
Cooperative Visualization of Cryptographic
Protocols Using Concept Keyboards*

NELSON BALOIAN1, WOLFRAM LUTHER2

1 University of Chile, Dept. of Comp. Cs., Santiago de Chile, Chile. E-mail: nbaloian@dcc.uchile.cl
2 University of Duisburg-Essen, Duisburg, Germany. E-mail: luther@inf.uni-due.de

Software called CoBo (Cooperative exploring and visualizing cryptographic protocols using
concept keyboards), applies the principle of the ``concept keyboard'' to implement a system that
supports the learning of cryptographic protocols. In previous research, concept keyboards (CK)
were successfully used to implement a software system supporting the learning of classical
algorithms, like QuickSort and Dijkstra's algorithm, among others. Traditional visualization
software normally offers the learner an animated representation of the algorithm with the
possibility of controlling the execution of the right steps, giving the learner a more or less passive
role. Concept keyboards allow the learner to control the execution of the algorithm by deciding
which function should be performed when. Four cryptographic protocols were implemented and
tested (Wide Mouth Frog, Feige-Fiat-Shamir, Needham-Schroeder and Kerberos V). An initial
evaluation confirmed that the use of the CK fosters comprehension of the algorithms, facilitates the
learning process and stimulates the learners' activity.

Keywords: concept keyboards; cooperative visualization; algorithm learning; cryptographic
protocols

INTRODUCTION

ALGORITHM VISUALIZATION (AV) has
often been used in the past to support teaching
and learning of complex algorithms and proce-
dures. Many AV systems developed since 1988
are described in three books on software visual-
ization edited by John Stasko et al [1] and Stephan
Diehl et al [2], [3]. There are also several reposi-
tories of AVs [4], [5] and WWW-pages containing
links to collections of algorithm animation.
However, most of these systems allow only limited
involvement of the learner in the process. In most
cases, the system enables the user to control the
execution of the algorithm step-by-step, forward
and backwards and to define the data set over
which the algorithm should be applied.

Some authors have mentioned that increased
student involvement in the AV process can lead to
better learning results. Hundhausen [6] conducted
experiments with students who built their own AV
using a prototype language. The system he used for
the experiments allowed the specification of the AV
in terms of spatial logic, and its interface supported
forward and backward execution as well as the
dynamic markup and modification of an AV.
Hundhausen observed that the experiments allow-
ing students to manipulate the level of involvement
showed significantly better results than those allow-
ing them to manipulate the graphical visualization.
He concluded that AV software does improve the
comprehension level of students and specifically

that ``what learners do, not what they see, may
have the greatest impact on learning'' [6].

These observations support our hypothesis that,
in order to achieve better comprehension, the
student should be able to participate actively in
exploring the algorithm.

In a previous work [7], the authors of this paper
developed an AV system that applies concept
keyboards (CK) to implement a software system
supporting the learning of classical algorithms like
QuickSort and Dijkstra's algorithm, among
others. The idea behind using concept keyboards
to support the learning of complex algorithms and
protocols is to provide a specialized keyboard
containing keys for triggering the execution of
certain functions necessary to perform the algo-
rithm. In this way, the learner has a more active
role in the execution and visualization of the
algorithm, having to decide which function
should be performed at what time.

Encouraged by the good results obtained while
applying this principle to traditional algorithms
and by learners' utterances gathered through
several phases of evaluation, we decided to apply
it to supporting the learning of cryptographic
protocols. Since, in a cryptographic protocol,
there is more than one agent involved, the aim of
the present work was to develop a collaborative
software tool. Based on the hypothesis that colla-
borative learning activities motivate the learner and
lead to better results [8], this tool would help
visualize various cryptographic communication
protocols using concept keyboards to interactively
control execution in a collaborative way. The result* Accepted 24 February 2009.

745

Int. J. Engng Ed. Vol. 25, No. 4, pp. 745±754, 2009 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2009 TEMPUS Publications.



was a multi-user software tool that allows users
working at different computers to replay the vari-
ous cryptographic protocols and collaboratively
explore, analyze and share the results of their
actions.

THE COBO SYSTEM

The CoBo system was conceived in order to
implement a Computer Supported Collaborative
Learning System based on the visualization and
simulation of cryptographic protocols using
concept keyboards. This approach has some simi-
larities with the participatory simulation learning
technique [9], in which students learn by acting as
agents in simulations in which overall patterns
emerge from local decisions and information
exchanges. The use of a concept keyboard was
adopted after the good results obtained when using
them for algorithm visualization in the individual
learning case.

