

Even though the quality of high-school software
projects may provide evidence of students’ high-
level programming skills, and their in-depth invest-
ment in the project, the development processes do
not resemble actual R&D industrial processes, and
the products are rarely applicable to real-world
situations [3].

Guiding principles and a related model

The above considerations motivated us to
choose the following guiding principles underlying
the instructional model of the project development
activity:

® Recruiting role-models: One possible solution to
this “gap” problem between the school-project
setting and the “real”” world is that professionals
from academia and high-tech industry will take
an active part in educating potential newcomers,
specifically in mentoring students when devel-
oping appropriate projects. Since role-models
act as mediators of information, and they inspire
others to understand and appreciate the work of
today’s scientists and engineers, we believe that
an appropriate encounter between novices and
representatives of the computing community of
practice is very important. This kind of inter-
action of students with leading professionals
may motivate the students to pursue their stu-
dies further or to pursue a career in the field of
computing and software engineering [4]. Hence,
we recruit mentors who are representatives of
the following streams of the computing commu-
nity of practice: (a) faculty members of CS/SE
academic departments, (b) M.Sc and PhD stu-
dents, and (c) scientists or engineers in hi-tech
industry.

® Revealing (also) “weak” facets of industrial
software engineering: As well as introducing
students to state-of-the-art computing research
and development, it is also important, as a
“preventive treatment”, to reveal and discuss
the “weak’ facets of industrial software engin-
eering.

Wieringa (2005) concludes from an extended
analysis of research papers that the reason why
industry refrains from adopting requirements for
engineering methodologies developed by the
academia is that most requirements for engineering
researchers do not constitute sound, scientific
research [16]. This assertion seems to hold for the
other sub-fields of software engineering as well.
Parnas (1998) points out that computer science
alone is insufficient for educating a software engi-
neer [17]. The core-sciences of an engineering
discipline are the fields of mathematics and science
on which that discipline’s research and education
are focused. Salzer and Levin (2007) argue that the
intrinsic deficiencies of the software industry
cannot be attributed to a lack of knowledge in

Making the computing professional domain more attractive 537

computer science, or software engineering’s tradi-
tional core science. Therefore, they suggest that the
core-science of software engineering is not only
computer science, a pure mathematical discipline,
but also psychology [18]. Taking Wieringa’s posi-
tion [16] one step further, they propose that to
investigate the industry’s software engineering-
related deficiencies, researchers should also ask
scientific questions in the field of psychology [18].

Unfortunately, by the time our students will join
the workforce, this situation may not change very
much. Therefore, we decided to prepare them, by
at least admitting our mistakes, and making them
aware of what they have not been prepared for by
adhering to the traditional, computer science curri-
culum.

Optimal student-mentor matching

Project development activity is designed for
those “cream of the crop” students who exhibit
the following characteristics: high motivation,
creativity, self-learning and inquiry ability, persis-
tence, consistency, and the ability to follow a time
table. Accordingly, the selection of students for
this stage is based on the following criteria:

1) the teachers’ recommendation;

2) the applicant’s resume, which should provide
information about his CS knowledge, program-
ming experience, knowledge of programming
languages, participation in other relevant
enrichment programs, and experience in devel-
oping software projects;

3) the applicant’s ability to persuade us that he is
seriously interested in developing the project,
and that he is capable of successfully accom-
plishing the development and can submit a
working product.

Student-mentor matching is the key for successful
development of a project. To establish optimal
matching, we developed the following employment
fair model: a special meeting is conducted, where,
in a plenum session, the mentors present to the
students a variety of project subjects for which
they can serve as advisors. After the presentation,
a face-to-face mentor-student interaction takes
place where students are asked to present to
mentors their “CV-like” applicant’s resume. The
process ends when all possible interactions take
place. During the interaction, the students ask the
mentors questions about the suggested projects
and examine whether the topics seem attractive
and can be dealt with and whether they want the
mentor to guide them. At the same time, the
mentors implicitly investigate whether the students
are qualified enough to develop the project that
they suggested. Next, the students are required to
submit a list of projects in order of their prefer-
ence, and the mentors are asked to choose students
according to their assessment. Finally, the
managers of the program perform the mentor-
student pair matching [3].

Diversity

One goal is to enable students to choose the
project’s subject from a variety of subjects
suggested by the mentors. The possibility of choos-
ing a subject from a color range set may increase
students’ intrinsic motivation to develop a project,
and encourage them to reach their potential. This
goal could be achievable by the recruitment of a
diverse group of mentors. Another aspect of diver-
sity relates to the mentoring method, student-
mentor communication, and the student’s style of
self-learning. In our program we opted to enable
this type of flexibility to facilitate optimal student-
mentor interaction and performance.

Profile of graduates
Our aim is for the project development activity
to enhance students’:

1) skills such as creativity, self-learning, curiosity,
inquiry ability, innovation, system-level percep-
tion;

2) good habits such as time-management ability,
communication skills, and following specifica-
tions;

3) professional knowledge. However, a suitable
balance between students’ freedom and stan-
dards should be maintained.

