
ShelbySim: a Transparent, Pedagogy-
oriented Simulator for Computer-based
Systems*

DAN TAPPAN
College of Engineering, Idaho State University, 921 South 8th Avenue, Pocatello, Idaho 83209, USA.
E-mail: tappdan@isu.edu

ShelbySim is a student-friendly, pedagogy-oriented, open-source software system for designing,
simulating, and evaluating a wide range of multidisciplinary, computer-based engineering applica-
tions. It consists of three top-level, seamlessly integrated and richly expressive components that
focus on software, hardware, and a holistic combination of the two in realistic operational contexts.
The software component consists of a Java-like object-oriented programming language, Shelby, a
full-fledged, transparent compiler with extensive tracing, logging, and inspection capabilities, and a
runtime system for executing its programs. The hardware component is for designing and
implementing conceptualized representations of embedded systems and computer architectures
that support the software. The simulation component provides a flexible, interactive framework for
running controlled experiments on the software and hardware. It provides students with raw data
for quantitative performance analysis, evaluation, and reporting of their designs. ShelbySim also
functions as an appealing tool for demonstrations and recruitment.

Keywords: software and hardware simulation; design and analysis environment; compilers;
embedded systems

INTRODUCTION

MOST ENGINEERING STUDENTS, due to
tight curriculum constraints and their own
choice, tend to fixate on the material of their
major discipline at the expense of a broader,
holistic view of how it integrates with other, closely
related disciplines [1]. Such overemphasis on depth
over breadth can be a disadvantage in the contem-
porary, multidisciplinary work environment. Shel-
bySim is a pedagogy-oriented software system that
exposes students interactively to the design, simu-
lation, and analysis of a broad range of manage-
able, real-world engineering applications. It
provides a unified, seamlessly integrated frame-
work to investigate how software and hardware
interoperate in computer-based, or embedded,
systems. It also provides student-friendly data-
collection and simulation capabilities that mitigate
much of the mundane, distracting overhead in
course assignments, thereby giving students more
hands-on time for the content and its meaningful
analysis.

With the 2006 American Competitiveness Initia-
tive to double the number of science, technology,
engineering, and mathematics (STEM) graduates
in the United States by 2015, it is now more
important than ever to recruit and retain qualified
engineering students [2]. To this end, ShelbySim
also functions as an attractive recruitment tool.

SYSTEM ORGANIZATION

ShelbySim consists of three top-level compo-
nents: software, hardware, and simulation. The
software and hardware components primarily ad-
dress aspects of computer science and electrical/
computer engineering, respectively. The simulation
component combines the software and hardware
components within an operational context to solve
a problem.

ShelbySim is open-source software written in
Java, with many of its internal components written
in its own language, Shelby. Java is platform-
independent, which eliminates the course-manage-
ment complexities of supporting the software on
the many computer configurations students have.
Java 3D, which is a freely available, platform-
independent add-on to Java, manages the three-
dimensional graphics, animation, and sound
effects for advanced features, especially for the
recruitment-targeted demonstration mode.

Software component
The software component consists of three

subcomponents: the Shelby programming
language, its compiler, and a runtime system for
interpreting programs written in it.

Language
Shelby is a practical, object-oriented program-

ming language based very closely on Java. Although
there are some minor differences, as Table 1 shows,* Accepted 24 February 2009.

755

Int. J. Engng Ed. Vol. 25, No. 4, pp. 755±762, 2009 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2009 TEMPUS Publications.

any student familiar with Java should be able to
transition easily to it. For the sake of pedagogical
clarity in the compiler, it omits some convenient, but
not strictly necessary, features like inner classes,
generics, and all but the most common packages
like container data structures and input/output
classes. In support of its hardware role, it adds
some lower-level features like built-in binary data
types, direct access to hardware flags such as carry-
in/out and overflow, and interrupt handling.