A learning simulation session with the CoBo
system starts with participants connecting to an
available server, which will manage the data trans-
fer and coordination between participants. After
registering, the participant has to choose a proto-
col to perform and, after that, the role he/she
wants to play in the simulation. Only available
(i.e. not yet taken) roles are displayed. After the

role has been selected, the main application
window is displayed (see Figure 1).

For each cryptographic protocol that the system
supports (actually, there are four protocols imple-
mentedÐthe Wide Mouth Frog (WMF), the
Feige-Fiat-Shamir (FFS), the Needham-Schroe-
der, and the Kerberos V protocol), a separate
keyboard was implemented that is automatically
loaded when the user has chosen the corresponding
protocol before the start of a session. An elegant
solution using SwixML was employed, which
allows describing graphical user interfaces directly
in XML for the Java programming language. A
SwixML description is interpreted by an engine to
create the graphical interface by rendering the
graphic objects in an application interface
window. This approach was chosen in order to
separate the logic of the keyboard design from the
program implementing the protocol.

In addition to the concept keyboard, the soft-
ware displays a window where a graphical anima-
tion of the protocol is shown, so that learners can
follow the protocol and see the current state of the
protocol and the messages that have been already
exchanged among the various actors. In this
window, the various actors participating in the
simulated cryptographic protocol are shown, as
are the elements generated during its performance
(messages, keys, encrypted messages, etc.) provid-
ing a clear visualization of the `̀ knowledge'' accu-

Fig. 1. Screenshot portion of the CoBo software displayed after the Needham-Schroeder Protocol and the `̀ Alice'' role have been
selected.

N. Baloian & W. Luther746



mulated at this state of the protocol. This window
also shows the animation of the protocol. When a
message or a key is created by a user, this element
appears as a symbol under the icon representing
the user. When a message or key is exchanged
between two users, triggered by clicking a corres-
ponding key, the window shows the movement of
this element from the icon of the sender to the icon
of the receiver.

SYSTEM ARCHITECTURE

The CoBo system is in fact a framework that
supports the definition and collaborative simula-
tion of cryptographic protocols. Its architecture
has been conceived to incorporate new protocols in
an easy way. It is worth noting that an important
part of the protocol simulation is inputted into the
system as XML files. These files are the Scenario
file, the Facts basis file and the Algorithm file.
Apart from these files, it is necessary to program
the particular functions of the protocol being
implemented by extending an existing class called
AlgorithmWrapper. It is also necessary to program
the classes that will implement the visualization
and animation of the algorithm. This architecture
implements a strict separation of the code neces-

sary to implement a new protocol from the code
that is used to generate the simulation from the
XML descriptions. It also allows the re-use of a
common communication system by all protocols.
This is implemented in a centralized way; that is,
all communications between the users is managed
by a central server (see Figure 2). In order to use
this general mechanism, the data package that will
be exchanged between learners should be specified
for each protocol by extending an existing class
already containing the basic information needed to
implement the communication.

As stated above, an important part of the imple-
mentation of a new protocol is the definition of the
corresponding XML files. The architecture of CoBo
was conceived in order to define most of the
functionalities of a new protocol with XML files:

The Scenario File. Here, the basic characteristics of
the protocol are defined (see Figure 3) including:

. the complete name of the so-called Wrapper-
class of the protocol. (Its function will be
described in the next chapter.),

. the path for the XML file describing the `̀ facts''
of the protocol,

. a short description of the protocol,

. the listing of the actors (roles) involved in the
protocol.

Fig. 2. System architecture showing one client connected to the server [10].

Fig. 3. Content of the Scenario XML file for the Needham-Schroeder protocol [11].

Cooperative Visualization of Cryptographic Protocols 747



The facts basis and protocol description file
This file is divided in four parts, each describing

a fundamental part of the protocol (see figure 4):

. Keyboard Definition (<keyboard>). This part
describes the graphical layout of the concept
keyboard that will be used to control the simula-
tion of the protocol. The size, position, and
labeling of each key are defined here. It is also
possible to input help text and associate with
certain keys. Using the `̀ type'' attribute, each
key is associated with a certain role. The action
triggered by each key is defined by a number
given to the ActionCommand attribute (see
following point).