THE SETTING

The students develop comprehensive software
projects in a variety of scientific and industrial
fields under the apprenticeship-based supervision
of professional mentors. The project development
process lasts 9—10 months. Examiners nominated
by the Ministry of Education evaluate the
students’ final products; the students’ final grades
are considered as part of their high-school Matri-
culation Diploma. The projects are developed
according to the following main stages: choosing
a problem/subject; analyzing and planning; imple-
menting and testing. During the development
process, the student needs to acquire theoretical
and technical knowledge, as illustrated in Table 1.

Table 1. Gaining knowledge and proficiency through project
development activity

Phase # Description

Phase 0 Initial acquaintance with the subject; specification
of the system.

Phase 1 Studying the theoretical background needed for
developing the project.

Phase 2 Analyzing, planning and identifying the main
algorithmic ideas.

Phase 3 Acquiring the needed technical knowledge—
studying a suitable programming language and a
development environment.

Phase 4 Implementing the project (writing and testing the
code).

538 B. Haberman et al.

Some of the students actually participate in
“real” industrial projects, thus solving “real-
world” problems for a real client; others utilize
advanced industrial development tools. The role of
the mentor is twofold:

1) to provide the student with guidelines and
resources for acquiring theoretical and technical
knowledge needed for developing the project;

2) to guide and to control the student’s progress in
various stages of developing the project, for
example, checking whether the product ad-
dresses the initial specification and require-
ments; checking whether the student
progresses according to a planned time table;
assessing the use of design methods, and asses-
sing the quality of the programming.

During that period the students are requested to
submit sub-products (e.g., specification documents
and a mid-term report) according to a given time-
table. At the end, towards the internal and external
examination, the students have to submit a work-
ing system and a written report that describes the
problem and the targets of the system; it must also
document the outcomes of each stage of the
development process. In addition, the report
must include a printout of the systems’ documen-
ted code. Meetings involving the whole Stage-B
group are devoted to software development issues
that are presented and discussed by experts. In
addition, in these meetings the students report to
the group about their progress in developing their
projects. Students are also invited to ask for help
through a technical-support forum managed by a
counselor. Peer to peer interactions and informa-
tion sharing in the forum is encouraged. The
counselor is a CS undergraduate student, a grad-
uate of our program.

The teachers are actively involved in supporting
the students throughout the entire development
process. The challenge is to create effective coop-
eration among all four types of participants:

1) the students,

2) the mentors,

3) the academic management team of the enrich-
ment program,

4) the teachers.

PRELIMINARY SCAFFOLDING
ACTIVITIES

Aimed at exposing the students to state-of-the-
art computing research and development, the
program offers a wide-spectrum of topics, some
of which are specifically dedicated to software
engineering methodologies, and professional
norms. For example, some lectures (of Stage-A)
are related to:

a) the development of complex systems—model-
based development, advanced software devel-
opment tools, computing in space;

b) professional norms—standards, the importance
of testing, and controlled reuse of code;

¢) human aspects of software development such as
agile programming.

In addition, meetings related to time management
and role-playing activities were conducted.

Why we, in the software industry, refrain from
following standards
The students in Stage-A of the program attended a
lecture entitled “Why we, in the software industry,
refrain from following standards” The lecture,
using language and terms from the world of
high-school students, highlighted differences
between computer science, which is basically a
pure mathematical discipline, and software engin-
eering, which is an engineering discipline whose
core sciences, according to Salzer and Levin
(2007), are computer science and psychology [18].
The students were asked to prepare for their
projects (in Stage-B of our program, as well as in
their further professional life) by paying attention
to the differences between what they were doing in
the last ten or so years at school and a real
industrial project. Taking into consideration that
even in school learning there is a difference
between regular problem-solving (of algorithmic
problems) and project work [15], and, needless to
say, an essential difference between school projects
and the industrial environment, we discussed
several issues, including those presented in Table 2.
In attempting to manage students’ expectations
from the projects ahead of them, students were
told that not only does the school vs. industry
difference make them unfit for industry—they are
in the very same position as were most of us
veterans, when we were “newbies”. Therefore, it
is suggested that they learn not only from our
success stories, but more than that—from our
mistakes.

A time-management workshop

(Stage-B) students attended a short time-
management workshop at a stage in which they
had already experienced some of the project devel-
opment, had sensed the complexity of the process,
and hopefully realized the need for time-manage-
ment scaffolding tools. Actually, the workshop
was conducted in preparation of the mid-term
report.

The workshop was aimed at demonstrating the
concept of buffer-management, one of the key
constituents of Critical Chain Project Manage-
ment, or CCPM [19]. In the industry, CCPM
uses the project buffer to control the uncertain
portion of time estimates. The underlying assump-
tions are that:

1) we cannot tell ahead of time which task’s actual
time consumption will be above the optimistic,
low estimate,

2) when a project uses educated time estimates,
then the time overflow will be the equivalent of

Making the computing professional domain more attractive 539

Table 2. Differences between school projects and industrial environment

Industry

(Engineering motivated)

High School, University
(Science motivated)

Who is the client? The financier

Where the needs come from?

How are the project and team managed?
Where does the motivation come from?
What new knowledge is gained?

What determines success?

The client and other stakeholders

The manager’s authority, expertise
Job security, advance in job position
Expertise, proficiency in familiar fields
Timely delivery, devotion, quality.

The student, the teacher

The teacher’s assignment, the student’s
motivation

All are equal, some refrain
Knowledge, grades
New fields

Solving riddles, inventing the wheel

(Hardship of task is not a goal.)