Java is a derivative of C++, especially in syntax.
For various reasons, its developer, Sun Microsys-
tems, decided to omit certain C++ features. This
choice gave rise to different programming practices
for the two languages, which are currently the
most popular in use. The Shelby language is
intended to reflect modern programming practices
in general, and, as such, also optionally supports
some language features from C++ on pedagogical
grounds. The most apparent are pointers (with the
dreaded * and & syntax) and manual memory
management (the delete keyword), both of which
endlessly confound studentsÐand many profes-
sionals.

The built-in, primitive data types in Table 2 are
based on a 24-bit system. While small by modern
standards (16MB of addressable memory), it
provides a practical balance between size and
complexity, especially when using ShelbySim to
study computer architecture and organization.
For further simplicity, there are no short and
long variants for integer and real data types.
Real numbers also use a straightforward, fixed-
point representation (i.e. an integer value with a
decimal-point position) because modern floating-
point methods are arguably beyond the scope of an
undergraduate curriculum. This decision inciden-
tally makes for an interesting analytical study
between the two representations.

Compiler
A compiler translates a high-level, human-read-

able language like Shelby into a cryptic, low-level
language that runs on actual or emulated hard-
ware. It is a mysterious black box that studentsÐ
and professionalsÐtake for granted because it
hides the countless gory details of this intricate
process. Although abstracting away such complex-
ity is desirable in a work setting, it is actually
counterproductive in an educational one because
these details expose underlying relationships
between software and hardware.

The Shelby compiler performs the functions of
any comparable compiler, but it does so within the
pedagogical framework of ShelbySim. For
instance, nearly every aspect of the compilation
process, from syntactic and semantic analysis
through code generation and optimization, can
trace the processing and selectively log details of
interest. There are numerous options for enabling
or disabling programmatic features, as dictated by
the instructor. For example, students can be forced
to perform manual memory management by turn-
ing off the automatic garbage collector. If they fail
to deallocate memory correctly, which is a very
common pitfall in C++, the problem and its
consequences are made clear.

For efficiency, real-world compilers like javac
and g++ perform as many simultaneous compila-
tion tasks as possible. The result is pedagogically
negative in two critical respects:

1) the compiled target code bears little or no
resemblance to the source code the students
wrote, which makes it exceedingly difficult for
students to see the correspondences at any
level,

2) the source code of the compiler itself, which is
so vast, complex, and interdependent, makes it
nearly impossible to understand and extend it
as a course assignment.

With the Shelby compiler, it is reasonable to task
students to implement new features in the
language. It manages this feat by subdividing the
compilation process into at least 12 passes, each of
which performs generally one clear, concise task:

1) Resolve imports and load source files.
2) Qualify static scopes like packages, classes,

interfaces, enumerations, labels, methods,
and variable declarations. For example, vari-
able w in method x of class y in package z is
designated z.y.x.w, which uniquely identifies it
throughout the entire system.

Table 1. Shelby keywords; *not present in Java

abstract assert break case catch class
continue default delete* do else enum
extends final finally for friend* if
implements import inline* instanceof interface invariant*
new package packaged* private protected public
return static subpackaged* switch throw throws
transient try void volatile* while

Table 2. Primitive data types; *unsigned and signed variants

Type Bits

binaryn 1 � n � 24
boolean 1
octet* 3
nibble* 4
byte* 8
char 8
word* 16
int* 24
pointer<type> 24
real 24
unit* 24

D. Tappan756

3) Perform at least 20 early validation checks on
the source files. For example, source files must
be in the proper folders, constructor and class
names must match, and the default case must
be last in a switch statement.

4) Register the definitions of and references to all
classes, interfaces, and enumerations. This
pass, in combination with 5) and 6), produces
a rich graph showing the interrelationships
between entities in a program.

5) Register inheritance relationships in classes,
interfaces, and enumerations.

6) Register derived methods, constructors, class
variables, enumeration members, and interface
members resulting from inheritance.