. Method Mapping (<methodmatch>). Here, the
methods of the protocol programmed in the
AlgorithmWrapper class are assigned to a key.
Each method of the wrapper class is numbered,
and this number is associated with a key.

. Protocol description (<description>). This block
contains an HTML description of the protocol.
This description will appear in the Description
sub-window of the user interface (upper right in
the screenshot in Figure 1 above). This descrip-
tion includes the stages of the protocol, the
actors involved and the symbols that appear in
the protocol visualization window.

. Action logic (<alogic>). The last part of the
Fact basis file is the XML description of the
protocol. The generation of this description is
explained in the next section.

ACTION LOGIC GENERATION FOR
PROTOCOL DESCRIPTION

Each cryptographic protocol has a unique
correct chronological sequence of actions that is
defined in the action logic. The action logic is
implemented with a kind of state machine that
controls the correctness of all the actions taken by
the participants. When a correct action is executed,
the machine reaches the next state, which in turn

requires a new action to be launched by the actor.
Otherwise, an error message is displayed in order
to help the user find the right action. If the next
proposition is also wrong, the resulting error
message is more concrete. If the user makes a
third mistake, the right action is proposed.

There are several options for implementing the
action logic. We first tried using a stack machine
and then a finite state automaton; finally, we
decided to use an enhanced PetriStateMachine
(PSM), which interprets a Petri net with so-called
message and error places. The PSM checks the
states (nodes) and notices each modification of the
number of tokens. Furthermore, there are layered
error messages attached to the nodes that are
displayed in a certain order to support the user
(see Figure 5).

Another extension allows an executable
program to be launched as part of a Petri net.
When these transitions are used, precise rules and
heuristics should be formulated in order to limit
the possibility of these transitions being fired. A
text-executable transition was used in the WMF
protocol to restart the protocol when a participant
rejects a transmitted key. Further details are
reported in [10].

The Petri net has a starting place (``Start Node'')
containing one token at the beginning followed by
two transactions concerning the first action
(createMessage1ForAS), which creates a message
for the authenticity server; alternatively, the transi-
tion ``!s*sonst'' handles the error case (cf. Figure
5). The complete Petri net can be found in [11]. The
Petri nets as well as the error messages are gener-
ated as XML files using a powerful graphical
editor called Freestyler [12]. The XML files are
part of the Facts basis of each protocol.

IMPLEMENTED PROTOCOLS

WMF: Wide Mouth Frog is a computer
network authentication protocol designed to be
used on insecure networks. It allows individuals

Fig. 4. Excerpts of the content of the Fact basis XML file for the Needham-Schroeder protocol [11].

N. Baloian & W. Luther748



to communicate over a network to mutually
authenticate their identity while, at the same
time, preventing eavesdropping or replay attacks.
It provides mechanisms for detection of informa-
tion modification and the prevention of unauthor-
ized reading.

FFS: The Feige-Fiat-Shamir identification
scheme, introduced by its authors in 1987, is
based on a zero-knowledge protocol. Alice
proves to Bob that she knows secret numbers

without revealing any information about her
secret. The protocol uses public-private keys
requiring only a few modular operations in a
parallel verification process. It is fast and can be
applied in smart card applications. FFS solves the
identification and signature problem but cannot be
used for data encryption.

Kerberos is a computer network authentication
protocol. It is designed to provide strong authenti-
cation for client/server applications and was

Fig. 5. Part of the Petri net for the Needham-Schroeder protocol [11].

Fig. 6. Configuration dialogue for an individualized keyboard [24].

Cooperative Visualization of Cryptographic Protocols 749



created by MIT as a solution to well-known
network security problems. The Kerberos protocol
uses secret-key cryptography so that a client can
prove its identity to a server (and vice versa) across
an insecure network connection. After a client and
server have used Kerberos to prove their identity,
they can also encrypt all of their communications
to ensure privacy and data integrity (http://web.
mit.edu/Kerberos/).

The Needham-Schroeder Public-Key Protocol is
a computer network authentication protocol
designed for use across insecure networks. Our
simulation uses a fixed version of the protocol, in
which the communication was slightly altered in
order to prevent the possibility of a man-in-the-
middle attack.