Where does the work product go?

Maintenance . . . maintenance . . .

Build and throw away

the overflow caused by about 30% to 50% of the
tasks consuming as much as their pessimistic
maximum estimates.

Thus, the project’s length is estimated as the total
of all the optimistic estimates, plus 30% to 50%
(depending on the project manager’s confidence)
of the difference between the two total estimates.
This difference is called the project buffer, since it
is not assigned to any task; instead, every time a
task overflows its optimistic estimate, the project
manager reduces the project buffer by the amount
of time overflow.

The workshop was trimmed down to the special
case of a project having a single “employee” (the
student) and having no interaction with other
projects. Therefore, of the three buffers of
CCPM, only the project buffer was demonstrated.

The workshop consisted of a human play-role
simulation game accompanied by a spreadsheet
budget-management demonstration. The students
received a shopping list that presented for each
item an estimated price range (i.e. an optimistic
(the lowest) estimate and a pessimistic (the highest)
estimate). A short story showed them how impor-
tant each item would be. The money we gave them
(candy-bars representing units of money) was just
enough to buy all items on the list, provided that
each item would cost no more than the lowest
estimate shown on the shopping list. The students’

AlB | c D[E GIlHII] 0 | K
k = =
= Task 2| g g
Q| = = = =
o D 2| = s
= %" a| g
S o s &
o 3 & s
x o = o
® o 3 =
g B 5 3
g g e
e
| 2 | Shirt 1 2
|3 | Trousers 3 5 204
4 Coat 4 B
L5 Bithday gift 12 g3 L
b | Birthday decoration | 1 3 10 16
7 Music CD 1 2 5
| 8 | Party snacks 13 4 5
El Stationary for school | 1 1 1}
10 —T [l Optimistic Butfar
et -

e
@
&

—

task was to decide on the order they would
purchase the items (when paying the actual price)
to ensure that once they ran out of money, every-
thing that they did buy was more important than
everything they did not.

We used two pre-programmed spreadsheets (see
Figure 1) to construct the plan and then to
continuously follow-up the budget, in particular,
the buffer.

The two spreadsheets were connected through
formulae that executed automatic calculations
with every input into the first spreadsheet. The
input into column A, Order of execution, immedi-
ately affected the order of the rows. The input into
column G, Actual, immediately recalculated the
Used buffer and the bar chart in the first spread-
sheet, as well as rows 9 and 10, Used and Remain-
der (respectively), in the second spreadsheet. The
spreadsheet was intended for demonstration only.

The spreadsheets were brought to the workshop
preloaded with the data shown in Figure 1. The
bar chart on the right emphasized the two consti-
tuents of the budget: the total of the optimistic
prices, and the buffer (Figure 1.a). The spreadsheet
in Figure 1.b summarized the details in the former
spreadsheet. The students were told that the buffer
was calculated as 50% of the difference between the
totals of the two estimates (high and low) (see
Figure 1.b). A corresponding number of candy-
bars were positioned in two transparent jars: a

Tatal of Differance: Tatal of

optimistic | <pessimistic | pessimistic

estimates = astimates
rhinus

=optimistic>
10

Optimistic
16

T =
15 The fuel left
. in my tank

Ny remaining fuel
(should approach
emptiensss only tloge to the

(b)

. Buffer-management spreadsheet. a) Detailed list of tasks b) Summary.

540 B. Haberman et al.

large jar contained the budget’s optimistic portion,
and a small one—the budget’s buffer. The number
of candy-bars in each jar was equal to the numbers
initially shown on the spreadsheets’ bar-chart (16
and 95).

As the students executed each purchase, they
“paid” with the candy-bars. For each item, they
were allowed to draw from the large jar only the
number equal to the item’s optimistic price esti-
mate. When the actual price was higher than that,
they had to fill in the difference from the smaller
jar, thus reducing the buffer. However, when the
actual price was smaller than the item’s optimistic
price-estimate, they had to transfer the difference
from the larger to the smaller jar, thus preserving
the gain for future use by increasing the buffer. As
each actual price was entered into the spreadsheet,
the spreadsheet’s bar charts automatically exhib-
ited the same behavior.

Three rounds of the game were played. In the
first one, we instructed the students to define the
order according to reasons not relevant to the real
goal. In the second and third round, the students
tailored the order to the real goal, and successfully
achieved it. During the workshop, we used four
different notions to refer to a consumable resource:
money (as the price of goods), candy-bars (as the
tangible materialization of money), fuel in a fuel
tank (see Figure 1.b, to which students could easily
relate something that can run out), and, of course,
time (as the resource, which was needed to
complete a task). We interchangeably referred to
all four notions during the workshop, thus giving
the students a chance to abstract away the intan-
gible properties, which were common to all four,
and that were important to comprehend buffer
management. This technique was further augmen-
ted by repeating the whole cycle several times from
planning through execution and buffer-monitor-
ing.

The students learned to translate uncertainty in
price estimates to price ranges, and to compute the
project buffer from these ranges. They learned to
calculate the increase and decrease in the buffer,
depending on the items’ actual price compared to
the estimated optimistic one, and to monitor the
state of the buffer throughout the project’s life. In
the discussion that followed, the students asked
questions, which showed that they were able to
readily transfer the make-believe game to the
subject matter of time management.