7) Determine the types of all variables in the
context of where and how they are used.
This pass and 8) clearly enumerate at least 20
special considerations. They also clarify how
inheritance and polymorphism really work,
which helps students to use these concepts
more appropriately.

8) Bind overloaded methods based on the argu-
ment types in calls to them.

9) Perform at least 20 late validation checks for
valid assignments, casts, contractual obliga-
tions, protection violations, and exception
handling.

10) Identify and discard unused type definitions,
methods, and variables. This pass especially
demonstrates applications of the discrete
mathematics and graph theory that students
must learn, but rarely appreciate.

11) Generate the intermediate code.
12) Optimize the intermediate code. This pass is

primarily reserved for extension by advanced
students. Real-world optimizations are typi-
cally graduate-level concepts. Employing them
severely obfuscates the meaning of a program.

Runtime system
The intermediate code produced by the compiler

executes in one of two ways. The most straightfor-
ward uses the built-in, software-based runtime
system (similar to the Java Virtual MachineTM),
which interprets the code and performs its corres-
ponding hardware-like actions. The second way
uses an actual simulated architecture, which will be
covered in the next section.

The runtime system is a relatively simple, virtual
computer for the 16MB, 24-bit machine defined
above. Running compiled programs this way
allows students to focus predominantly on soft-
ware instead of on hardware. All details that were
logged throughout the earlier stages are available,
which allows students to see how their program-
ming choices are actually realized. These details
are fully cross-referenced, so students can follow
the audit trails forward and backward from any
point with an interactive browser. Such critical
inspection is nearly impossible in a normal compu-
ter environment because the details are too
complex, convoluted, and hidden.

Hardware component
The hardware component plays a role compar-

able to existing schematic capture and simulation
software like MultiSimTM and LogicWorksTM.
Its pedagogical hallmark is reflected in how tightly
and seamlessly it integrates with the inspection
capabilities of ShelbySim overall to show how
software and hardware interact in real time. It is
also student-friendly, without overwhelming,
mysterious options and advanced professional
features that distract students into focusing more
on the tool than on the task it is supposed to help
solve.

Interaction is through the customary bimodal
approach, where students first design (``capture'') a
schematic diagram, then they run a simulation
directly on it. This approach supports consistency
because the view of the design remains the same in
both contexts. The demonstration aspects for
recruitment also come into play here.

As a simulator of computer-based systems,
ShelbySim emphasizes digital circuits. To this
end, all the customary discrete, digital components
are available; e.g. logic gates, latches, flip-flops,
memory devices, etc. Each component is defined
by its own Shelby program, which makes extend-
ing components or adding new ones very conve-
nient. For pedagogical flexibility, components are
typically abstractions of their real-world counter-
parts. For example, a 21-input AND gate is likely
not available from any manufacturer, but if
students need one to play this role in their
design, it is a simple matter of defining this
configuration. Such abstraction eliminates the
hierarchical cascading of multiple, smaller gates,
which leads to messy, disorganized, and confusing
designs. In other words, ShelbySim allows students
to focus on the design more than on the low-level
details of its realization. This approach is accep-
table because ShelbySim, unlike many other tools,
is not intended for building circuits in a lab.

Another example of abstraction is the mitigation
or elimination of common, troublesome phenom-
ena that complicate designs. For example, in real
life, propagation delay, clock skew, fan-out limita-
tion, and so on cannot be avoided, but in a
pedagogical environment, they unnecessarily
complicate the learning process and frustrate
students, who otherwise may have good designs.
In the event that such delays are actually necessary
or desirable, such as with some sequential logic
devices, they can still be modeled.

Although the hardware component is primarily
for digital systems, it does incorporate a reason-
able (and expandable) selection of common analog
and electromechanical components for interfacing
and testing purposes. For example:

. Input: switches, buttons, keypads, keyboards,
encoders, sensors (distance, temperature, light,
rotation, etc.)