FURTHER SYSTEM FEATURES

The system can be set up by a user in `̀ teacher''
or ``learner'' mode. In teacher mode, the user can
assign roles to the different users or combine all the
roles in one person. In this mode it is also possible
to monitor the execution of the protocol and
intervene if necessary in order to guide the lear-
ners. In learner mode, the user is assigned a certain
role in the protocol and receives a keyboard
containing keys for the actions he is supposed to
trigger.

The system also offers learners a help function-
ality in case they are unable to continue the
execution of the protocol. The assistance consists
of HTML documents containing a detailed over-
view of each protocol and an explanation of the
operations (the steps) of the relevant algorithm.
The users can search for keywords contained in the
hierarchically organized help files.

In addition to the help functionality, there is a
quick guide containing a shortened description of
the protocols used in the implementation, as well
as the icons that are used to represent the various
actors and elements involved in the protocol. This
enables the learner to recognize the symbols
appearing in the software's interface and their
meaning. In order to help the learners synchronize
their actions, the system also provides a chat tool.

Learners also have the option of configuring
their own concept keyboards, starting with the
one proposed by the system and taking the role
of a designer deciding the outline of the concept
keyboard (see Figure 6 above). This functionality
provides learners with a deeper understanding of
the protocolÐwhich actions are related, which and
what their roles are. The new keyboard can be
configured by `̀ drag and drop'' of the ``keys''
(``buttons'') to the desired location on the virtual
keyboard surface.

The system has been implemented for desktop
PCs as well as mobile devices (PDAs). Mobile
devices allow users to synchronize their actions
through face-to-face communication when the
system is used in a classroom scenario. This was

because some authors have reported that mobile
computing can help to foster social interaction
among students, raises the motivation and
promotes discussion and reflection [13].

RELATED WORK

In the field of visualization of algorithms in
general, the following works were of particular
interest to us: COMET, which was developed by
Feiner and McKeown [14], is an experimental
testbed for the interactive or automated generation
of multimedia explanations that combine text and
three-dimensional graphics on the fly. In response
to a user request for an explanation, COMET
decides which information should be expressed in
which medium.

The project WIP (Knowledge-Based Presenta-
tion of Information, www.dfki.de/imedia/wip/)
seeks to develop a presentation system that is
able to generate a variety of multimedia documents
and to present the same information in different
ways, depending on the generation parameters and
the individual users in particular communicative
situations.

Our work was also inspired by M. Eisenberg
[15], who offers a number of interface guidelines
for mathematical algorithms and suggests ways to
provide the user with flexible means for both
controlling and understanding the algorithm in
question.

In Bridgeman et al. [16], a platform-independent
e-learning tool, PILOT, was designed; it allows for
the generation of random instances of a problem,
user interaction specifying a solution, evaluation of
solutions and generation of correct solutions to the
problem. Our work has points in common with
initiatives concerning XML user interface
languages like the eXtensible Interface Markup
Language (XIML, see http://www.ximl. org/) to
configure interfaces. The recently presented
Matrix-Pro system [17] allows the instructor to
interact with any data structure already implemen-
ted in a library. Its framework allows users to
create animation sequences and to combine them
seamlessly. The main view of the program consists
of a menu bar, a toolbar and a visualization area.
Recent works, such as the frameworks Ganimal [2]
and LEONARDO [4], use an event-driven
approach to specify the relevant events associated
with an algorithm or data structure.

In the field of security algorithms and protocols
visualization the following works are relevant.

CyberCIEGE (http://cisr.nps.navy.mil/cyber-
ciege/index.htm) is a system that allows the cre-
ation of a virtual world in order to teach and learn
security concepts. It was conceived as an interac-
tive environment, like a video game, that covers
significant aspects of network administration and
its security. The learners have to configure opera-
tive systems, servers and applications, taking into

N. Baloian & W. Luther750



account both the security and the performance of
the system.

ProtoViz (http://www.cs.chalmers.se/_elm/
courses/security/) is an application implemented
as a java applet developed in 2003. It allows the
visualization of cryptographic algorithms defined
by the user though a special grammar.

GRASP (GRaphical Aid for Security Protocols)
[18] is a tool for teaching security protocols by
means of animations. It was designed by the
United States Air Force Academy to be used in
lectures on computer security. Its purpose is to
graphically show the different protocols and allow
the learner to introduce variations and visualize
the security changes they produce.