We emphasized to the students that time
management (like other aspects of management)
should not end with an initial plan, but should
continue through the whole life of the project.
Near the workshop’s end, when students already
comprehended the notion of buffer, we discussed
the benefits of keeping a tab on the buffer, how to
identify when it is deployed too fast, and how to
respond to that.

IMPLEMENTATION

The program has been run for the last four years
(see Table 3); it serves as an example of a successful
partnership among academia, industry, the Minis-
try of Education, and K-12 educators. Six
hundred students around the country participated
in enrichment activities; of these, 155 students were
selected as candidates for stage B, 86 of whom
succeeded in developing high-level software
projects.

The subjects of the students’ projects are usually
related to topics of the enrichment meetings
(Stage-A) and actually reflect the mentors’ back-
ground. Most of the projects mentored by industry
representatives have practical characteristics—for
example, computerized homes, managing a multi-
media-shop, programming a robot, missile detec-
tion, and computerized aquarium care. On the
other hand, the projects sponsored by the CS
faculty and (M.Sc. and Ph.D.) CS students focus
on theoretical or research-based subjects such as
computerized graphics, image processing, auto-
matic text categorization, modeling-based devel-
opment of a control system, disassembling and
reassembling DNA, simulation of the theory of
natural selection, utilizing neural networks for the
recognition of characters in a picture, and games
based on learning machine theory.

EVALUATION

A long-term formative evaluation of Stage-A of
the program has been conducted regarding
students’ attitudes towards the ‘“‘different-from-
school” style of learning. Pre- and post-question-
naires were administered to all attendees before
and after each enrichment workshop, with the aim
of identifying the expectations of newcomers, as

Table 3. Participation in the program—Four years of experience

Years 2004-2006 2005-2007 2006-2008 2007-2009
Stage A # Students 71 140 180 210

Schools 9 20 30 30
Stage B # Candidates 25 50 80 85

Graduates* 13 28 45 unknown**

* Students who succeeded to successfully finish their project.

** Stage B of the cycle that will begin in June 2008 and will end in May 2009.

Making the computing professional domain more attractive 541

well as the attitudes of graduates. So far, the study
findings related to students’ attitudes have indi-
cated that the program contributes to developing a
culture of learning befitting the dynamic world of
industrial computing, thus providing the students
with an entry point into the computing community
of practice [3].

After a pilot implementation of the first cycle of
Stage-B, which was accompanied by an informal
field study (project development period: 2005-
2006), we conducted a formative evaluation of
the project development activity. The goal of our
study was to assess students’ project management
style, their communication with their mentors, and
their use of resources. We were also interested in
students’ reflection on various aspects of project
development (such as challenges, difficulties, bene-
fits, etc.). Twenty-two students of the second cycle
(project development period: 2006-2007) agreed to
answer a reflective questionnaire after they had
developed their projects. A further, ongoing inves-
tigation is currently being conducted with the third
cycle of students, aimed at constantly improving
the mentoring model as well as the monitoring of
the project development processes.

Students’ project management style

One main goal of our study was to assess
students’ project management style and their com-
munication with the mentors. To this end, we

asked the students to retrospectively assess the
time they invested in developing their projects
(hours per month) and to report the number of
meetings they had with their mentors (per month).

The project development process usually takes
9-10 months starting in July (the first month) until
April (the 10th and last month) when the final
external assessment of the projects is performed by
examiners of the Ministry of Education. The
following graphical view (Figure 2) illustrates
students’ assessment of meetings per month and
invested time per month (average, N=22). The
graph clearly shows that students tended to
invest a meaningful amount of time at the begin-
ning of the process, which decreases towards the
intermediate period (between the 3rd and the 5th
month). A two-step increment in students’ invest-
ment of time can be observed starting at the end of
the 5th month until the beginning of the 9th month
(when a final internal assessment takes place). At
the 10th month, an additional intensive effort is
made to make final changes and improvements
until the final external examination. It seems that
the requirement to submit a midterm report at the
beginning of January (the 7th month of develop-
ment), along with the requirement of presenting it
in a peer-to-peer meeting, resulted in a boost in
time-investment maintained by the students until
the final examinations.

We examined each of the graphical views of

Meetings per Month

TN

e—— oo M ‘

0

Meetings per Month (Avwrg.) [

FEPEFSF IS S

))
)&. V&Q’. %d}. cﬁ’” V\P\\‘ 000)@9, ({é:,‘ “\é o
Month

Assessment of Invested Time
(hours per month) Avrg.

15 /\'
- }
5 \’—4\'/

0 T T T T T T T

S EEFE eSS S
W oV g TG

Hours per Month (Avrg.)

Month

Fig. 2. Meetings and invested time per month during the project development course (Average, N=22)

Meetings per Month

Meetings per Month

75
s A
2

&£ F $ F &

Month

Assessment of Invested Time per Month
(hours)

o Student A
—e— Student B
- —— Student C

Hours per Month

o 1

¢ &
e

b P b B B R
R R
Month

&

Fig. 3. Three profiles of meetings and time invested per month during the project development course: Student-A, Student-B, and
Student-C).