. Processing: analog-to-digital and frequency-to-
amplitude converters (and their inverses), signal

ShelbySim: A Transparent, Pedagogy-Oriented Simulator 757

conditioners, serial and parallel communication
devices, relays and basic switching transistors,
circuit breakers.

. Output: light bulbs, LEDs (single, numeric,
alphanumeric), small and full-screen LCD dis-
plays, motors, linear actuators, solenoids.

. Testing: oscilloscope, voltmeter, logic analyzer,
data logger.

ShelbySim does not yet graphically model the
physical realization of devices the way full-
featured, professional computer-aided-design
packages like SolidWorksTM and LabVIEWTM

do. However, some form of their nicer representa-
tion will eventually be incorporated for better
visual understanding and appeal, especially for
demonstrations.

ShelbySim was originally intended for courses in
computer architecture and organization. As such,
it especially facilitates building and testing any
reasonable architecture, from small microcontrol-
lers for embedded systems to 24-bit, pipelined
microprocessors with an operating system (Shel-
bix) for general-purpose computing. The Shelby
compiler contains many options for translating its
intermediate code to various target architectures
(contrived or actual). For example, a microcon-
troller with a 4-bit data bus is very educational
because, with minimal hardware, it effectively
demonstrates the operations necessary to fetch
and execute machine-code instructions [3]. It does
not, of course, directly accommodate a program-
ming language with 24-bit data like Shelby. Two
compiler options are available to resolve this
situation. The first is the easiest, although not the
friendliest or most flexible: it actively prevents the
program from exceeding the reduced capabilities
of the hardware by halting on any violation.

The second, which requires additional, thought-
ful coding in the compiler by students, depending
on what they opt to support, transforms problem-
atic operations into multiple steps. For example,
an 8-bit transfer can be managed as two sequential
4-bit transfers. In fact, schemes like this abound in
hardware, and compilers routinely perform such
sneaky transformations without the knowledge of
the programmer. ShelbySim exposes this magic to
students and forces them to weigh design decisions
and limitations. For example, this 8-bit transform
might be reasonable because it accommodates the
standard byte data type (a definite advantage) with
only a doubling of the transfer time (an acceptable
disadvantage). On the other hand, extending it to
the full 24 bits may not satisfy a cost-benefit
analysis.

Simulation component
The simulation component provides the opera-

tional framework for evaluating how well the soft-
ware and hardware work together as a solution to
a reasonable engineering problem in an academic
environment. It consists of simulation and evalua-
tion stages.

Simulation
Simulation is the process of running the soft-

ware on the hardware, manipulating the inputs,
and observing the outputs under various operating
conditions. Manipulation occurs in two modes:
deterministic and stochastic. Deterministic mode
involves changing the inputs either interactively or
batchwise through data files. The former is conve-
nient for initial testing and to observe immediate
cause-and-effect relationships. The latter is more
appropriate for running careful sequences of
events multiple times, where students tweak their
design between runs to debug or evaluate it. In
either case, students must explicitly choose discrete
values for all the inputs. In contrast, stochastic
mode runs a non-interactive Monte Carlo simula-
tion, where inputs are discrete values, events, or
ranges, any of which may have associated prob-
abilities.

The simulated application in Figure 1 is a
closed-loop feedback system that models a speed
controller, much like a basic automobile cruise
control:

. Power supply P provides power as a unitless
100% potential. In this conceptualized model,
current, voltage, battery drain, etc. are not
considered, although they could be.

. Breaker B limits the power from P. Its maximum
threshold is set as a property (0±100%).

. Motor M has a power input (0±100%), an
inertial load input (0±100%), and a built-in
RPM output (0±999). The relationship between
power, load, RPM, acceleration, response time,
and so on is defined by a Shelby program. This
interface is built into the motor itself here to
avoid having to model irrelevant complexities
like a rotating shaft and its encoder.

. Linear slider T manually throttles the expected
RPM. It is calibrated in percent, not RPM. It
also has an input from the controller that adjusts
it automatically to maintain the expected RPM
as the load changes.