GRACE [19] is an educational tool that
supports learning of cryptographic protocols. It
is also conceived to adopt an active learning model
that engages the learner with a request to describe,
in an exemplification of a real-world scenario,
cryptographic protocols using simple primitives
whose effects are visualized by means of animated
sequences. It offers several cryptographic and non-
cryptographic related operations with their respec-
tive visualizations. By executing a series of these
operations in the proper order, a teacher is able to
provide a visual introductory description of several
protocols. Cryptographic operations are not just
simulated but implemented.

According to the revised literature, although the
previous works allow a fair level of involvement on
the part of the learner in the control of the
algorithm execution, no one uses a collaborative
learning approach.

COLLABORATIVE LEARNING (CL)
WITH COBO

Many authors back the idea that collaboration
learning activities enriches the learning experience
( [20], [21], and [22] ). Some even say that learning is
only possible in a social context [23], since learning
occurs by contrasting one's own knowledge with
the knowledge of the rest. There has been abun-
dant research on the factors that make for effective
CL which can be summarized in the following five:

. Individual responsibility. All members of the
group are responsible for their own work, role,
and efforts to learn. In the CoBo environment
this is achieved by giving the students individual
roles with clear rules they have to follow.

. Mutual support. In addition to being responsible
for their own learning, each member is respon-
sible for teaching other members of the group.
In the CoBo scenario, participants who know
the protocol can explain to those members of the
same group who do not, by telling them when
and why they have to trigger a certain action.

. Positive interdependence. Achieving the personal
goal of each participant depends on achieving the
group goal. This is naturally present in the CoBo

scenario since every participant depends on the
actions of the rest of the group to achieve a
personal goal, which is to complete the protocol.

. Social interaction. Decision-making must
involve discussion among collaborators. CoBo
includes communication mechanisms to facili-
tate the discussion in order to decide collabora-
tively which step should be the next in the
protocol. The mobile version of CoBo was
developed to facilitate face-to-face discussion
and social interaction.

. Formation of small groups. Communication, dis-
cussion, and consensus building can only be
achieved in small groups. As cryptographic pro-
tocols involve 2±3 persons, we will have only
small groups, where discussions and consensus
can be achieved.

As can be seen from the previous analysis, CoBo
implements a promising collaborative learning en-
vironment since it meets the principal requirements
for effective CL.

The principal motivation we had to develop
such a scenario was that collaborative learning
has been shown to be more motivating and to
have positive impacts in other social aspects, like
developing group skills (leadership, resolution of
conflicts, negotiation).

EVALUATION OF RESULTS

A group of forty computer science students
(aged 20 to 35, average age 24.28) was randomly
chosen from a third-year course on cryptography
and network security at the University of Duis-
burg-Essen. They worked with the Wide Mouth
Frog, the Feige-Fiat-Shamir and the Kerberos
protocols implemented for desktop computers.
The students had just been introduced to classical
communication protocols (approximately 75%
assistance) and had never used this kind of visual-
ization software before. In a pretest, the majority
estimated their own knowledge as low (WMF 50%,
FFS 57.5%, Kerberos 52.5%).

The evaluation was carried out by S. Selvana-
durajan in two parallel sessions in 2008 from May
14 to June 8, and the results were reported in her
master's thesis [25]. First, the participants were
asked to evaluate the software in the teacher role
and to fill out a questionnaire with 45 items
allocated to ten hypotheses. Then, 13 groups of
three persons were formed to explore the algo-
rithms in a collaborative way and to answer 18
questions, corresponding to seven hypotheses.

The first part of the evaluation concerned ten
hypotheses associated with 45 statements to be
judged by signaling agreement or disagreement
(B2) or by using the five-point Likert scale (L5).
Low values 1 and 2 indicated (strong) rejection (±),
and high values 4 and 5 (strong) agreement (++); 3
indicated indecision.

Four hypotheses were aimed at testing whether

Cooperative Visualization of Cryptographic Protocols 751



working with the concept keyboard facilitates
understanding of cryptographic protocols. These
are explained in the following list. For each
hypothesis, the number of related questions is
given, as is the type of evaluation used (L5 for
the Likert scale and B2 for agreement or disagree-
ment). For those hypotheses where the Likert scale
was used to answer the corresponding questions,
the median value, the range, the mean value and
the variance are also shown. For those hypotheses
where agreement or disagreement was used to
answer the related questions, the level of agree-
ment is shown as a percentage.