542 B. Haberman et al.

twenty-two study subjects and found a diversity of
behaviors. A deeper investigation of three
students, characterized by three dissimilar profiles,
was performed; these profiles could be considered
as reflecting distinct groups of students related to
their project management behavior; to obtain a
valid categorization, a further investigation, which
includes a qualitative study, should be performed.
Figure 3 illustrates three profiles of student beha-
vior related to time management and commun-
ication with mentors.

Student-A exhibits the behavior of someone
who does a large amount of independent work,
along with a few meetings with his mentor, which
started after a period of self-study and later on
continued with a slight increase towards the
completion of the project. In contrast, Student-B
was coached intensively by his mentor during the
whole period; apparently he was unable to achieve
autonomous self-investment. Student-C exhibited
consistent self-investment and had regular meet-
ings with his mentor every two months; apparently
the meetings were devoted to the student’s report-
ing on his progress and his consulting with his
mentor, along with the mentor’s fine-tuned coach-
ing, control, and support.

Student assessment of resources used for
developing projects

In addition to classifying students’ time manage-
ment and frequency of communication with their
mentors, we were interested in their use of

resources; specifically, we sought to investigate
whether there was any relationship among these
three dimensions.

Students used a variety of resources during the
project development activity [4]:

® Bibliographic Resources—the Web, professional
articles, professional books.

® School—The school teacher, school learning
(materials and methods).

® (Informal) Human Resources—A classmate the
student’s age, a family member, an adult
acquaintance.

® Mentoring—The mentor.

o Seclf-Studying—The student.

One main goal of our study relates to student
assessment of the resources (N=22). We analyzed
assessment of the resources used during phases 1-4
of the project development (see Table 1 above).
Importantly, the findings indicated that during the
entire development process the students exhibited
self-efficacy, since they relied more on themselves
than on other resources. Interestingly, during the
entire development process, the Web was perceived
as the most significant bibliographic resource.
Specifically, to achieve adequate acquaintance
with the needed theoretical knowledge, self-study-
ing and the Web were perceived as most signifi-
cant, which may imply that the mentors’ guidance
motivated the students’ self-inquiry and self-study.
However, during the problem-solving activities,

Phase 1: Learning theoretical background

5T

4

31

@ Student A
| Student B

2
O Student C

Phase?2: Identification of the main
algorithmic ideas

3
B Student A
B Student B 5 ||

0 Student C
11 |
o - - ‘ lI I

Student Mentor Schooll. Teacher Books Articles WEB

Phase 3: Technical knowledge and
programming language

@ Student A
| Student B 2
O Student C

] WA

Studert Mentor School L. Teacher Books Aricles

Student Mentor School L. Teacher Books Articles WEB
WEB

Phase 4: Project Implementation
(writing the code)

@ Student A
m StudentB 2 T

O Student C
it IT
P2 T T

Student Mentor School L. Teacher Books — Articles WEB

Fig. 4. Three Student assessments of resources used for project development (Student-A, Student-B, and Student-C)

Making the computing professional domain more attractive 543

students relied more on their mentors than on
bibliographic resources [4].

Figure 4 specifically illustrates the assessment of
the resources by Student-A, Student-B, and
Student-C in each development phase.

The graphs illustrate that the self-study resource
was equally estimated by the three students during
all phases (1-4) of the development, receiving the
highest grade (5 on a Likert-type scale). For
Student-A, the mentor’s role was mostly mean-
ingful in phase 2. School-learning was weakly
estimated in all four phases; however, the teacher
played a significant role during phases 1, 2, and 3
(with respectively decreasing importance). All the
bibliographic resources were intensively used
during all four phases and were weighed with
higher grades than the mentor during phases 1, 2,
and 3. The strength of the results lies in the above
characterization of Student-A with respect to (a)
time-management and (b) frequency of commun-
ication with the mentor. Indeed, Student-A could
be described as someone who engages in a large
amount of independent work and whose success
can be attributed to self-investment supported by
moderate and consistent mentoring (about two to
four times a month), along with the consistent use
of bibliographic resources.

For Student-B, the mentor’s role received the
highest grade (5) almost in three of four phases. In
phase 3, which relates to acquisition of technical
knowledge and programming language needed for
the development of the project, the mentor’s role
was assigned a slightly lower grade (4). In this phase,
Student-B attributed the highest grade to the role
played by the school setting (compared with other
phases), which implies that he felt confident with the
support of his “natural environment”, particularly
at this stage. Actually, according to the mentor’s
report, Student-B had a weak performance; hence,
the human resources were essential for him during
all the phases of the project. In contrast, diverse
bibliographical resources (e.g. articles and the web)
were slightly used (accept for specific books recom-
mended by the mentor), which objectively implies a
low level of autonomous and flexible self-studying.
Interestingly, however, from the student’s point of
view, he highly assessed his self-investment during
all phases of the project. Though the behavior of
Student-B is far from ideal (from our point of view),
the positive consequences of these findings are that
this specific student displayed high self-satisfaction
and high self-esteem. We believe that his positive
experience of developing a project, with additional
suitable coaching would improve his self-learning
ability.