. Linear slider L manually proportions the load to
the motor. It is also calibrated in percent.

. Pushbutton S latches the current RPM value to
maintain.

. Display DA shows the actual RPM of the motor.

. Display DE shows the expected RPM of the
motor, as latched by S.

. Controller C runs a Shelby program that maps
the inputs to the output. As the simulation runs,
students can change any of the manual inputs T,
S, and L and watch the effect on M via DA, DE,
and T (which is also an output). Every data
element is automatically logged in real time for
analysis.

As a conceptualized system, explicitly complete
electrical circuits are not necessary. For example,
only the motor requires a power supply, and every
component has an automatic ground. Similarly,
pull-up and pull-down resistors are not normally
necessary, although they can be used for three-

D. Tappan758

state logic, buses, etc. To do realistic modeling of
electrical characteristics (e.g. with Ohm's Law)
would be a matter of encoding this behavior into
the Shelby programs of the affected components.
In other words, conceptualization does not
preclude deeper modeling and analysis. For a
holistic view, however, such treatment is often
too detailed, distracting, and unnecessary.

EVALUATION

Most course assignments, especially in computer
science, tend to focus on synthesis, or building a
solution. The equally important counterpart,
analysis, which determines the effectiveness of the
solution, usually receives far less attention [1]. The
evaluation stage of simulation in ShelbySim allows
students to exercise a design over a wide range of
possible inputs, events, or constraints, and espe-
cially to test combinations of inputs that they
might not consider. It facilitates reproducible,
controlled experiments that generate the raw data
students need to demonstrate performance quant-
itatively. The typical process is as follows:

1) Students debug their initial design until it
works correctly, although it need not work
well at this point.

2) For the inputs, they define possible discrete
values or ranges with step resolutions. For
example, switch E has the options {on, off},
whereas slider L ranges from 0 to 100%, and a
5% step from minimum to maximum might be
appropriate. Values can also have probabil-
ities associated with them. For example,
breaker B might have a 0.1% chance of going
from closed to open as the result of an
abnormal event like a defect (not because its
power limit was exceeded, which is a normal
operational event).

3) Students run the simulation. For input sets
without probability, ShelbySim automatically
varies the inputs across all combinations and
logs the corresponding results to structured
text files. Students can carefully select subsets
and export them to Microsoft ExcelTM,
MATLABTM, gnuplot, or other applications.
Figure 2 is a sample plot of the absolute
difference between DE and DA as a function
of an absolute percentage change in either T or
L after one second. It demonstrates latency in
achieving a steady state in this simplistic con-
troller model.

For input sets with probability, a stochastic
simulation occurs. Students select a number of
runs, often between 100 and 10,000, depending
on the complexity of the design and the resolu-
tion of its analysis. ShelbySim will perform the
same process as above, but with independent
run sets. Analysis must then take into account
the distribution of results, which is much more
complicated, but also much more representa-
tive of the real world. For example, the relia-
bility of breaker B might be determined to be
unacceptable if a large percent of the test runs
failed due to it.

Stochastic simulation is especially useful for
identifying emergent properties and subtle

Fig. 1. Example schematic for cruise control (The enclosing graphical user interface of the ShelbySim application is ordinary and
uninteresting. For clarity, this figure is extracted from it, and connection labels and other descriptive elements are omitted).

Fig. 2. Sample output for analysis.

ShelbySim: A Transparent, Pedagogy-Oriented Simulator 759

interdependencies between components that
might not be considered for explicit testing
[4]. For example, breaker B, and an additional
breaker B2 elsewhere, might individually have
0.1% failure rates, as expected. However, ana-
lysis might show that whenever B fails, B2 fails
20% of the time.