. Use of the CK supports the learning the entire
extent of cryptographic protocols. (2, L5, Median
4, Range 1±5), Mean = 4.01, Variance = 0.89

. The free exploration and the possibility of
taking erroneous actions foster the learning
process. (4, B2, 75%)

. The CK makes the learning process more effi-
cient. (4, B2, 97.5%)

. Interacting with the CK stimulates the motiva-
tion. (3, L5, Median 4, Range 1±4, 74%), Mean =
3.93, Variance = 0.97.

The remaining hypotheses dealt with the interface
design of the keyboard and the output device:

. The keyboard is well structured. (1, B2, 95%)

. The error messages are comprehensible. (4, B2,
82.5%)

. The help desk contains all necessary information
to support the user during the learning process.
(5, B2, 85%)

. Concise error information and explanations in
response to specific questions enable the user to
learn the protocols. (2, L5, Median 4, Range 1±
5, 70%) Mean = 3.925, Variance = 0.938

. The screen design assists the understanding of
the protocol step-by-step. (17, B2, 94%)

. The visualization does not create obstacles for
the interaction. (3, B2, 92.5%).

The hypotheses used in the group evaluation had a
supplementary character and were directed at
evaluating the collaborative learning.

. The group-based learning provides only a par-
tial view of the protocols to the individual actor.
(1, L5, Media 0, Range 1±5, 48%), Mean = 2.79,
Variance = 1.51

. It is possible to allocate the actions to the actors
that triggered them by interpreting the visual
output. (2, B2, 85%)

. The customized and individualized keyboard
promotes deeper understanding of the protocol.
(4, B2, 82.5%)

. The use of individualized concept keyboards in
the cooperative scenario helps to learn the pro-
tocols in an efficient way (3, B2, 86%)

. To learn cryptographic protocols in a group
with individualized keyboards is more motivat-
ing. (3, L5, Median 4, Range 1±5, 63%) Mean =
3.68, Variance = 1.25.

The following two additional hypotheses were
aimed at testing design aspects of the human-
machine interface.

. The individualized concept keyboard is well
arranged. (2, B2, 70%)

. The inbuilt chat functionality displays error
messages and gives feedback from the other
pupils. (3, B2, 88%).

The questionnaires were evaluated using several
tools. The test persons' data (name, age, studies,
etc.) and the answers were transferred to an Excel
spreadsheet. The answers were analyzed with the
statistics software SPSS, displaying various kinds
of diagrams and applying appropriate hypothesis
tests, like the Mann-Whitney U-test.

At the end of both tests, students were asked
whether they preferred to take the teacher's role or
one of the protocol actors' roles. It was interesting
to notice that 75% voted for the teacher perspec-
tive arguing that this role:

. allows for better exploration of the protocols,

. gives more time to consult the help screens
without the time constraints that occur in a
collaborative scenario,

. it shows the complete keyboard with all neces-
sary actions in the right order in the start-up
configuration, thus leading to deeper under-
standing when using keys in a different order.

As an advantage of the group version, the partici-
pants mentioned that the various actors and their
roles were clearly discernible and that people could
help each other by using the chat or commun-
icating directly face-to-face.

We wanted to find out whether the participants
performed better in a post-test organized after-
wards than in a pre-test before working with the
CK. In both tests, students were asked to perform
the protocols' actions in the right order. The non-
parametric Mann-Whitney U-test was used to
examine the collected answers. This test makes
no assumption about the distribution of data.
The hypotheses for the comparison were:

. Ho: The two samples come from identical popu-
lations; the results of both tests are indistin-
guishable.

. H1: The two samples come from different popu-
lations.

We transformed the samples into a ranked list,
eliminating the entries of students that solved
the problems without errors in both cases. Then
we calculated the test variable U and the ratio z =
(U-�U)/�U. This value is compared to a table of
critical values for z based on the sample size of
each group.

If z exceeds the critical value at a significance
level (usually 0.05), it means that there is evidence
for rejecting the null hypothesis in favor of the
alternative hypothesis. Here, the calculated z is
compared to the standard normal significance
levels.

N. Baloian & W. Luther752



We found that the value of z was 2.65 > 1.96 and
the hypothesis Ho had to be rejected. Therefore, on
a 95% level of significance, people performed
better in the post-test.

In an additional study we contrasted similar
statements from the individual and the group test
to examine whether the participants in the single
test scenario performed significantly differently
from the ones in the group scenario.