Although Student-C met his mentor only every
two or three months during the whole process, he
assessed his role by giving it the highest grade in
phases 1 and 2, which relate to the learning of
theoretical background and planning the solution.
Interestingly, his mentor was a biology researcher
with no knowledge in computer science; accord-
ingly, he played the role of a “real” client and

defined the client’s software requirements. In
contrast, Student-C’s teacher did not play a signif-
icant role during the entire process. Instead, the
student relied more on bibliographic resources and
used them intensively during the three first phases.
We can conclude that Student-C exhibited char-
acteristics of an autonomous self-learner and a real
developer; however, we found that his interaction
with his mentor was below par (in terms of meet-
ings per month), and we assume that they both
could benefit from more frequent interactions.

Time management of software projects is the art
of discerning meaningful objectives and prudently
allocating time investment in several competing
tasks. The preliminary findings motivated us to
improve the mentoring model in order to improve
students’ time management and use of resources.
Further improvements are needed to better moni-
tor the project development process by improving
control and assessment of progress toward the
project’s completion. Such a model should provide
suitable tools to diagnose pitfalls related to various
aspects of the development process (e.g. weak
communication with the mentor, problem-solving
difficulties, and technical problems).

Student perception of the project development
experience

Upon submitting their final products, the
students were asked to retrospectively relate to
various aspects of the development process.
Several questions were introduced to the students,
in an effort to investigate their perception of the
project development experience; specifically, we
asked them to refer to:

1) the most difficult phase,
2) the most enriching phase,
3) gaining a new perspective,
4) personal benefits.

What was the most difficult phase of the project
development?

Among the twenty-one students who answered
this question, one student struggled with the initia-
tion of the self-learning process needed to acquire
the knowledge required for developing the project
(Phase 1). Two students specified the difficulties
they encountered when learning new complex theo-
retical topics such as Fourier analysis for speech
recognition or neural networks for information
processing (Phase 1). Two students experienced
difficulties in starting the main design of the
required system (Phase 0, Phase 2). One student
reported that he was bored with the project imple-
mentation (Phase 4). Another student reported that
he had difficulties when writing the user guide of the
application that he had developed. Most of the
students had difficulties with the algorithmic forma-
lization of theoretical knowledge and with the
implementation of algorithmic ideas (Phases 2-4)
(in students’ words: the “implementation of the
theory in programming’’). For example, one student

544 B. Haberman et al.

reported that he struggled with the algorithmic
formulation of “body collision” theory; another
student encountered difficulties in implementing a
“computer player’” when developing a game (Phase
2, Phase 4). Some students encountered difficulties
in some technical issues such as retrieving data from
a data base, image format translation, or saving
data in files (Phase 3, phase 4). Eight students
indicated that they struggled in learning a new
programming language or paradigms (e.g. Object-
Oriented programming, artificial intelligence). In
particular, they found it difficult coping in parallel
with theoretical and technical knowledge of a new
domain, learning a new language, and above all,
integrating the various pieces of knowledge to
promote the progress of their products.

What was the most enriching part of the
development process?

About half of the students stated that the most
enriching part of the project was the learning of a
theoretical subject or the identification of the main
algorithmic ideas needed for solving problems
(Phase 1, Phase 2). The remaining students found
that the most enriching part was associated with
phases connected with acquiring technical know-
ledge or a programming language (Phase 3), or
implementation issues (Phase 4); for example,
learning a new programming language, acquain-
tance with a new paradigm or an unfamiliar work-
ing environment, or building hardware (which is
considered new for most CS students). One student
reported that the process of seeking a solution to
fix errors enabled him to reach a better under-
standing of his own work.

Some students did not refer to specific phases of
the development; they instead noted that the most
enriching experience was to work together with the
mentor. For example, a student wrote in his final
report that: “Working with a mentor who is a
professional was for me as a unique experience,
with both pleasing and educational aspects. His
contribution was a meaningful contribution to the
project’s achievement.”

The perception of the most enriching part of the
project is very individual. Our program is char-
acterized by great diversity related both to the
student population, mentors, and the types of
projects offered by the mentors (or suggested by
the students). This implies a great diversity and the
uniqueness of the students’ view in relation to his
perception of the significance of each phase of the
development process. Interestingly enough, usually
there has been a direct connection between the
sources of difficulties reported by each student and
the phase he found most interesting in his project.
It seems that overcoming difficulties was perceived
as a challenging and enriching experience that
provided satisfaction.

Did the project provide you with a new perspective
on the school’s learning materials?
Most of the students stated that the project

development activity enabled them to significantly
broaden the knowledge that they acquired at
school. One student specifically indicated that the
activity increased his awareness of the need to
learn the basics at school as a basis for developing
a project even with an advanced topic. Some
students described the new perspectives in terms
of specific knowledge or new comprehension
gained, such as improving their understanding of
the mechanism underlying running a program,
providing creativity in programming, learning
new concepts in Object-oriented programming,
solving complex problems, or improving achieve-
ments in software design. Six students (out of
twenty-one) stated that they did not gain any
new perspectives but learned totally new domains
not connected to the topics learned at school.

What was the personal benefit that you thought
the project development provided?

Almost all the students claimed that they
acquired new knowledge and professional experi-
ence. Only four of them specified that they learned
time management. Interestingly, some students
specified other meaningful affective benefits from
their experience such as being able to manage a
project satisfactorily; enhancing self-confidence;
sharpening their sense of responsibility; and
accomplishing a final, self-made working product
satisfactorily.