Reproducibility stems from the way random
numbers are managed in ShelbySim: for any
given seed, the simulation will produce iden-
tical results. This capability allows students to
re-examine individual runs that appear inter-
esting or anomalous. For example, why,
among 499 correct runs, did only number 73
produce the wrong answer? This frustrating
scenario of diagnosing spurious results and
transient failures is all too common in real
life. ShelbySim helps students develop the
skills and self-discipline to perform reasoning
and analysis on the facts and assumptions to
infer a cause, then to propose a remedy, and
finally to test whether it actually resolves the
problem. Too often, students haphazardly
throw hardware or software at a problem,
and it only coincidentally disappears, which
is not an effective problem-solving strategy.

4) Either type of simulation in Step 3 establishes
the baseline performance for the students'
initial designs. Now they can experiment in a
controlled manner to refine it. They iteratively
modify oneÐand only oneÐinput parameter,
and then rerun the same simulation to produce
a new set of results. When they compare this
performance to the baseline performance, they
see a direct cause-and-effect relationship with
respect to that single modification. If perfor-
mance improves, it sets them on a trajectory to
improve it further. If it degrades, they use the
rollback feature to undo the modification and
try something else. This iterative process not
only improves the design, it also improves the
students' skills, wisdom, intuition, etc. at
hypothesizing what might be promising mod-
ifications. Just as important, too, is that it
dissuades them from undisciplined, labor-
intensive, random trial-and-error experimen-
tation and hacking.

Thanks to its flexible experimentation framework,
ShelbySim is convenient for running hypothetical
test cases, what-if scenarios, trade-off and cost-
benefit analyses, and so on. It is also useful for
determining performance limitations, reliability,
security, etc., which contributes to optimizing
and documenting designs. Furthermore, when
students are given designs with intentional faults,
it serves as a tool for diagnosing problems. In
essence, ShelbySim helps students develop sound
systems-engineering practices and thought
patterns by experiencing real operational contexts,
as Figure 3 illustrates [5, 6]:

ShelbySim does not actually perform any data
analysis or presentation. It only generates the

structured output data for such activities. Ulti-
mately, it is the students' responsibility to process
the data and write a report. Communication skills
are woefully underaddressed in most engineering
programs [7]. Most of the limited time available for
each assignment is spent on synthesis, at the
expense of analysis and reporting. By migrating
much of the administrative overhead required to
run experiments from the students to the software,
ShelbySim makes room for analysis and commun-
ication-related aspects.

RECRUITMENT APPLICATIONS

According to anecdotal comments, computer
science lacks a tangible `̀ coolness'' factor, perhaps
because the age group of potential students has
grown up with computers and considers them
commonplace and uninteresting [8]. Fortunately,
the colorful, action-packed, interactive displays in
simulation mode serve as an attractive demonstra-
tion for career and majors fairs and related events.
ShelbySim can play an important recruitment role,
especially in light of the federal initiative to double
STEM graduates by 2015. Many pre-college
students, even those with technical interests, may
not truly realize the widespread role computer-
based systems play in nearly every modern
device. Even if they do not ultimately consider a
major in these areas, a minor might still be a
persuasive option.

Younger groups are also a good target for
demonstrations. An earlier, non-interactive
version has been used at a number of events. It
succeeded in drawing students to the College of
Engineering table, where representatives fielded
questions and related the exciting roles of engin-
eering at the appropriate level. As a simple tool
with substantial breadth and depth of appealing
content, ShelbySim has great potential in the K-12
recruitment field.

ASSESSMENT

As a work in progress, ShelbySim is not yet
available in its entirety for quantitative assessment.
Substantial parts of it, however, have been success-
fully fielded as proofs of concept in senior/gradu-

a. Data: no associativity or context
b. Information: associativity within one context
c. Knowledge: associativity within multiple contexts
d. Wisdom: generalization of principles based on

knowledge from different sources over time

Fig. 3. Development of engineering thought patterns.

D. Tappan760

ate-level courses in compilers and computer archi-
tecture. Student feedback was positive and
encouraging.