The first item was related to the interaction with
the CK and the visualization of the actions launched
by the user. Further questions dealt with the CK
design and the ability to hit erroneous keys. For
each of these statements, the Mann-Whitney test
showed no difference at a 95% significance level.

There were six further questions which were not
allocated to any hypothesis. They were asked in
order to learn more about the contribution of the
individual configuration of the concept keyboard
to the correct performance of the algorithm. Of the
people interviewed, 95% agreed that the configura-
tion of the keyboard by drag and drop is quite
simple and that they tried to place the keys in a
semantically meaningful way, for example, keys in
the right order, encryption on the left and decryp-
tion on the right.

The contribution of adding sounds or special
graphic information to the keys was declined (70%
disagreement), but individual shapes of the keys
were welcomed by 75% of the participants.

Further information was obtained in the inter-
views concerning form, positioning and captions of
the keys. Following these suggestions, the
keyboards in the teacher role were redesigned in
some cases. Each key now has an intuitive tool tip
explaining its functionality. Also, there are now
more precise error messages displayed in red in the
chat window.

To become familiar with CoBo, a new quick
guide was created that quickly refreshes the proto-
cols, explains the features of the software and gives
more emphasis to the configuration of the
keyboard by the users. In a later version described
in a master's thesis by A. KovaÂcÏovaÂ [11], the
Needham-Schroeder protocol was added using
symmetric and asymmetric encryption and allow-
ing users to simulate the man-in-the-middle and
the reply attack against this protocol.

This evaluation clearly shows that the use of the
CK fosters the comprehension of the implemented
communication protocols. The main point seems
to be that users can choose which actions to take.
This can be done proceeding step-by-step when the
keys are organized in the right order on the

keyboard or, alternatively, via a self-configured
keyboard that allows students to learn from their
mistakes. Furthermore, two different scenarios
were implemented: a teacher's role for an indivi-
dual and a group version with different keyboards
mirroring the roles of different actors within the
protocol. Both exploration modes of the CK
approach facilitate the learning process and moti-
vate the user to study the protocols with the CoBo
software.

Several hypotheses concerning design aspects of
the keyboards as well as the visualization and
animation output met with high approval ratings.
Participants suggested increasing the number of
communication protocols presented and providing
an extended explanation of the protocols being
studied. This has been implemented in a new
version of the CoBo Software.

CONCLUSIONS

We have presented a new way of learning
interactive cryptographic protocols by using
concept keyboards and sophisticated visualization
and animation features. In this approach, learners
are asked to configure their own steering interfaces
and to select actions to be performed in a correct
order.

The framework developed helps to build
complete protocol simulation software by using
software design patterns, prefabricated parts of
the action logic realized in a colored Petri net, an
XML-based interface rendering language and
standard file formats to describe the facts of the
protocols. The software architecture, realized for
the first time within a tool that supports the
animation of standard algorithms [7], implements
a new controller design that allows users to select a
class library on the fly, to instantiate objects and to
call objects. Individual input and output interfaces
are configured through XML files.

One of the contributions of this work is to
explore the possibilities of merging collaborative
learning with algorithm visualization. As future
work we envisage the testing of the collaborative
learning scenario against the individual learning
one, taking into account that collaborative learn-
ing activities are not only adopted in order to
improve the learning of the subject but it also
has other positive `̀ side effects'' [21].

AcknowledgementsÐwe thank our master's thesis students for
their valuable contributions. This work was partially funded by
FONDECYT grant number 1060797.

REFERENCES

1. J. T. Stasko et al., Software VisualizationÐProgramming as a Multimedia Experience, MIT Press
(1998).

2. St. Diehl, C. GoÈrk, and A. Kerren, Preserving the Mental Map Using Foresighted Layout, Proc.
EurographicsÐIEEE TCVG Symposium on Visualization, May, 2001, Ascona, Switzerland, (2001).

3. S. Diehl (ed.), Software Visualization, State-of-the-Art Survey, LNCS 2269, Springer (2002).

Cooperative Visualization of Cryptographic Protocols 753



4. P. Crescenzi, N. Faltin, R. Fleischer, Ch. Hundhausen, St. NaÈher, G. RoÈssling, J. Stasko, and E.
Sutinen, The Algorithm Animation Repository, Proceedings of the Second International Program
Visualization Workshop, AÊ rhus, Denmark (2002) pp. 14±16.