CONCLUDING REMARKS

Our program, aimed at exposing the students to
state-of-the-art computing research and develop-
ment, provides them with the opportunity to be
mentored by representatives of the computing
community of practice. We believe that it is
imperative that academia and the high-tech indus-
try take an active part and contribute to making
the professional domain of computing more
attractive, especially in view of occasional high-
tech crises and the continual decline of enrollment
in computer science and software engineering
studies.

Students in our program are given the opportu-
nity to experience various aspects of developing
projects in the “real-world”, such as coping with
“real” problems in the sense of developing soft-
ware for a real client instead of doing assignments
that reflect the school setting alone (i.e. defined by
the teacher, or entirely motivated by the students).
Another important opportunity that the students
have is to be exposed to the authority and expertise
of a professional; to acquire new theoretical and
technical knowledge needed for developing the
project; to experience planning, designing, and
implementing according to professional standards
and norms.

For the last four years the program was accom-
panied by an ongoing evaluation the aim of which
was to assess students’ attitudes towards the differ-

Making the computing professional domain more attractive 545

ent style of learning and towards various aspects of
the experience of developing long-term extracurri-
cular projects [3, 4]. Part of the evaluation’s find-
ings is presented in this paper. Importantly, these
findings relate to the group of students who
succeeded in accomplishing their projects. Since
these students consist of only ~60% of the can-
didates for the project development assignment, we
felt that it was important to develop diagnostic
tools suitable for detecting pitfalls related to vari-
ous aspects of the development process (e.g. weak
communication with the mentor, problems in time-
management, problem-solving difficulties, and
technical problems). These problems might espe-
cially affect highly motivated students who did not
acquire enough skills that characterize an indepen-
dent learner, and might cause them to quit before
completing their project.

In-depth analyses of students’ time-management
profiles and interviews with students, mentors, and
teachers motivated us to specifically diagnose
further those difficulties encountered by student-
mentor interactions. For example, the interviews
revealed the following difficulties:

® Gaps between the students’ expectations from
the mentors (perceived as teachers) and the
mentors’ expectations from the students (per-
ceived as independent adults self-motivated
enough to learn professional skills).

® Mismatch in the student-mentor pairs.

® Communication difficulties (related to the men-
tor’s professional constraints and travels, tech-
nical problems in email communication, the
student’s school-study constraints).

® Weak engagement of mentors/students in face-
to-face meetings.

® Failures related to the authority of the mentor
(e.g. small age gap, weak tools to enforce
authority).

e Pitfalls in the mentors’ management strategies
that might result in students quitting before
completing the assignment.

o Pitfalls in the follow-up of the mentoring process
by the management team of the program regard-
ing each mentor—student pair.

The findings motivated us to plan additional qual-
itative and quantitative assessments, as well as to
devote our efforts to improving the mentoring
model with the aim of achieving a balance between
diversity and maintaining standards. For example,
one specific question relates to the freedom students
should be given in respect of following specifica-
tions [20]. Some scholars (e.g. [13]) claim that
students must be given complete freedom to express
their creativity, and for that to be realized, they must
not be forced to stick with the initial plan of their
projects. Other scholars maintain [21] that students
must fulfill their projects in an organized, metho-
dological way, which includes following the plan
that was set at the beginning of their projects. In
Stage-B of our program we will instruct the students
and their coaches to allow the plan to be changed at

will, up to five months before the scheduled end of
the project. Based on Boehm’s diagram [22], which
indicates that the cost of fixing errors, as the project
phases advance, proceeds according to a logarith-
mic growth pattern, we predict that until this point
in time, even dramatic changes in what the student
will choose to work on will have only a marginal
price tag.

To this end, we decided to perform the following
actions:

® Organize more preliminary meetings between
the management team, the students, the tea-
chers, and the mentors in order to provide
more information about the process and to
reach an agreement regarding the expectations
of the students, mentors, and teachers.

® Refine the student-mentor matching by invol-
ving the teachers in finalizing the matching
process.

® Organize continuous meetings throughout the
project development activity related to time
management and other aspects of the project
development process.

e Reinforce the mentors’ authority regarding
timely delivery and to provide them with appro-
priate assessment tools.

e Reinforce the teachers’ authority in encouraging
communication between students and mentors.

e Refine the follow-up of the program’s manage-
ment team after the mentoring process for each
mentor—student pair.

Further improvements are needed in the future for
better monitoring of the project development
process by improving assessments of the progress
of the projects toward their completion. More
lectures and more scaffolding activities should be
conducted. For example, in the buffer-manage-
ment activity presented above, we taught time-
management that fits to the closed-system nature
of continuous working hours at a workplace. In
contrast, as Figure 3 (Assessment of invested time
per month) illustrates, students work on an indi-
vidual school project only for short bursts. Buffer-
management assumes that the main competition
for an employee’s time is between different tasks.
Students have no fixed “working hours” for their
homework projects; therefore, the list of compet-
ing tasks includes much more than just the project
tasks. The buffer-management workshop exposed
the students to yet another difference between the
academic setting and industry. The students were
instructed to apply this technique of time manage-
ment only to the bursts of more or less continuous
work on their projects, but not during the time
between.

In addition, scaffolding learning-based tools for
project development should be integrated, e.g. the
PBL Organizer, which was developed by Polack
and Scherz (1999) [15, 21] for gradually supporting
both students and teachers (mentors) in project
development processes.