Assessment as this point is based on the poten-
tial of ShelbySim to be a useful pedagogical tool.
The American Association of Higher Education
lists seven principles for good practice in under-
graduate education [9]. ShelbySim aligns well with
them.

Encourages student-faculty contact
Components (and entire designs) are self-

contained packages. If students have a question
or problem, they can select a component, annotate
it, and automatically send it via email to the
instructor, who can import it without hassle, run
it, make comments on it directly, and send it back
for seamless reintegration. This capability stream-
lines the communication process and makes it
more likely that students will seek assistance.
When multiple students encounter a common
problemÐoften the intended crux of an assign-
mentÐthe instructor can email hints to the entire
class or address it in lecture on his or her own
ShelbySim.

Encourages cooperation among students
For larger projects in a collaborative environ-

ment, teams for different components of a shared
design may work relatively independently, once
they have agreed on the interdependency and
intercommunication specifications. The intent is
to avoid the undisciplinedÐyet seductiveÐprocess
of collectively hacking everything together. While
it is difficult to enforce this process, ShelbySim
components can track their history throughout a
project and determine who worked on what, when,
and for how long, etc. This capability provides
some after-the-fact documentation on the degree
of cooperation and discipline.

The year-long Senior Design capstone course in
the College of Engineering at Idaho State Univer-
sity requires multidisciplinary teams. Although
ShelbySim has not been officially fielded in this
context yet, faculty believe it has great potential.

Encourages active learning
ShelbySim is fun! Most students study engineer-

ing and computers because they have a passion for
seeing and making things work. This software
allows them to observe in a hands-on, virtual
environment the details of how systems operate,
and to play around with them freely. Open-ended
assignments allow students to be creative by asking
them to innovate, improve a design, and justify it,
much the way the process works in the commercial
world [10,11]. This perspective is learner-centered
instead of teacher-centered [12].

Gives prompt feedback
Interactive simulation produces immediate

results. Even without a test plan, students can
initially see whether fiddling with the inputs

causes failure. After achieving an operating solu-
tion, they can then determine whether the outputs
are consistent with expectation and actually solve
the task. And finally, they can evaluate how well
the solution solves the task. All three steps are part
of an iterative engineering process of refining a
solution.

Batch simulation simplifies and expedites grad-
ing. Running the same tests, with the same random
seeds, on all submissions ensures consistency. It
also streamlines the process of submitting and
returning work because ShelbySim packages every-
thing for convenient electronic transfer: students
submit their solution as a single email attachment
or web-page upload, then the grader evaluates it,
makes comments directly in it, and returns it
electronically. There is no confusion about which
files to submit, how to assemble them for grading,
and so on. The less time the grader spends on
administrative overhead, the more time he or she
has to provide prompt and meaningful feedback.

Emphasizes time on task
ShelbySim can hide and expose details as appro-

priate. It separates stages in the engineering design
process to focus students on relevant issues and to
minimize distractions. It is also friendly, straight-
forward software that allows students to spend
more time on the project than on the tool itself.
In contrast, real-world, production-level software,
when used in the classroom environment, tends to
overwhelm students with a landslide of options
that they do not understand or need.

Communicates high expectations
The philosophy of ShelbySim is to make sound

engineering design inherently part of the educa-
tional process. The goal of its use is to avoid the
typical assignment cycle where students hack
requirements into something reasonably working
at the last minute, submit it into a void, receive a
grade and perhaps feedback, and never look at any
of this again. This cycle is not conducive to
developing and implementing a conscientious
plan, then evaluating the results to understand
what worked, what did not, and what could be
improved, etc.

Respects diverse talents and ways of learning
ShelbySim is a visual tool, which lends itself well

to visual learners. Kinesthetic learners should also
relate well to it because it represents a three-
dimensional world of circuits and physical devices
in an animated, hands-on, virtual environment.
Auditory learners might benefit from its use as a
lecture support tool, especially for realtime, inter-
active demonstrations of concepts. Students taking
engineering courses via distance learning or the
web can benefit because they can run examples at
their own pace away from campus, but the tool still
allows them to communicate with the instructor
and the rest of the class through the packaging
feature.