5. G. RoÈûling, Kommentierte Sammlung von Algorithmenanimationen und Animationssystemen. http://
www.animal.ahrgr.de/Anims/animations.php3 (Last visited August, 2008).

6. C. D. Hundhausen, Toward effective algorithm visualization artifacts: Designing for participation
and communication in an undergraduate algorithms course, unpublished Ph.D. dissertation,
Department of Computer and Information Science, University of Oregon (1999).

7. N. Baloian, H. Breuer, W. Luther, Concept keyboards in the animation of standard algorithms, J.
Visual Language and Computing, 19, (2008), pp. 652±674.

8. C. Collazos, L. A. Guerrero, J. A. Pino, S. F. Ochoa, Evaluating Collaborative Learning Processes.
Lecture Notes in Computer Science 2440, (2002), pp. 203±221.

9. V. Colella, Participatory simulations: Building collaborative understanding through immersive
dynamic modeling, J. the Learning Sciences 9, (2000), pp. 471±500.

10. B. Weyers, Concept Keyboards zur Steuerung und Visualisierung interaktiver kryptographischer
Protokolle CoBo'06, University of Duisburg-Essen (2006).

11. A. KovaÂcÏovaÂ, Implementierung des Needham-Schroeder Protokolls in einer verteilten Simulation-
sumgebung fuÈr kryptografische Standardverfahren, Master's thesis, U. of Duisburg-Essen (2007).

12. COLLIDE, UniversitaÈt Duisburg-Essen. Freestyler. http://www.collide.info
13. T. Liu, H. Wang, T. Liang, T. Chan, W. Ko and J. Yang, Wireless and mobile technologies to

enhance teaching and learning, Journal of Computer Assisted Learning 19(3), (2003), pp. 371±382.
14. S. Feiner, K. McKeown, Automating the generation of coordinated multimedia explanations,

IEEE Computer 24(10), (1991), pp. 33±41.
15. M. Eisenberg, The thin glass line: Designing interfaces to algorithms, in: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems: Common ground, ACM Press
(1996), pp. 181±188.

16. S. Bridgeman, M. T. Goodrich, S. G. Kobourov, R. Tamassia, PILOT: An interactive tool for
learning and grading, Proceedings of the 31st SIGCSE Technical Symposium on Computer Science
Education, ACM Press (2000), pp. 139±143.

17. V. Karavirta, A. Korhonen, L. Malmi, K. Stalnacke, MatrixProÐa tool for on-the-fly demonstra-
tion of data structures and algorithms, Proceedings of the IEEE International Conference on
Advanced Learning Technologies (ICALT'04), IEEE (2004), pp. 26±33.

18. D. Schweitzer, L. Baird, M. Collins, M.Sherman, GRASP: A visualization tool for teaching
security protocols, Proc. of the 10th Colloquium for Information Systems Security Education, June
(2006).

19. G. Cattaneo, A. de Santis, U. Ferraro Petrillo, Visualization of Cryptographic Algorithms with
GRACE, J.Visual Languages and Computing 19(2), (2008), pp. 258±290.

20. P. Dillenburg (Ed.), Collaborative Learning: cognitive and computational approaches, Pergamon,
Elsevier Science Ltd. Oxford, England (1999).

21. D. Jhonson and R. Jhonson, Learning together and alone, Prentice Hall. New Jersey. USA (1999).
22. N. Webb, G. Baxter, L. Thompson, Teachers grouping practices in fifth grade science Classrooms,

The Elementary School Journal 98(2), (1997), pp. 91±113.
23. L. S. Vygotsky, Mind in Society: The development of higher psychological processes, Harvard

University Press. Cambridge, MA, USA (1978).
24. L. Selvanadurajan, Interaktive Visualisierung kryptographischer Protokolle mit Concept Key-

boardsÐTestszenarien und Evaluation, Master's thesis, University of Duisburg-Essen (2007).

Nelson Baloian is an associate professor in the Computer Science Department of the
University of Chile in Santiago de Chile. His main research topics are computer-supported
collaborative learning and distributed systems. He is a visiting lecturer at the University of
Waseda and the University of Duisburg-Essen.

Wolfram Luther is a full professor of computer science at the University of Duisburg-Essen.
He leads a research group of a dozen persons in scientific computing, computer graphics
and image and text processing. The team specializes in the development of software and
algorithms with result verification and of interactive teaching and learning systems in
several contexts.

N. Baloian & W. Luther754