546

B. Haberman et al.

REFERENCES

1. P. D. Long and S. C. Ehrmann, Future of the learning space: Breaking out of the box, Educause,
(2005), pp. 42-58.

2. D. Passig, Taxonomy of IT future thinking skills, In Tailor, H., & Hogenbirk, P. (Eds), Information
and Communication Technologies in Education: The School of the Future, Kluwer Academic
Publishers, Boston, (2001), pp. 152-166.

3. C. Yehezkel and B. Haberman, Bridging the gap between school computing and the “‘real world”,
Lecture Notes in Computer Science, 4226, (2006), pp. 38-47.

4. B. Haberman and C. Yehezkel, Computer science, academia, and industry—An educational
program For establishing an entry point to the computing community of practice, J. Info. Tech.
Educ., 7, 2008, pp. 81-100.

5. J. Gal-Ezer, C. Beeri, D. Harel, and A. Yehudai, A high-school program in computer science,
Computer, 28(10), 1995, pp. 73-80.

6. J. Gal-Ezer and A. Zeldes, Teaching software designing skills. Computer Science Education, 10(1),
2000, pp. 25-38.

7. J. E. Sims-Knight and R. L. Upchurch, Teaching software design: a new approach to high school
computer science, Annual Meeting of the American Education Research Association, Atlanta, GA,
(April 1993).

8. ACM/IEEE Joint Task Force on Computing Curricula, Software Engineering 2004 Curriculum
Guidelines for Undergraduate Degree Programs in Software Engineering, A Volume of the
Computing Curricula Series, August, 2004. Retrieved June 25, 2007, from http://sites.computer.-
org/ccse/SE2004Volume.pdf

9. S. Papert, and 1. Harel, Costructionism, Ablex Publishing Corporation, (1991).

10. E. Fleury, Students’ beliefs about Pascal programming, J. Educ. Computing Research, 9(3), 1993,
pp. 355-371.

11. B. Bracken, Progressing from student to professional: the importance and challenges of teaching
software engineering, JCSC, 19(2), 2003, pp. 358-368.

12. S. Fincher, M. Petre and M. Clark, Computer Science Project Work Principles and Pragmatics,
Springer-Verlag (Eds.), London, (2001).

13. P. J. Denning and A. McGettrick, Reentering computer science, Communication of the ACM,
48(11), 2005, pp. 15-19.

14. M. Holcombe, A. Stratton, S. Fincher, and G. Griffiths, (Eds.), Projects in the computing
curriculum, Proceedings of the Project 98 Workshop, Springer-Verlag, London, (1998).

15. Z. Scherz, and S. Pollack, An organizer for project-based learning and instruction in computer
science, Proceedings of ITICSE’99 Conference, Cracow, Poland, 1999, pp. 88-90.

16. R.J. Wieringa, Requirements researchers: are we really doing research? Requirements Engineering,
10(4), 2005, pp. 304-306.

17. D. L. Parnas, Software engineering programs are not computer science programs, Annals of
Software Engineering, 6, 1998, pp. 19-37.

18. H. Salzer, and I. Levin, The core-science of software engineering, Proceedings of the 5th annual
European Computing and Philosophy Conference (ECAP) June 21-23, 2007. University of Twente,
The Netherlands (2007).

19. E. M. Goldratt, Critical Chain, The North River Press Publishing Corporation, MA, USA (1997).

20. L. B. Sherrell and S. G. Shiva, Will earlier projects plus a disciplined process enforce SE principles
throughout the CS curriculum? ICSE, St. Louis, Missouri, USA, (2005), pp. 619-620.

21. S.Pollack, and Z. Scherz, Supporting project development in CS—the effect on intrinsic and extrinsic
motivation. Proceedings of the 10th PEG Conference, Tampere, Finland, (2005), pp. 143-148.

22. B. W. Boehm, Software Engineering Economics, Prentice-Hall (1981).

Bruria Haberman received her Ph.D. degree in Science Teaching from the Weizmann
Institute of Science. She is currently a senior teacher in the Department of Computer
Science in the Holon Institute of Technology, teaching Logic Programming, Data Base
Systems and Expert Systems. She leads the Computer Science, Academia & Industry
educational program for talented high school students and their teachers in the Davidson
Institute of Science Education in the Weizmann Institute of Science. Her research interests
focus on computer science educational research, problem-solving utilizing abstract data
types and algorithmic patterns, and in-service teacher education.

Cecile Yehezkel received her Ph.D. degree in Science Teaching from the Weizmann Institute
of Science. She holds a M.Sc. in Bio-Medical Engineering from Tel Aviv University and a
B.Sc. in Electrical Engineering from the Technion, Haifa. She is currently teaching courses
related to microcomputers and low level language at the School of Engineering at Bar-Ilan
University. She leads the Computer Science, Academia & Industry educational program for
talented high school students and their teachers in the Davidson Institute of Science
Education in the Weizmann Institute of Science. Her research interests focus on human-
computer interaction, modeling and simulation design and evaluation, computer architec-
ture and engineering education.

Hanania Salzer is a Ph.D. student at the Tel-Aviv University, School of Education. For the
last 25 years he worked in the software industry (currently at EDS Israel). He earned his
M.Sc. in zoology and B.Sc. in biology at the Tel-Aviv University.