ShelbySim: A Transparent, Pedagogy-Oriented Simulator 761

CONCLUSIONS

ShelbySim's organization into components for
software, hardware, and simulation maps well to
the needs of a variety of courses in the curricula for
computer science, computer engineering, electrical
engineering, mechanical engineering, mechatro-
nics, and measurements and controls. The compo-
nents integrate seamlessly for a holistic view of
entire systems, but they can also function relatively
standalone for more localized emphasis. A hall-
mark of ShelbySim is its unified framework for
implementing a design, simulating it in a variety of
operational contexts, and generating the struc-
tured data for external analysis, evaluation, and
reporting. Its goal is to foster critical-thinking

skills for both the synthesis and analysis stages in
engineering. In particular, the former aligns with
traditional assignments to build something,
whereas the latter addresses underemphasized
analytical, diagnostic, and communication skills.
ShelbySim mitigates much of the mundane over-
head in assignments to provide students with more
hands-on time with the content.

As a work in progress, ShelbySim is still under-
going significant development. Once it becomes
stable for public release, and its documentation is
complete, it will be freely available and continually
supported on the author's web site at www.isu.edu/
~tappdan.The source code will also be available
for inspection and modification under the terms of
the GNU General Public License.

REFERENCES

1. Computing Curricula 2001 project (CC2001), final report, Association for Computing Machinery,
(2001).

2. American Competitiveness Initiative, U.S. Department of Education, http://www.ed.gov/about/
inits/ed/ competitiveness/index.html (checked 10 February 2009).

3. S. Devasia and S. Meek, PC's and Micro-Controllers in Mechatronics Education. In proc. of
Frontiers in Education FIE96, (1996) pp. 966±969.

4. M. Casadei, L. Gardelli, and M. Viroli, Simulating Emergent Properties of Coordination in
Maude: the Collective Sort Case. Electronic Notes in Theoretical Computer Science 175(2), (2007),
pp. 59±80.

5. J. Rowley, The wisdom hierarchy: representations of the DIKW hierarchy. J. Information Science
33(2), (2007), pp. 163±180.

6. R. Irish, Engineering Thinking: Using Benjamin Bloom and William Perry to Design Assignments.
Language and Learning Across the Disciplines 3(2), (1999), pp. 83±102.

7. L. Tong, Identifying essential learning skills in students' engineering education. In proc. of
HERDSA, Canterbury, New Zealand, (2003).

8. P. Jonsson, Can competitions raise `cool' factor of math, science? Christian Science Monitor, 17
May (2008).

9. A. Chickering and Z. Gamson, Seven principles of good practice in Undergraduate Education.
AAHE Bulletin 39, (1987), pp. 3±7.

10. T. Wiesner and W. Lan, Comparison of Student Learning in Physical and Simulated Unit
Operations Experiments. J. Eng. Educ. 93(3), (2004), pp. 23±231.

11. Z. Dilli, N. Goldsman, J. Schmidt, L. Harper, and S. Marcus, A New Pedagogy in Electrical and
Computer Engineering: An experiential and conceptual approach. In proc. of Frontiers in
Education FIE02, (2002) pp. 3±7.

12. M. Yearny, Teacher-Centered to Learner-Centered Educational Model. In proc. of Frontiers in
Education FIE98, (1998).

Dan Tappan is an Assistant Professor in the Department of Computer Science at Idaho
State University. He received his Ph.D. in Computer Science from New Mexico State
University in 2004 and his MSE in Computer Systems Engineering from the University of
Arkansas at Fayetteville in 1996. His research interests are artificial intelligence, especially
natural-language processing, as well as modeling and simulation, and pedagogy of the
STEM (science, technology, engineering, and mathematics) disciplines.

D. Tappan762

